1
|
Casu G, Barajas-Smith I, Barr A, Phillips B, Kim S, Nussbaum MA, Rempel D, Pau M, Harris-Adamson C. Shoulder kinematics during cyclic overhead work are affected by a passive arm support exoskeleton. APPLIED ERGONOMICS 2024; 121:104357. [PMID: 39059032 DOI: 10.1016/j.apergo.2024.104357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE We investigated the influence of passive arm-support exoskeleton (ASE) with different levels of torque (50, 75, and 100%) on upper arm osteokinematics. METHODS Twenty participants completed a cyclic overhead drilling task with and without ASE. Task duration, joint angles, and angular acceleration peaks were analyzed during ascent and descent phases of the dominant upper arm. RESULTS Maximum ASE torque was associated with decreased peak acceleration during ascent (32.2%; SD 17.8; p < 0.001) and descent phases (38.8%; SD 17.8; p < 0.001). Task duration remained consistent. Increased torque led to a more flexed (7.2°; SD 5.5; p > 0.001) and internally rotated arm posture (17.6°; SD 12.1; p < 0.001), with minimal changes in arm abduction. CONCLUSION The small arm accelerations and changes in osteokinematics we observed, support the use of this ASE, even while performing overhead cyclic tasks with the highest level of support.
Collapse
Affiliation(s)
- Giulia Casu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy.
| | | | - Alan Barr
- Department of Medicine, University of California, San Francisco, CA, USA; School of Public Health, University of California, Berkeley, CA, USA
| | - Brandon Phillips
- School of Public Health, University of California, Berkeley, CA, USA
| | - Sunwook Kim
- Virginia Tech, Department of Industrial and System Engineering, Blacksburg, VA, USA
| | - Maury A Nussbaum
- Virginia Tech, Department of Industrial and System Engineering, Blacksburg, VA, USA
| | - David Rempel
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Carisa Harris-Adamson
- Department of Medicine, University of California, San Francisco, CA, USA; School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
2
|
Zheng L, Pan C, Wei L, Bahreinizad H, Chowdhury S, Ning X, Santos F. Shoulder-assist exoskeleton effects on balance and muscle activity during a block-laying task on a simulated mast climber. INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS 2024; 104:10.1016/j.ergon.2024.103652. [PMID: 39449710 PMCID: PMC11497863 DOI: 10.1016/j.ergon.2024.103652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Interest in utilizing exoskeletons to mitigate the risks of musculoskeletal disorders (MSDs) among construction workers is growing, spurred by encouraging results in other industries. However, it is crucial to carefully examine their impact on workers' stability and balance before implementation. In this study, seven male participants lifted a 35-lb cinder block from a production table to a simulated wall at two heights-elbow and shoulder levels-using three different exoskeleton models on an unstable platform, where their balance and shoulder muscle activity were assessed. Balance-related parameters, included mean distance (MDIST), total excursion (EXCUR), and mean velocity (VEL) of the center of pressure, were derived from force plate data. Muscle activity in six shoulder and upper arm muscles was estimated using electromyography (EMG) data. The results indicated that wearing two of the exoskeletons significantly increased both total and medio-lateral (ML) MDIST compared to not wearing an exoskeleton. Wearing one of the exoskeletons significantly increased total and ML VEL and ML EXCUR. Although lifting level did not have a significant impact on the balance parameters, it did affect the muscle activity in most of the measured muscles. Moreover, only one exoskeleton significantly reduced the activity in a particular shoulder muscle compared to no exoskeleton use. In conclusion, the evaluated shoulder-assist exoskeletons showed limited benefits for preventing upper extremity MSDs and may negatively affect whole-body balance during a block-laying task on an unstable platform. These findings underscore the importance of comprehensive evaluations of balance and effectiveness prior to adopting exoskeletons in construction.
Collapse
Affiliation(s)
- Liying Zheng
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV, USA
| | | | - Leonardo Wei
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| | - Hossein Bahreinizad
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
| | - Suman Chowdhury
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
- Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
| | - Xiaopeng Ning
- Division of Safety Research, NIOSH, Morgantown, WV, USA
| | - Felipe Santos
- Department of Industrial, Manufacturing, and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
3
|
Wollesen B, Gräf J, De Bock S, Alfio E, Díaz MA, De Pauw K. Gender Differences in Performing an Overhead Drilling Task Using an Exoskeleton-A Cross-Sectional Study. Biomimetics (Basel) 2024; 9:601. [PMID: 39451807 PMCID: PMC11504643 DOI: 10.3390/biomimetics9100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
(1) Exoskeletons offer potential benefits for overhead working tasks, but gender effects or differences are unclear. This study aimed to compare the performance as well as subjective body strain and comfort of men and women using an upper-body exoskeleton. (2) n = 20 female and n = 16 male participants performed an overhead drilling task with and without a passive upper-body exoskeleton in a randomized cross-over study. The task performance of different movement phases, perceived exertion, and ease of use were measured to compare gender differences. One- and two-way analyses were used to compare genders in the different conditions. The body mass index (BMI) was included as a covariate. (3) Gender differences in task performance were found for error integrals (p < 0.001) with higher values in male participants. Moreover, there was a significant interaction effect for gender x exoskeleton use. While females showed performance decrements in aiming with exoskeleton use, the males' performance increased (p = 0.025). No other gender differences were observed. (4) Gender differences in task performance using an upper-body industrial exoskeleton were less detectable than expected, indicating that body composition and anthropometrics might be valuable indicators for performance including assisting devices. Moreover, future studies should also integrate the examination of muscle activity to gain more insights into potential gender movement control patterns.
Collapse
Affiliation(s)
- Bettina Wollesen
- Department of Human Movement Science, Universität Hamburg, 20148 Hamburg, Germany;
- Institute of Movement Therapy and Movement-Oriented Prevention and Rehabilitation, German Sports University Cologne, 50933 Cologne, Germany
| | - Julia Gräf
- Department of Human Movement Science, Universität Hamburg, 20148 Hamburg, Germany;
| | - Sander De Bock
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (S.D.B.); (E.A.); (M.A.D.); (K.D.P.)
| | - Eligia Alfio
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (S.D.B.); (E.A.); (M.A.D.); (K.D.P.)
- Human Robotics Research Center, 1050 Brussels, Belgium
| | - María Alejandra Díaz
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (S.D.B.); (E.A.); (M.A.D.); (K.D.P.)
- Human Robotics Research Center, 1050 Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050 Brussels, Belgium; (S.D.B.); (E.A.); (M.A.D.); (K.D.P.)
| |
Collapse
|
4
|
Ibrahim A, Okpala I, Nnaji C, Akanmu A. Effects of using an active hand exoskeleton for drilling tasks: A pilot study. JOURNAL OF SAFETY RESEARCH 2024; 90:381-391. [PMID: 39251294 DOI: 10.1016/j.jsr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/07/2024] [Accepted: 05/09/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Several studies have assessed and validated the impact of exoskeletons on back and shoulder muscle activation; however, limited research has explored the role that exoskeletons could play in mitigating lower arm-related disorders. This study assessed the impact of Ironhand, an active hand exoskeleton (H-EXO) designed to reduce grip force exertion, on worker exertion levels using a two-phase experimental design. METHOD Ten male participants performed a controlled, simulated drilling activity, while three male participants completed an uncontrolled concrete demolition activity. The impact of the exoskeleton was assessed in terms of muscle activity across three different muscles using electromyography (EMG), perceived exertion, and perceived effectiveness. RESULTS Results indicate that peak muscle activation decreased across the target muscle group when the H-EXO was used, with the greatest reduction (27%) observed in the Extensor Carpi Radialis (ECR). Using the exoskeleton in controlled conditions did not significantly influence perceived exertion levels. Users indicated that the H-EXO was a valuable technology and expressed willingness to use it for future tasks. PRACTICAL APPLICATIONS This study showcases how glove-based exoskeletons can potentially reduce wrist-related disorders, thereby improving safety and productivity among workers. Future work should assess the impact of the H-EXO in various tasks, different work environments and configurations, and among diverse user groups.
Collapse
Affiliation(s)
- Abdullahi Ibrahim
- Department of Construction Science, Texas A&M University, 101 Coke Building, College Station, TX 77840, USA.
| | - Ifeanyi Okpala
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, 3043 HM Comer, Tuscaloosa, AL 35487, USA.
| | - Chukwuma Nnaji
- Department of Construction Science, Texas A&M University, 101 Coke Building, College Station, TX 77840, USA.
| | - Abiola Akanmu
- Myers Lawson School of Construction, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
5
|
Pentenga HM, Coenen P, Huysmans MA, Speklé EM. The effects of working with a passive arm-support exoskeleton on objective and self-reported measures during field tasks - a randomised cross-over study. ERGONOMICS 2024:1-17. [PMID: 39180210 DOI: 10.1080/00140139.2024.2392785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Musculoskeletal disorders (MSDs) are prevalent under poor working situations. Where it is not possible to remove the root cause of MSDs, passive exoskeletons could be a solution. In this randomised cross-over field study we investigated the effect of a passive arm-support exoskeleton. Ten participants, recruited from a Dutch gas company, were measured with and without exoskeleton assessing muscle activity, heart rate (HR), arm elevation, and reported about their experiences. Participants spent more time in high arm elevation levels with the exoskeleton than without. Muscle activity was lower in the trapezius (Beta: -1.8 [-3.1; -0.4]) and deltoid (Beta: -1.4 [-2.3; -0.6]) muscles, but not the biceps muscle, during the measurements with exoskeleton than without, suggesting effectiveness of the exoskeleton. HR and discomfort did not statistically significantly differ between the two conditions. Participants would recommend an exoskeleton to their colleagues, but mainly for repetitive work. Their opinions about the usefulness during work varied.
Collapse
Affiliation(s)
- Hilde M Pentenga
- Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Public and Occupational Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter Coenen
- Human Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
- Department of Public and Occupational Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, The Netherlands
| | - Maaike A Huysmans
- Department of Public and Occupational Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health, Amsterdam, The Netherlands
| | - Erwin M Speklé
- Department of Public and Occupational Health, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Arbo Unie Occupational Health Service, Nieuwegein, The Netherlands
| |
Collapse
|
6
|
Jacquier-Bret J, Gorce P. Kinematics characteristics of key point of interest during tennis serve among tennis players: a systematic review and meta-analysis. Front Sports Act Living 2024; 6:1432030. [PMID: 39040663 PMCID: PMC11260724 DOI: 10.3389/fspor.2024.1432030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
The objective of this systematic review and meta-analysis was to provide an overview of kinematic parameters associated with key points of interest in the tennis serve. The research was conducted according to the PRISMA guideline without date restriction. Google scholar, Science Direct, PubMed/Medline, Mendeley, and Science.gov databases were scanned to find relevant studies. Only English peer-review original article focused on joint body angles at trophy position, racket low point and ball impact were retained. The review, quality appraisal, and data extraction from selected studies were performed independently by two reviewers. A meta-analysis was carried out on the most studied joint parameters. Among the 2,844 records identified, 27 articles were included. The wide variety of methods used required data homogenization for comparison purposes. Trunk inclination (25.0 ± 7.1°) and front knee flexion (64.5 ± 9.7°) were the most studied parameters for trophy position. Shoulder lateral rotation (130.1 ± 26.5°) was systematically evaluated for racket low point. At ball impact, shoulder elevation (110.7 ± 16.9°) and elbow flexion (30.1 ± 15.9°) were the most considered joint angles. The systematic review revealed that many kinematic parameters were not quantified at the various key points of interest. Knowledge of the kinematics is essential for understanding the gesture, implementing training methods, and improving the performance.
Collapse
Affiliation(s)
- Julien Jacquier-Bret
- International Institute of Biomechanics and Occupational Ergonomics, Hyères, France
- Université de Toulon, Toulon, France
| | - Philippe Gorce
- International Institute of Biomechanics and Occupational Ergonomics, Hyères, France
- Université de Toulon, Toulon, France
| |
Collapse
|
7
|
Di Natali C, Buratti G, Dellera L, Caldwell D. Equivalent weight: Application of the assessment method on real task conducted by railway workers wearing a back support exoskeleton. APPLIED ERGONOMICS 2024; 118:104278. [PMID: 38626669 DOI: 10.1016/j.apergo.2024.104278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/18/2024]
Abstract
Commonly used risk indexes, such as the NIOSH Lifting Index, do not capture the effect of exoskeletons. This makes it difficult for Health and Safety professionals to rigorously assess the benefit of such devices. The community requires a simple method to assess the effectiveness of back-support exoskeleton's (BSE) in possibly reducing ergonomic risk. The method introduced in this work is termed "Equivalent Weight" (EqW) and it proposes an interpretation of the effect built on the benefit delivered through reduced activation of the erector spinae (ES). This manifests itself as an apparent reduction of the lifted load perceived by the wearer. This work presents a pilot study where a practical application of the EqW method is used to assess the ergonomic risk in manual material handling (MMH) when using a back support exoskeleton (StreamEXO). The results are assessed by combining observational measurements from on-site testing with five different workers and quantitative measures of the muscle activity reduction achieved during laboratory evaluation with ten workers. These results will show that when lifting, lowering, and carrying a 19 kg load the StreamEXO can reduce risk by up to two levels (from "high" to "low") in the target sub-tasks. The Lifting index (LI) was reduced up to 64% when examining specific sub-tasks and the worker's movement conduction.
Collapse
Affiliation(s)
- Christian Di Natali
- Dept of Advanced Robotics, Istituto Italiano di Tecnologia, Via S. Quirico, 19D, Genoa, 16163, Italy.
| | - Giorgio Buratti
- Scuola del Design, Politecnico di Milano, Via Giuseppe Candiani, 72, Milan, 20158, Italy; ErgoDesign S.a.s, Via Monte Pasubio, 5, Dalmine, BG, 24044, Italy
| | - Luca Dellera
- ErgoDesign S.a.s, Via Monte Pasubio, 5, Dalmine, BG, 24044, Italy
| | - Darwin Caldwell
- Dept of Advanced Robotics, Istituto Italiano di Tecnologia, Via S. Quirico, 19D, Genoa, 16163, Italy
| |
Collapse
|
8
|
Cha JS, Athanasiadis DI, Asadi H, Stefanidis D, Nussbaum MA, Yu D. Evaluation of a passive arm-support exoskeleton for surgical team members: Results from live surgeries. JOURNAL OF SAFETY RESEARCH 2024; 89:322-330. [PMID: 38858056 DOI: 10.1016/j.jsr.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/16/2023] [Accepted: 02/05/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Musculoskeletal symptoms and injuries adversely impact the health of surgical team members and their performance in the operating room (OR). Though ergonomic risks in surgery are well-recognized, mitigating these risks is especially difficult. In this study, we aimed to assess the impacts of an exoskeleton when used by OR team members during live surgeries. METHODS A commercial passive arm-support exoskeleton was used. One surgical nurse, one attending surgeon, and five surgical trainees participated. Twenty-seven surgeries were completed, 12 with and 15 without the exoskeleton. Upper-body postures and muscle activation levels were measured during the surgeries using inertial measurement units and electromyography sensors, respectively. Postures, muscle activation levels, and self-report metrics were compared between the baseline and exoskeleton conditions using non-parametric tests. RESULTS Using the exoskeleton significantly decreased the percentage of time in demanding postures (>45° shoulder elevation) for the right shoulder by 7% and decreased peak muscle activation of the left trapezius, right deltoid, and right lumbar erector spinae muscles, by 7%, 8%, and 12%, respectively. No differences were found in perceived effort, and overall scores on usability ranged from "OK" to "excellent." CONCLUSIONS Arm-support exoskeletons have the potential to assist OR team members in reducing musculoskeletal pain and fatigue indicators. To further increase usability in the OR, however, better methods are needed to identify the surgical tasks for which an exoskeleton is effective.
Collapse
Affiliation(s)
| | | | - Hamed Asadi
- Purdue University, West Lafayette, IN, United States
| | | | | | - Denny Yu
- Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Gorce P, Jacquier-Bret J. A systematic review of work related musculoskeletal disorders among physical therapists and physiotherapists. J Bodyw Mov Ther 2024; 38:350-367. [PMID: 38763580 DOI: 10.1016/j.jbmt.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 05/21/2024]
Abstract
Physical therapists and physiotherapists (PPTs) perform and repeat physical tasks that can lead to work-related musculoskeletal disorders (WMSD). The aim was to study the main research concerning this problem, i.e. the risk factors, activities that exacerbate WMSD symptoms, alterations in work habits and the proposed responses, and to estimate mean value (±standard deviation, STD) for the most studied parameters. This review was conducted according to the PRISMA guideline. Five databases (Pubmed, ScienceDirect, Google Scholar, Medeley and Science.gov) were scanned to identify works investigating the different aspects of WMSD among PPTs. Two reviewers independently selected relevant studies using inclusion/exclusion criteria, critically appraised, and extracted data. To homogenize the data, prevalence were reported to the total sample studied when necessary. Among the 9846 articles identified, 19 articles were included. The WMSD prevalence was over 50 %. The areas most affected were the lower back, neck and thumb. An exhaustive list of parameters were constructed for job risk factors (n = 19), activities that exacerbating symptoms (n = 13), altered work habits (n = 15), responses and treatments (n = 26). The mean prevalence (±STD) was calculated for the major parameters. Nine main job risk factors were extracted with an average prevalence of about 30 % and a relatively high variability. Seven activities exacerbating WMSD symptoms and five altered work habits were identified with a homogeneous rate (5-20 %). Three main responses and treatments were found with heterogeneous prevalence. This review provides useful results for the development of future protocols to prevent the occurrence of WMSD among PPTs and meta-analyses.
Collapse
Affiliation(s)
- Philippe Gorce
- International Institute for Biomechanics and Occupational Ergonomics, France; Université de Toulon, France
| | - Julien Jacquier-Bret
- International Institute for Biomechanics and Occupational Ergonomics, France; Université de Toulon, France.
| |
Collapse
|
10
|
Coccia A, Capodaglio EM, Amitrano F, Gabba V, Panigazzi M, Pagano G, D’Addio G. Biomechanical Effects of Using a Passive Exoskeleton for the Upper Limb in Industrial Manufacturing Activities: A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:1445. [PMID: 38474980 PMCID: PMC10935392 DOI: 10.3390/s24051445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
This study investigates the biomechanical impact of a passive Arm-Support Exoskeleton (ASE) on workers in wool textile processing. Eight workers, equipped with surface electrodes for electromyography (EMG) recording, performed three industrial tasks, with and without the exoskeleton. All tasks were performed in an upright stance involving repetitive upper limbs actions and overhead work, each presenting different physical demands in terms of cycle duration, load handling and percentage of cycle time with shoulder flexion over 80°. The use of ASE consistently lowered muscle activity in the anterior and medial deltoid compared to the free condition (reduction in signal Root Mean Square (RMS) -21.6% and -13.6%, respectively), while no difference was found for the Erector Spinae Longissimus (ESL) muscle. All workers reported complete satisfaction with the ASE effectiveness as rated on Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST), and 62% of the subjects rated the usability score as very high (>80 System Usability Scale (SUS)). The reduction in shoulder flexor muscle activity during the performance of industrial tasks is not correlated to the level of ergonomic risk involved. This preliminary study affirms the potential adoption of ASE as support for repetitive activities in wool textile processing, emphasizing its efficacy in reducing shoulder muscle activity. Positive worker acceptance and intention to use ASE supports its broader adoption as a preventive tool in the occupational sector.
Collapse
Affiliation(s)
- Armando Coccia
- Bioengineering Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037 Telese Terme, BN, Italy; (A.C.); (G.D.)
| | - Edda Maria Capodaglio
- Occupational Therapy and Ergonomics Unit of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, PV, Italy;
| | - Federica Amitrano
- Bioengineering Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037 Telese Terme, BN, Italy; (A.C.); (G.D.)
| | - Vittorio Gabba
- Department of Clinical-Surgical, Diagnostic and Pediatrics, University of Pavia, 27100 Pavia, PV, Italy;
| | - Monica Panigazzi
- Occupational Therapy and Ergonomics Unit of Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, PV, Italy;
| | - Gaetano Pagano
- Bioengineering Unit of Bari Institute, Istituti Clinici Scientifici Maugeri IRCCS, 70124 Bari, BA, Italy;
| | - Giovanni D’Addio
- Bioengineering Unit of Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, 82037 Telese Terme, BN, Italy; (A.C.); (G.D.)
| |
Collapse
|
11
|
Dooley S, Kim S, Nussbaum MA, Madigan ML. Occupational arm-support and back-support exoskeletons elicit changes in reactive balance after slip-like and trip-like perturbations on a treadmill. APPLIED ERGONOMICS 2024; 115:104178. [PMID: 37984085 DOI: 10.1016/j.apergo.2023.104178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023]
Abstract
The purpose of this study was to investigate the effects of arm- and back-support exoskeletons on reactive balance after slip-like and trip-like perturbations on a treadmill. Twenty-eight participants used two arm-support exoskeletons and two back-support exoskeletons with support (i.e., assistive joint torque) activated or deactivated. In each exoskeleton condition, as well in as a control without any exoskeleton, participants were exposed to 12 treadmill perturbations during upright standing. The exoskeletons did not significantly increase the probability of a failed recovery after the perturbations compared to wearing no exoskeleton, but did elicit effects on kinematic variables that suggested balance recovery was more challenging. Moreover, reactive balance differed when wearing back-support and arm-support exoskeletons, and when wearing an activated exoskeleton compared to a deactivated exoskeleton. Together, our results suggest these exoskeletons may increase the risk of slip- and trip-induced falls. The potential mechanisms of this increased risk are discussed and include the added mass and/or motion restrictions associated with wearing these exoskeletons. Our results do not support the assistive hip/back extension moment provided by back-support exoskeletons adversely affecting fall risk.
Collapse
Affiliation(s)
- Stephen Dooley
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael L Madigan
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
12
|
Nasr A, Dickerson CR, McPhee J. Experimental Study of Fully Passive, Fully Active, and Active-Passive Upper-Limb Exoskeleton Efficiency: An Assessment of Lifting Tasks. SENSORS (BASEL, SWITZERLAND) 2023; 24:63. [PMID: 38202925 PMCID: PMC10780908 DOI: 10.3390/s24010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Recently, robotic exoskeletons are gaining attention for assisting industrial workers. The exoskeleton power source ranges from fully passive (FP) to fully active (FA), or a mixture of both. The objective of this experimental study was to assess the efficiency of a new active-passive (AP) shoulder exoskeleton using statistical analyses of 11 quantitative measures from surface electromyography (sEMG) and kinematic data and a user survey for weight lifting tasks. Two groups of females and males lifted heavy kettlebells, while a shoulder exoskeleton helped them in modes of fully passive (FP), fully active (FA), and active-passive (AP). The AP exoskeleton outperformed the FP and FA exoskeletons because the participants could hold the weighted object for nearly twice as long before fatigue occurred. Future developments should concentrate on developing sex-specific controllers as well as on better-fitting wearable devices for women.
Collapse
Affiliation(s)
- Ali Nasr
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Clark R. Dickerson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - John McPhee
- Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
13
|
Schrøder Jakobsen L, de Zee M, Samani A, Desbrosses K, Madeleine P. Biomechanical changes, acceptance, and usability of a passive shoulder exoskeleton in manual material handling. A field study. APPLIED ERGONOMICS 2023; 113:104104. [PMID: 37531933 DOI: 10.1016/j.apergo.2023.104104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Occupational exoskeletons contribute to diminish the biomechanical load during manual work. However, familiarization to the use of exoskeletons is rarely considered, which may lead to failure of acceptance and implementation. In this study, ten logistic workers underwent a 5-week progressive familiarization to a passive shoulder exoskeleton, while ten workers acted as controls. Tests pre and post the familiarization applied measurements of muscle activity and kinematics of back, neck, and shoulder, perceived effort, and usability-ratings of the exoskeleton. Exoskeleton use resulted in lower muscle activity of anterior deltoid (13-39%) and upper trapezius (16-60%) and reduced perceived effort. Additionally, it induced an offset in shoulder flexion and abduction during resting position (8-10°). No conclusions on familiarization could be drawn due to low adherence to the protocol. However, the emotions of the workers towards using the exoskeleton decreased making it questionable whether the shoulder exoskeleton is suitable for use in the logistics sector.
Collapse
Affiliation(s)
- Lasse Schrøder Jakobsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Denmark.
| | - Mark de Zee
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Denmark
| | - Afshin Samani
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Denmark
| | - Kévin Desbrosses
- INRS, French National Research and Safety Institute for the Prevention of Occupational Accidents and Diseases, Nancy, France
| | - Pascal Madeleine
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, Denmark
| |
Collapse
|
14
|
Wilkenfeld JN, Kim S, Upasani S, Kirkwood GL, Dunbar NE, Srinivasan D. Sensemaking, adaptation and agency in human-exoskeleton synchrony. Front Robot AI 2023; 10:1207052. [PMID: 37901167 PMCID: PMC10602643 DOI: 10.3389/frobt.2023.1207052] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction: Wearable I robots such as exoskeletons combine the strength and precision of intelligent machines with the adaptability and creativity of human beings. Exoskeletons are unique in that humans interact with the technologies on both a physical and cognitive level, and as such, involve a complex, interdependent relationship between humans and robots. The aim of this paper was to explore the concepts of agency and adaptation as they relate to human-machine synchrony, as human users learned to operate a complex whole-body powered exoskeleton. Methods: Qualitative interviews were conducted with participants over multiple sessions in which they performed a range of basic functional tasks and simulated industrial tasks using a powered exoskeleton prototype, to understand their expectations of the human-technology partnership, any challenges that arose in their interaction with the device, and what strategies they used to resolve such challenges. Results: Analysis of the data revealed two overarching themes: 1) Participants faced physical, cognitive, and affective challenges to synchronizing with the exoskeleton; and 2) they engaged in sensemaking strategies such as drawing analogies with known prior experiences and anthropomorphized the exoskeleton as a partner entity in order to adapt and address challenges. Discussion: This research is an important first step to understanding how humans make sense of and adapt to a powerful and complex wearable robot with which they must synchronize in order to perform tasks. Implications for our understanding of human and machine agency as well as bidirectional coadaptation principles are discussed.
Collapse
Affiliation(s)
- J. Nan Wilkenfeld
- Department of Communication, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sunwook Kim
- Industrial and Systems Engineering Department, Virginia Tech, Blacksburg, VA, United States
| | - Satyajit Upasani
- Industrial and Systems Engineering Department, Virginia Tech, Blacksburg, VA, United States
| | - Gavin Lawrence Kirkwood
- Department of Communication, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Norah E. Dunbar
- Department of Communication, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Divya Srinivasan
- Department of BioEngineering, Clemson University, Clemson, SC, United States
| |
Collapse
|
15
|
de Vries AW, Baltrusch SJ, de Looze MP. Field study on the use and acceptance of an arm support exoskeleton in plastering. ERGONOMICS 2023; 66:1622-1632. [PMID: 36546707 DOI: 10.1080/00140139.2022.2159067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Exoskeleton use in day-to-day plastering may face several challenges. Not all plasterer's tasks comprise of movements that will be supported by the exoskeleton and might even be hindered. Furthermore, use in practice might be jeopardised by time pressure, colleagues being negative, discomfort, or any other hindrance of the exoskeleton. We set up a field study, in which 39 plasterers were equipped with an exoskeleton for six weeks, to study exoskeleton usage. Moreover, we studied workload and fatigue, behaviour, productivity and quality, advantages and disadvantages, and acceptance. Exoskeleton use was dependent on the task performed but did not change over the course of the six weeks. For three tasks, higher exoskeleton use was associated with lower perceived loads, although differences were small. Advantages outweighed disadvantages for the majority of our population. This study shows that a majority of plasterers will wear the exoskeleton and is enthusiastic about the load reducing effect. Practitioner summary: For exoskeletons to make an impact on the health and well-being of workers, they need to be applicable in real work situations and accepted by the users. This study shows that 65% of the plasterers in this study want to use the exoskeleton in the future, for specific tasks.
Collapse
|
16
|
Cunha B, Ferreira R, Sousa ASP. Home-Based Rehabilitation of the Shoulder Using Auxiliary Systems and Artificial Intelligence: An Overview. SENSORS (BASEL, SWITZERLAND) 2023; 23:7100. [PMID: 37631637 PMCID: PMC10459225 DOI: 10.3390/s23167100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.
Collapse
Affiliation(s)
- Bruno Cunha
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health-Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| | - Ricardo Ferreira
- Institute for Systems and Computer Engineering, Technology and Science—Telecommunications and Multimedia Centre, FEUP, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Andreia S. P. Sousa
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health-Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| |
Collapse
|
17
|
Gorce P, Jacquier-Bret J. Effect of Assisted Surgery on Work-Related Musculoskeletal Disorder Prevalence by Body Area among Surgeons: Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6419. [PMID: 37510651 PMCID: PMC10379148 DOI: 10.3390/ijerph20146419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Surgeons are highly exposed to work-related musculoskeletal disorders (WMSDs). The objective of this review was to summarize the WMSD prevalence by body area with and without assistive devices. The underlying question was whether there is an effect of assistive device use (robot, video, or other) during surgery on WMSD prevalence by body area among surgeons, regardless of their specialty. The systematic review was conducted according to the PRISMA guidelines. The Google Scholar, Pubmed/Medline, and ScienceDirect databases were scanned to identify relevant studies. The article selection, review, critical appraisal, and data extraction were performed by two authors independently. Among the 34,854 unique identified records, 77 studies were included. They were divided into two groups: 35 focused on robotic- and video-assisted surgery (RVAS) and 48 concerning surgery without video/robotic assistance (WAS) (6 studies evaluated the prevalence for both groups). WMSD prevalence was reported for 13 body areas: the neck, back, upper back, mid-back, lower back, shoulders, elbows, wrists, fingers, thumbs, hips, knees, and ankles. The results showed that WMSD prevalence was significantly higher (unpaired t-test, p < 0.05) for RVAS in the shoulders (WAS: 28.3% vs. RVAS: 41.9%), wrists (WAS: 20.9% vs. RVAS: 31.5%), and thumbs (WAS: 9.9% vs. RVAS: 21.8%). A meta-analysis was performed for 10 body areas (with 4 areas including more than 25 studies). No sufficient data were available for the mid-back, thumbs, or hips. A high heterogeneity (Cochran's Q test and I2 statistic) was observed. A random-effects model revealed that the highest worldwide prevalence was in the neck (WAS: 41% and RVAS: 45.3%), back (WAS: 37.7% and RVAS: 49.9%), lower back (WAS: 40.0% and RVAS: 37.8%), and shoulders (WAS: 27.3% and RVAS: 41.4%). Future work could focus on work environment design, particularly the positioning and adjustment of equipment, and on postural analysis to reduce the appearance of WMSDs. Recommendations are proposed for future reviews and meta-analyses.
Collapse
Affiliation(s)
- Philippe Gorce
- International Institute of Biomechanics and Occupational Ergonomics, ErBio, Avenue du Dr Marcel Armanet, 83400 Hyères, France
- Université de Toulon, CS60584, CEDEX 9, 83041 Toulon, France
| | - Julien Jacquier-Bret
- International Institute of Biomechanics and Occupational Ergonomics, ErBio, Avenue du Dr Marcel Armanet, 83400 Hyères, France
- Université de Toulon, CS60584, CEDEX 9, 83041 Toulon, France
| |
Collapse
|
18
|
Ojelade A, Morris W, Kim S, Kelson D, Srinivasan D, Smets M, Nussbaum MA. Three passive arm-support exoskeletons have inconsistent effects on muscle activity, posture, and perceived exertion during diverse simulated pseudo-static overhead nutrunning tasks. APPLIED ERGONOMICS 2023; 110:104015. [PMID: 36933418 DOI: 10.1016/j.apergo.2023.104015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Arm-support exoskeletons (ASEs) are an emerging technology with the potential to reduce physical demands during diverse tasks, especially overhead work. However, limited information is available about the effects of different ASE designs during overhead work with diverse task demands. Eighteen participants (gender-balanced) performed lab-based simulations of a pseudo-static overhead task. This task was performed in six different conditions (3 work heights × 2 hand force directions), with each of three ASEs and in a control condition (i.e., no ASE). Using ASEs generally reduced the median activity of several shoulder muscles (by ∼12-60%), changed working postures, and decreased perceived exertion in several body regions. Such effects, though, were often task-dependent and differed between the ASEs. Our results support earlier evidence of the beneficial effects of ASEs for overhead work but emphasize that: 1) these effects depend on the task demands and ASE design and 2) none of the ASE designs tested was clearly superior across the tasks simulated.
Collapse
Affiliation(s)
- Aanuoluwapo Ojelade
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wallace Morris
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Sunwook Kim
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | | | - Divya Srinivasan
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - Marty Smets
- Manufacturing Technology Development, Ford Motor Company, Glendale, MI, USA
| | - Maury A Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
19
|
Fournier DE, Yung M, Somasundram KG, Du BB, Rezvani S, Yazdani A. Quality, productivity, and economic implications of exoskeletons for occupational use: A systematic review. PLoS One 2023; 18:e0287742. [PMID: 37368889 PMCID: PMC10298758 DOI: 10.1371/journal.pone.0287742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The objective of this systematic review was to synthesize the current state of knowledge on the quality and productivity of workers and their work while wearing exoskeletons, as well as the economic implications of exoskeletons for occupational use. Following the PRISMA guidelines, six databases were systematically searched for relevant journal articles, written in English, and published since January 2000. Articles meeting the inclusion criteria had their quality assessed using JBI's Checklist for Quasi-Experimental Studies (Non-Randomized Experimental Studies). A total of 6,722 articles were identified and 15 articles focusing on the impact of exoskeletons on quality and productivity of exoskeleton users while performing occupational tasks were included in this study. None of the included articles evaluated the economic implications of exoskeletons for occupational use. This study revealed several quality and productivity measures (e.g., endurance time, task completion time, number of errors, number of task cycles completed) used to evaluate the impact of exoskeletons. The current state of the literature suggests that quality and productivity impacts of exoskeleton use are dependent on task characteristics that should be considered when adopting exoskeletons. Future studies should evaluate the impact of exoskeleton use in the field and on a diverse pool of workers, as well as its economic implications to better support decision-making in the adoption of exoskeletons within organizations.
Collapse
Affiliation(s)
- Daniel E. Fournier
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Marcus Yung
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Kumara G. Somasundram
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Bronson B. Du
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Sara Rezvani
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
| | - Amin Yazdani
- Canadian Institute for Safety, Wellness & Performance, School of Business, Conestoga College Institute of Technology and Advanced Learning, Ontario, Canada
- School of Public Health and Health Systems, University of Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Garcia G, Arauz PG, Alvarez I, Encalada N, Vega S, Martin BJ. Impact of a passive upper-body exoskeleton on muscle activity, heart rate and discomfort during a carrying task. PLoS One 2023; 18:e0287588. [PMID: 37352272 PMCID: PMC10289366 DOI: 10.1371/journal.pone.0287588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
OBJECTIVE The goal of this study was to compare erector spinae muscle fatigue, upper limb muscle activity, body areas discomfort, and heart rate during a 10-min carrying task with and without a passive upper-body exoskeleton (CarrySuitⓇ) while considering sex influences. BACKGROUND Passive exoskeletons are commercially available to assist lifting or carrying task. However, evidence of their impact on muscle activity, fatigue, heart rate and discomfort are scarce and/or do not concur during carrying tasks. METHOD Thirty participants (16 females and 14 male) performed a 10-min, 15kg load-carrying task with and without the exoskeleton in two non-consecutive days. Heart rate, and erector spinae, deltoid, biceps and brachioradialis muscle activity were recorded during the carrying tasks. In addition, erector spinae electromyography during an isometric hold test and discomfort ratings were measured before and after the task. RESULTS While without the exoskeleton upper limb muscle activity increased or remained constant during the carrying task and showing high peak activation for both males and females, a significant activity reduction was observed with the exoskeleton. Low back peak activation, heart rate and discomfort were lower with than without the exoskeleton. In males muscle activation was significantly asymmetric without the exoskeleton and more symmetric with the exoskeleton. CONCLUSION The tested passive exoskeleton appears to alleviate the physical workload and impact of carrying heavy loads on the upper limbs and lower back for both males and females.
Collapse
Affiliation(s)
- Gabriela Garcia
- Departamento de Ingeniería Industrial, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Paul Gonzalo Arauz
- Departamento de Ingeniería Mecánica, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Isabel Alvarez
- Departamento de Ingeniería Industrial, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Nicolas Encalada
- Departamento de Ingeniería Industrial, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Shirley Vega
- Departamento de Ingeniería Industrial, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Bernard J. Martin
- Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
21
|
Arcangeli D, Dubois O, Roby-Brami A, Famié S, de Marco G, Arnold G, Jarrassé N, Parry R. Human Exteroception during Object Handling with an Upper Limb Exoskeleton. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115158. [PMID: 37299885 DOI: 10.3390/s23115158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Upper limb exoskeletons may confer significant mechanical advantages across a range of tasks. The potential consequences of the exoskeleton upon the user's sensorimotor capacities however, remain poorly understood. The purpose of this study was to examine how the physical coupling of the user's arm to an upper limb exoskeleton influenced the perception of handheld objects. In the experimental protocol, participants were required to estimate the length of a series of bars held in their dominant right hand, in the absence of visual feedback. Their performance in conditions with an exoskeleton fixed to the forearm and upper arm was compared to conditions without the upper limb exoskeleton. Experiment 1 was designed to verify the effects of attaching an exoskeleton to the upper limb, with object handling limited to rotations of the wrist only. Experiment 2 was designed to verify the effects of the structure, and its mass, with combined movements of the wrist, elbow, and shoulder. Statistical analysis indicated that movements performed with the exoskeleton did not significantly affect perception of the handheld object in experiment 1 (BF01 = 2.3) or experiment 2 (BF01 = 4.3). These findings suggest that while the integration of an exoskeleton complexifies the architecture of the upper limb effector, this does not necessarily impede transmission of the mechanical information required for human exteroception.
Collapse
Affiliation(s)
- Dorine Arcangeli
- LINP2, UPL, UFR STAPS, Université Paris Nanterre, 200 Avenue de la République, 92001 Nanterre, France
- CAYLAR, 14 Avenue du Québec, 91140 Villebonne sur Yvette, France
| | - Océane Dubois
- ISIR, Sorbonne University, CNRS UMR 7222, ERL INSERM U 1150, 75005 Paris, France
| | - Agnès Roby-Brami
- ISIR, Sorbonne University, CNRS UMR 7222, ERL INSERM U 1150, 75005 Paris, France
| | - Sylvain Famié
- LINP2, UPL, UFR STAPS, Université Paris Nanterre, 200 Avenue de la République, 92001 Nanterre, France
| | - Giovanni de Marco
- LINP2, UPL, UFR STAPS, Université Paris Nanterre, 200 Avenue de la République, 92001 Nanterre, France
| | - Gabriel Arnold
- CAYLAR, 14 Avenue du Québec, 91140 Villebonne sur Yvette, France
| | - Nathanaël Jarrassé
- ISIR, Sorbonne University, CNRS UMR 7222, ERL INSERM U 1150, 75005 Paris, France
| | - Ross Parry
- LINP2, UPL, UFR STAPS, Université Paris Nanterre, 200 Avenue de la République, 92001 Nanterre, France
- ISIR, Sorbonne University, CNRS UMR 7222, ERL INSERM U 1150, 75005 Paris, France
| |
Collapse
|
22
|
Kuber PM, Alemi MM, Rashedi E. A Systematic Review on Lower-Limb Industrial Exoskeletons: Evaluation Methods, Evidence, and Future Directions. Ann Biomed Eng 2023:10.1007/s10439-023-03242-w. [PMID: 37248409 DOI: 10.1007/s10439-023-03242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023]
Abstract
Industrial tasks that involve frequent sitting/standing transitions and squatting activities can benefit from lower-limb industrial exoskeletons; however, their use is not as widespread as their upper-body counterparts. In this review, we examined 23 articles that evaluated the effects of using Wearable Chair (WC) and Squat-assist (SA) exoskeletons. Evaluations mainly included assessment of muscular demands in the thigh, shank, and upper/lower back regions. Both types of devices were found to lessen muscular demands in the lower body by 30-90%. WCs also reduced low-back demands (~ 37%) and plantar pressure (54-80%) but caused discomfort/unsafe feeling in participants. To generalize outcomes, we suggest standardizing approaches used for evaluating the devices. Along with addressing low adoption through design upgrades (e.g., ground and body supports/attachments), we recommend that researchers thoroughly evaluate temporal effects on muscle fatigue, metabolic rate, and stability of wearers. Although lower-limb exoskeletons were found to be beneficial, discrepancies in experimental protocols (posture/task/measures) were discovered. We also suggest simulating more realistic conditions, such as walking/sitting interchangeability for WCs and lifting loads for SA devices. The presented outcomes could help improve the design/evaluation approaches, and implementation of lower limb wearable devices across industries.
Collapse
Affiliation(s)
- Pranav Madhav Kuber
- Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA
| | - Mohammad Mehdi Alemi
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
- Training Services, MathWorks, Natick, MA, USA
| | - Ehsan Rashedi
- Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY, 14623, USA.
| |
Collapse
|
23
|
Kong YK, Kim JH, Shim HH, Shim JW, Park SS, Choi KH. Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks. APPLIED ERGONOMICS 2023; 109:103965. [PMID: 36645995 DOI: 10.1016/j.apergo.2023.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Overhead work can pose substantial musculoskeletal stress in many industrial settings. This study aimed to evaluate the efficacy of passive upper-limb exoskeletons in reducing muscular activity and subjective discomfort ratings. In a repeated-measures laboratory experiment, 20 healthy male participants performed 10-min drilling tasks with and without two passive upper-limb exoskeletons (VEX and Airframe). During the tasks, muscle activity in eight muscles (upper limb - upper trapezius, middle deltoid, biceps brachii, triceps brachii; low back - erector spinae; lower limb - rectus femoris, biceps femoris, tibialis anterior) was collected using electromyography as a physical exertion measure. Subjective discomfort rating in six body parts was measured using the Borg's CR-10 scale. The results showed that muscle activity (especially in the upper-limb muscles) was significantly decreased by 29.3-58.1% with both exoskeletons compared to no exoskeleton condition. The subjective discomfort ratings showed limited differences between the conditions. These findings indicate that passive upper-limb exoskeletons may have potential as an effective intervention to reduce muscular loading and physical exertion during overhead work.
Collapse
Affiliation(s)
- Yong-Ku Kong
- Department of Industrial Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Ho Kim
- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvalli, OR, USA; Environmental and Occupational Health, Oregon State University, Corvalli, OR, USA
| | - Hyun-Ho Shim
- Department of Industrial Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jin-Woo Shim
- Department of Industrial Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Soo Park
- Department of Industrial Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Kyeong-Hee Choi
- Digital Health Care R&D Department, Korea Institute of Industrial Technology, Cheonan, South Korea.
| |
Collapse
|
24
|
Brambilla C, Lavit Nicora M, Storm F, Reni G, Malosio M, Scano A. Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and Effort from the Laboratory to the Industrial Working Place: A Systematic Review. Bioengineering (Basel) 2023; 10:445. [PMID: 37106632 PMCID: PMC10135542 DOI: 10.3390/bioengineering10040445] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Recent human-centered developments in the industrial field (Industry 5.0) lead companies and stakeholders to ensure the wellbeing of their workers with assessments of upper limb performance in the workplace, with the aim of reducing work-related diseases and improving awareness of the physical status of workers, by assessing motor performance, fatigue, strain and effort. Such approaches are usually developed in laboratories and only at times they are translated to on-field applications; few studies summarized common practices for the assessments. Therefore, our aim is to review the current state-of-the-art approaches used for the assessment of fatigue, strain and effort in working scenarios and to analyze in detail the differences between studies that take place in the laboratory and in the workplace, in order to give insights on future trends and directions. A systematic review of the studies aimed at evaluating the motor performance, fatigue, strain and effort of the upper limb targeting working scenarios is presented. A total of 1375 articles were found in scientific databases and 288 were analyzed. About half of the scientific articles are focused on laboratory pilot studies investigating effort and fatigue in laboratories, while the other half are set in working places. Our results showed that assessing upper limb biomechanics is quite common in the field, but it is mostly performed with instrumental assessments in laboratory studies, while questionnaires and scales are preferred in working places. Future directions may be oriented towards multi-domain approaches able to exploit the potential of combined analyses, exploitation of instrumental approaches in workplace, targeting a wider range of people and implementing more structured trials to translate pilot studies to real practice.
Collapse
Affiliation(s)
- Cristina Brambilla
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy
| | - Matteo Lavit Nicora
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy
- Industrial Engineering Department, University of Bologna, 40126 Bologna, Italy
| | - Fabio Storm
- Bioengineering Laboratory, Scientific Institute, IRCCS “Eugenio Medea”, 23842 Bosisio Parini, Italy
| | - Gianluigi Reni
- Informatics Department, Autonomous Province of Bolzano, 39100 Bolzano, Italy
| | - Matteo Malosio
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy
| | - Alessandro Scano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy
| |
Collapse
|
25
|
Gorce P, Jacquier-Bret J. Global prevalence of musculoskeletal disorders among physiotherapists: a systematic review and meta-analysis. BMC Musculoskelet Disord 2023; 24:265. [PMID: 37016332 PMCID: PMC10071744 DOI: 10.1186/s12891-023-06345-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Musculoskeletal disorders (MSD) are one of the most important problems among physiotherapists worldwide. However, there is no meta-analysis of the MSD prevalence in all body areas among physiotherapists. OBJECTIVES The purpose was to investigate and estimate the worldwide prevalence of MSD among physiotherapists using a systematic review-, meta-analysis and meta-regression. METHODS The systematic review, meta-analysis and meta-regression were performed in 2022 using the PRISMA guidelines. DATA SOURCES The search was performed on PubMed/Medline, ScienceDirect, Google Scholar, Medeley and Science.gov databases. STUDY APPRAISAL The quality appraisal of the included articles was assessed using the critical appraisal tool for cross-sectional studies AXIS. RESULTS A total of 722 articles were found. After screening and comparison with the inclusion criteria, 26 studies were retained. Based on the random-effects model, the worldwide MSD prevalence in neck, upper back, mid back, lower back, shoulders, elbows, wrists/hands, thumb, hips/thighs, knees/legs, and ankles/feet was 26.4% (CI 95%: 21.0-31.9%), 17.7% (CI 95%: 13.2-22.2%), 14.9% (CI 95%: 7.7-22.1%), 40.1% (CI 95%: 32.2-48.0%), 20.8% (CI 95%: 16.5-25.1), 7.0% (CI 95%: 5.2-8.9), 18.1% (CI 95%: 14.7-21.5%), 35.4% (CI 95%: 23.0-47.8), 7.0% (CI 95%: 5.2-8.8), 13.0% (CI 95%: 10.3-15.8), and 5% (CI 95%: 4.0-6.9) respectively. The neck and shoulder prevalence of four continents were close to the world prevalence. No effect of continent was found on MSD prevalence. The heterogeneity of the results obtained in the meta-analysis and meta-regression was discussed. CONCLUSIONS Based on the random effects model, the results of the worldwide meta-analysis showed that lower back pain, thumb, neck and shoulder were the area most at risk for MSD and were therefore those to be monitored as a priority. Recommendations were proposed for future reviews and meta-analyses.
Collapse
Affiliation(s)
- Philippe Gorce
- International Institute of Biomechanics and Occupational Ergonomics, Toulon, France
- Université de Toulon, CS60584-83041 - TOULON CEDEX 9, Toulon, France
- Hôpital Léon Bérard, Avenue du Docteur Marcel Armanet, Hyères, 83418, France
| | - Julien Jacquier-Bret
- International Institute of Biomechanics and Occupational Ergonomics, Toulon, France.
- Université de Toulon, CS60584-83041 - TOULON CEDEX 9, Toulon, France.
- Hôpital Léon Bérard, Avenue du Docteur Marcel Armanet, Hyères, 83418, France.
| |
Collapse
|
26
|
Ding S, Reyes Francisco A, Li T, Yu H. A novel passive shoulder exoskeleton for assisting overhead work. WEARABLE TECHNOLOGIES 2023; 4:e7. [PMID: 38487772 PMCID: PMC10936402 DOI: 10.1017/wtc.2023.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 03/17/2024]
Abstract
Shoulder exoskeletons (SEs) can assist the shoulder joint of workers during overhead work and are usually passive for good portability. However, current passive SEs face the challenge that their torque generators are often attached to the human arm, which adds a significant amount of weight to the user's arms, resulting in additional energy consumption of the user. In this paper, we present a novel passive SE whose torque generator is attached to the user's back and assists the shoulder joint through Bowden cables. Our approach greatly reduces the weight on the user's arms and can accommodate complex shoulder joint movements with simple and lightweight mechanical structure based on Bowden cables. In addition, to match the nonlinear torque requirements of the shoulder joint, a unique spring-cam mechanism is proposed as the torque generator. To verify the effectiveness of the device, we conducted a usability test based on muscle activations of 10 healthy subjects. When assisting overhead work, the SE significantly reduced the mean and maximum electromyography signals of the shoulder-related muscles by up to 25%. The proposed SE contributes to further research on passive SE design to improve usability, especially in terms of reducing weight on human arms.
Collapse
Affiliation(s)
- Shuo Ding
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anaya Reyes Francisco
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Tong Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Haoyong Yu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Pesenti M, Invernizzi G, Mazzella J, Bocciolone M, Pedrocchi A, Gandolla M. IMU-based human activity recognition and payload classification for low-back exoskeletons. Sci Rep 2023; 13:1184. [PMID: 36681711 PMCID: PMC9867770 DOI: 10.1038/s41598-023-28195-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
Nowadays, work-related musculoskeletal disorders have a drastic impact on a large part of the world population. In particular, low-back pain counts as the leading cause of absence from work in the industrial sector. Robotic exoskeletons have great potential to improve industrial workers' health and life quality. Nonetheless, current solutions are often limited by sub-optimal control systems. Due to the dynamic environment in which they are used, failure to adapt to the wearer and the task may be limiting exoskeleton adoption in occupational scenarios. In this scope, we present a deep-learning-based approach exploiting inertial sensors to provide industrial exoskeletons with human activity recognition and adaptive payload compensation. Inertial measurement units are easily wearable or embeddable in any industrial exoskeleton. We exploited Long-Short Term Memory networks both to perform human activity recognition and to classify the weight of lifted objects up to 15 kg. We found a median F1 score of [Formula: see text] (activity recognition) and [Formula: see text] (payload estimation) with subject-specific models trained and tested on 12 (6M-6F) young healthy volunteers. We also succeeded in evaluating the applicability of this approach with an in-lab real-time test in a simulated target scenario. These high-level algorithms may be useful to fully exploit the potential of powered exoskeletons to achieve symbiotic human-robot interaction.
Collapse
Affiliation(s)
- Mattia Pesenti
- Department of Electronics, Information and Bioengineering, Nearlab, Politecnico di Milano, 20133, Milan, Italy.
| | - Giovanni Invernizzi
- Department of Electronics, Information and Bioengineering, Nearlab, Politecnico di Milano, 20133, Milan, Italy
| | - Julie Mazzella
- Department of Electronics, Information and Bioengineering, Nearlab, Politecnico di Milano, 20133, Milan, Italy
| | - Marco Bocciolone
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| | - Alessandra Pedrocchi
- Department of Electronics, Information and Bioengineering, Nearlab, Politecnico di Milano, 20133, Milan, Italy
| | - Marta Gandolla
- Department of Mechanical Engineering, Politecnico di Milano, 20156, Milan, Italy
| |
Collapse
|
28
|
Jacquier-Bret J, Gorce P. Prevalence of Body Area Work-Related Musculoskeletal Disorders among Healthcare Professionals: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:841. [PMID: 36613163 PMCID: PMC9819551 DOI: 10.3390/ijerph20010841] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Healthcare professionals perform daily activities that can lead to musculoskeletal disorders (MSDs). The objective of this review was to summarize these MSDs by body areas in relation to healthcare professions. The underlying question is, worldwide, whether there are areas that are more exposed depending on the occupation or whether there are common areas that are highly exposed to MSDs. This issue has been extended to risk factors and responses to reduce MSDs. The review was conducted according to the PRISMA guidelines between February and May 2022. Google scholar and Science Direct databases were scanned to identify relevant studies. Two authors independently reviewed, critically appraised, and extracted data from these studies. Overall and body area prevalence, risk factors, and responses to MSDs were synthetized by occupational activity. Among the 21,766 records identified, 36 covering six healthcare professions were included. The lower back, neck, shoulder and hand/wrist were the most exposed areas for all healthcare professionals. Surgeons and dentists presented the highest prevalence of lower back (>60%), shoulder and upper extremity (35-55%) MSDs. The highest prevalence of MSDs in the lower limbs was found for nurses (>25%). The main causes reported for all healthcare professionals were maintenance and repetition of awkward postures, and the main responses were to modify these postures. Trends by continent seem to emerge regarding the prevalence of MSDs by healthcare profession. Africa and Europe showed prevalence three times higher than Asia and America for lower back MSDs among physiotherapists. African and Asian nurses presented rates three times higher for elbow MSDs than Oceanians. It becomes necessary to objectively evaluate postures and their level of risk using ergonomic tools, as well as to adapt the work environment to reduce exposure to MSDs with regard to the specificities of each profession.
Collapse
Affiliation(s)
- Julien Jacquier-Bret
- International Institute of Biomechanics and Occupational Ergonomics, Université de Toulon, CS60584, CEDEX 9, 83041 Toulon, France
| | | |
Collapse
|
29
|
Jorgensen MJ, Hakansson NA, Desai J. Influence of different passive shoulder exoskeletons on shoulder and torso muscle activation during simulated horizontal and vertical aircraft squeeze riveting tasks. APPLIED ERGONOMICS 2022; 104:103822. [PMID: 35689869 DOI: 10.1016/j.apergo.2022.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Aircraft manufacturing involves riveting utilizing squeeze riveting tools at heights from below elbow to overhead levels. This study assessed utilization of passive shoulder exoskeletons on shoulder and torso muscle activation during simulated squeeze riveting. Horizontal and vertical riveting tasks using squeeze riveting tools were performed by 16 aircraft workers wearing three different shoulder exoskeletons and a no-exoskeleton condition capturing electromyographic signals from shoulder and torso muscles. Exoskeletons reduced normalized EMG for the left anterior deltoid at both heights (6.6% and 15.7%), the right anterior deltoid (8.3%) and the right and left medial deltoid (9.3% and 8.9%) at the upper height for horizontal squeeze riveting. Exoskeletons reduced normalized EMG for the right and left anterior deltoids (7.0%-10.6%) and medial deltoids (1.3%-7.1%) within the upper zones during vertical squeeze riveting. Participants felt exoskeletons would be beneficial for squeeze riveting, however no preference was found among the exoskeletons used.
Collapse
Affiliation(s)
- Michael J Jorgensen
- Industrial Systems and Manufacturing Engineering Department, Wichita State University, Wichita, KS, USA.
| | - Nils A Hakansson
- Biomedical Engineering Department, Wichita State University, Wichita, KS, USA
| | - Jaydip Desai
- Biomedical Engineering Department, Wichita State University, Wichita, KS, USA
| |
Collapse
|
30
|
Gillette JC, Saadat S, Butler T. Electromyography-based fatigue assessment of an upper body exoskeleton during automotive assembly. WEARABLE TECHNOLOGIES 2022; 3:e23. [PMID: 38486890 PMCID: PMC10936263 DOI: 10.1017/wtc.2022.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 03/17/2024]
Abstract
The purpose of this study was to assess an upper body exoskeleton during automotive assembly processes that involve elevated arm postures. Sixteen team members at Toyota Motor Manufacturing Canada were fitted with a Levitate Airframe, and each team member performed between one and three processes with and without the exoskeleton. A total of 16 assembly processes were studied. Electromyography (EMG) data were collected on the anterior deltoid, biceps brachii, upper trapezius, and erector spinae. Team members also completed a usability survey. The exoskeleton significantly reduced anterior deltoid mean active EMG amplitude (p = .01, Δ = -3.2 %MVC, d = 0.56 medium effect) and fatigue risk value (p < .01, Δ = -5.1 %MVC, d = 0.62 medium effect) across the assembly processes, with no significant changes for the other muscles tested. A subset of nine assembly processes with a greater amount of time spent in arm elevations at or above 90° (30 vs. 24%) and at or above 135° (18 vs. 9%) appeared to benefit more from exoskeleton usage. For these processes, the exoskeleton significantly reduced anterior deltoid mean active EMG amplitude (p < .01, Δ = -5.1 %MVC, d = 0.95 large effect) and fatigue risk value (p < .01, Δ = -7.4 %MVC, d = 0.96 large effect). Team members responded positively about comfort and fatigue benefits, although there were concerns about the exoskeleton hindering certain job duties. The results support quantitative testing to match exoskeleton usage with specific job tasks and surveying team members for perceived benefits/drawbacks.
Collapse
Affiliation(s)
| | - Shekoofe Saadat
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Terry Butler
- Lean Steps Consulting Inc., West Des Moines, IA, USA
| |
Collapse
|
31
|
Mayer TA, Harsch AK, Koska D, Hensel-Unger R, Maiwald C. Effects of an active hand exoskeleton on forearm muscle activity in industrial assembly grips. Work 2022; 72:1577-1591. [DOI: 10.3233/wor-211272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: The Bioservo Ironhand® is a commercially available active hand exoskeleton for reducing grip-induced stress. OBJECTIVES: The study aimed at quantifying the effect of the Ironhand® exoskeleton on the myoelectric muscle activity of forearm flexor and extensor muscles in three relevant assembly grip tasks: 2-Finger-grip (2Finger), 5-Finger-grip (5Finger) and Full grip (FullGrip). METHODS: Twenty-two subjects were tested in three different exoskeleton conditions for each grip task (overall 3×3×10 = 90 repetitions in randomized order): Exoskeleton off (Off), Exoskeleton on, “locking tendency” 0% (On_LT0), and Exoskeleton on, “locking tendency” 85% (On_LT85). Muscle activity was measured at 25% of the participant’s maximum grip force using two EMG sensors at the M. flexor digitorum superficialis (M.FDS) and one at the M. extensor digitorum (M.ED). RESULTS: The effect of the Ironhand® exoskeleton varied depending on the grip task and the participant’s sex. A statistically significant reduction in muscle activity of the M.FDS was found only for male subjects in the FullGrip condition. No reduction of muscular activity in the M.FDS was found for the other grip tasks (2Finger, 5Finger). For the females in the 2Finger condition, mean muscle activity of M.FDS even increased significantly in On_LT0 compared to Off. Besides differences between grip tasks and sex, the current study revealed substantial individual differences. CONCLUSIONS: In addition to testing for statistical significance, a detailed exploratory analysis of exoskeleton effects at subject level should be performed to evaluate these from a safety and regulatory perspective.
Collapse
Affiliation(s)
- Tobias A. Mayer
- Professorship of Research Methodology and Data Analysis in Biomechanics, Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Ann-Kathrin Harsch
- Professorship of Research Methodology and Data Analysis in Biomechanics, Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | - Daniel Koska
- Professorship of Research Methodology and Data Analysis in Biomechanics, Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| | | | - Christian Maiwald
- Professorship of Research Methodology and Data Analysis in Biomechanics, Institute of Human Movement Science and Health, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
32
|
A Systematic Review on Evaluation Strategies for Field Assessment of Upper-Body Industrial Exoskeletons: Current Practices and Future Trends. Ann Biomed Eng 2022; 50:1203-1231. [PMID: 35916980 DOI: 10.1007/s10439-022-03003-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/30/2022] [Indexed: 01/02/2023]
Abstract
With rising manual work demands, physical assistance at the workplace is crucial, wherein the use of industrial exoskeletons (i-EXOs) could be advantageous. However, outcomes of numerous laboratory studies may not be directly translated to field environments. To explore this discrepancy, we conducted a systematic review including 31 studies to identify and compare the approaches, techniques, and outcomes within field assessments of shoulder and back support i-EXOs. Findings revealed that the subjective approaches [i.e., discomfort (23), usability (22), acceptance/perspectives (21), risk of injury (8), posture (3), perceived workload (2)] were reported more common (27) compared to objective (15) approaches [muscular demand (14), kinematics (8), metabolic costs (5)]. High variability was also observed in the experimental methodologies, including control over activity, task physics/duration, sample size, and reported metrics/measures. In the current study, the detailed approaches, their subject-related factors, and observed trends have been discussed. In sum, a new guideline, including tools/technologies has been proposed that could be utilized for field evaluation of i-EXOs. Lastly, we discussed some of the common technical challenges experimenters face in evaluating i-EXOs in field environments. Efforts presented in this study seek to improve the generalizability in testing and implementing i-EXOs.
Collapse
|
33
|
Pacifico I, Parri A, Taglione S, Sabatini AM, Violante FS, Molteni F, Giovacchini F, Vitiello N, Crea S. Exoskeletons for workers: A case series study in an enclosures production line. APPLIED ERGONOMICS 2022; 101:103679. [PMID: 35066399 DOI: 10.1016/j.apergo.2022.103679] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
This case-series study aims to investigate the effects of a passive shoulder support exoskeleton on experienced workers during their regular work shifts in an enclosures production site. Experimental activities included three sessions, two of which were conducted in-field (namely, at two workstations of the painting line, where panels were mounted and dismounted from the line; each session involved three participants), and one session was carried out in a realistic simulated environment (namely, the workstations were recreated in a laboratory; this session involved four participants). The effect of the exoskeleton was evaluated through electromyographic activity and perceived effort. After in-field sessions, device usability and user acceptance were also assessed. Data were reported individually for each participant. Results showed that the use of the exoskeleton reduced the total shoulder muscular activity compared to normal working conditions, in all subjects and experimental sessions. Similarly, the use of the exoskeleton resulted in reductions of the perceived effort in the shoulder, arm, and lower back. Overall, participants indicated high usability and acceptance of the device. This case series invites larger validation studies, also in diverse operational contexts.
Collapse
Affiliation(s)
- Ilaria Pacifico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.
| | - Andrea Parri
- IUVO S.r.l., via Puglie 9, 56025, Pontedera, Pisa, Italy
| | - Silverio Taglione
- ABB S.p.A. PG Breakers & Enclosures, Hub Italy, Electrification Business Area, Smart Power Division, Via Italia, 58, 23846, Garbagnate Monastero, Lecco, Italy
| | - Angelo Maria Sabatini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Francesco Saverio Violante
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Occupational Medicine Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro 17, 23845, Costa Masnaga, Lecco, Italy
| | | | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy.
| |
Collapse
|
34
|
De Bock S, Rossini M, Lefeber D, Rodriguez-Guerrero C, Geeroms J, Meeusen R, De Pauw K. An Occupational Shoulder Exoskeleton Reduces Muscle Activity and Fatigue During Overhead Work. IEEE Trans Biomed Eng 2022; 69:3008-3020. [PMID: 35290183 DOI: 10.1109/tbme.2022.3159094] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Objective. This paper assesses the effect of a passive shoulder exoskeleton prototype, Exo4Work, on muscle activity, muscle fatigue and subjective experience during simulated occupational overhead and non-overhead work. Methods. Twenty-two healthy males performed six simulated industrial tasks with and without Exo4Work exoskeleton in a randomized counterbalanced cross-over design. During these tasks electromyography, heart rate, metabolic cost, subjective parameters and performance parameters were acquired. The effect of the exoskeleton and the body side on these parameters was investigated. Results. Anterior deltoid activity and fatigue reduced up to 16% and 41%, respectively, during isometric overhead work, and minimized hindrance of the device during non-overhead tasks. Wearing the exoskeleton increased feelings of frustration and increased discomfort in the areas where the exoskeleton and the body interfaced. The assistive effect of the exoskeleton was less prominent during dynamic tasks. Conclusion. This exoskeleton may reduce muscle activity and delay development of muscle fatigue in an overhead working scenario. For dynamic applications, the exoskeleton's assistive profile, which mimics the gravitational torque of the arm, is potentially sub-optimal. Significance. This evaluation paper is the first to report reduced muscle fatigue and activity when working with an occupational shoulder exoskeleton providing one third of the gravitational torque of the arm during overhead work. These results stress the potential of occupational shoulder exoskeletons in overhead working situations and may direct towards longitudinal field experiments. Additionally, this experiment may stimulate future work to further investigate the effect of different assistive profiles.
Collapse
|
35
|
Kim S, Nussbaum MA, Smets M. Usability, User Acceptance, and Health Outcomes of Arm-Support Exoskeleton Use in Automotive Assembly: An 18-month Field Study. J Occup Environ Med 2022; 64:202-211. [PMID: 34873132 DOI: 10.1097/jom.0000000000002438] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Examine arm-support exoskeleton (ASE) user experience over time, identify factors contributing to ASE intention-to-use, and explore whether ASE use may influence the number of medical visits. METHODS An 18-month, longitudinal study with ASE (n = 65) and control groups (n = 133) completed at nine automotive manufacturing facilities. RESULTS Responses to six usability questions were rather consistent over time. ASE use perceived effective in reducing physical demands on the shoulders, neck, and back. Perceived job performance, and overall fit and comfort, appeared to be key determinants for ASE intention-to-use. Based on medical visits among both groups, ASE use may decrease the likelihood of such visits. CONCLUSIONS These field results support the potential of ASEs as a beneficial ergonomic intervention, but also highlight needs for further research on ASE designs, factors driving intention-to-use, and health outcomes.
Collapse
Affiliation(s)
- Sunwook Kim
- Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, Virginia (Dr Kim, Dr Nussbaum); Manufacturing Technology Development, Ford Motor Company, Glendale, Michigan (Mr Smets)
| | | | | |
Collapse
|
36
|
McDevitt S, Hernandez H, Hicks J, Lowell R, Bentahaikt H, Burch R, Ball J, Chander H, Freeman C, Taylor C, Anderson B. Wearables for Biomechanical Performance Optimization and Risk Assessment in Industrial and Sports Applications. Bioengineering (Basel) 2022; 9:33. [PMID: 35049742 PMCID: PMC8772827 DOI: 10.3390/bioengineering9010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Wearable technologies are emerging as a useful tool with many different applications. While these devices are worn on the human body and can capture numerous data types, this literature review focuses specifically on wearable use for performance enhancement and risk assessment in industrial- and sports-related biomechanical applications. Wearable devices such as exoskeletons, inertial measurement units (IMUs), force sensors, and surface electromyography (EMG) were identified as key technologies that can be used to aid health and safety professionals, ergonomists, and human factors practitioners improve user performance and monitor risk. IMU-based solutions were the most used wearable types in both sectors. Industry largely used biomechanical wearables to assess tasks and risks wholistically, which sports often considered the individual components of movement and performance. Availability, cost, and adoption remain common limitation issues across both sports and industrial applications.
Collapse
Affiliation(s)
- Sam McDevitt
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
| | - Haley Hernandez
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
| | - Jamison Hicks
- Department of Industrial & Systems Engineering, Mississippi State University, Starkville, MS 39765, USA; (J.H.); (R.B.)
| | - Russell Lowell
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS 39765, USA; (R.L.); (H.C.)
| | - Hamza Bentahaikt
- Department of Mechanical Engineering, Mississippi State University, Starkville, MS 39765, USA;
| | - Reuben Burch
- Department of Industrial & Systems Engineering, Mississippi State University, Starkville, MS 39765, USA; (J.H.); (R.B.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - John Ball
- Department of Electrical & Computer Engineering, Mississippi State University, Starkville, MS 39765, USA; (S.M.); (H.H.); (J.B.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - Harish Chander
- Neuromechanics Laboratory, Department of Kinesiology, Mississippi State University, Starkville, MS 39765, USA; (R.L.); (H.C.)
- Human Factors & Athlete Engineering, Center for Advanced Vehicular Systems, Mississippi State University, Starkville, MS 39765, USA
| | - Charles Freeman
- Department of Human Sciences, Mississippi State University, Starkville, MS 39765, USA
| | | | | |
Collapse
|
37
|
De Bock S, Ghillebert J, Govaerts R, Tassignon B, Rodriguez-Guerrero C, Crea S, Veneman J, Geeroms J, Meeusen R, De Pauw K. Benchmarking occupational exoskeletons: An evidence mapping systematic review. APPLIED ERGONOMICS 2022; 98:103582. [PMID: 34600307 DOI: 10.1016/j.apergo.2021.103582] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To provide an overview of protocols assessing the effect of occupational exoskeletons on users and to formulate recommendations towards a literature-based assessment framework to benchmark the effect of occupational exoskeletons on the user. METHODS PubMed (MEDLINE), Web of Science database and Scopus were searched (March 2, 2021). Studies were included if they investigated the effect of one or more occupational exoskeletons on the user. RESULTS In total, 139 eligible studies were identified, encompassing 33, 25 and 18 unique back, shoulder and other exoskeletons, respectively. Device validation was most frequently conducted using controlled tasks while collecting muscle activity and biomechanical data. As the exoskeleton concept matures, tasks became more applied and the experimental design more representative. With that change towards realistic testing environments came a trade-off with experimental control, and user experience data became more valuable. DISCUSSION This evidence mapping systematic review reveals that the assessment of occupational exoskeletons is a dynamic process, and provides literature-based assessment recommendations. The homogeneity and repeatability of future exoskeleton assessment experiments will increase following these recommendations. The current review recognises the value of variability in evaluation protocols in order to obtain an overall overview of the effect of exoskeletons on the users, but the presented framework strives to facilitate benchmarking the effect of occupational exoskeletons on the users across this variety of assessment protocols.
Collapse
Affiliation(s)
- Sander De Bock
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| | - Jo Ghillebert
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Renée Govaerts
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Bruno Tassignon
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Carlos Rodriguez-Guerrero
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium; Department of Mechanical Engineering, Faculty of Applied Sciences, Vrije Universiteit Brussel and Flanders Make, 1050, Brussels, Belgium; COST (European Cooperation in Science and Technology) Action 16116, Wearable Robots for Augmentation, Assistance or Substitution of Human Motor Functions, Belgium
| | - Simona Crea
- COST (European Cooperation in Science and Technology) Action 16116, Wearable Robots for Augmentation, Assistance or Substitution of Human Motor Functions, Belgium; The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jan Veneman
- COST (European Cooperation in Science and Technology) Action 16116, Wearable Robots for Augmentation, Assistance or Substitution of Human Motor Functions, Belgium; Hocoma AG, Volketswil, Switzerland
| | - Joost Geeroms
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium; Department of Mechanical Engineering, Faculty of Applied Sciences, Vrije Universiteit Brussel and Flanders Make, 1050, Brussels, Belgium
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium; Strategic Research Program 'Exercise and the Brain in Health and Disease: The Added Value of Human-Centered Robotics', Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium; Strategic Research Program 'Exercise and the Brain in Health and Disease: The Added Value of Human-Centered Robotics', Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
38
|
Meyer JT, Gassert R, Lambercy O. An analysis of usability evaluation practices and contexts of use in wearable robotics. J Neuroeng Rehabil 2021; 18:170. [PMID: 34886902 PMCID: PMC8656061 DOI: 10.1186/s12984-021-00963-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND User-centered design approaches have gained attention over the past decade, aiming to tackle the technology acceptance issues of wearable robotic devices to assist, support or augment human capabilities. While there is a consensus that usability is key to user-centered design, dedicated usability evaluation studies are scarce and clear evaluation guidelines are missing. However, the careful consideration and integration of user needs appears to be essential to successfully develop an effective, efficient, and satisfactory human-robot interaction. It is primarily the responsibility of the developer, to ensure that this users involvement takes place throughout the design process. METHODS Through an online survey for developers of wearable robotics, we wanted to understand how the design and evaluation in actual daily practice compares to what is reported in literature. With a total of 31 questions, we analyzed the most common wearable robotic device applications and their technology maturity, and how these influence usability evaluation practices. RESULTS A total of 158 responses from a heterogeneous population were collected and analyzed. The dataset representing contexts of use for augmentation (16.5%), assistance (38.0%), therapy (39.8%), as well as few other specific applications (5.7%), allowed for an insightful analysis of the influence of technology maturity on user involvement and usability evaluation. We identified functionality, ease of use, and performance as the most evaluated usability attributes and could specify which measures are used to assess them. Also, we could underline the frequent use of qualitative measures alongside the expected high prevalence of performance-metrics. In conclusion of the analysis, we derived evaluation recommendations to foster user-centered design and usability evaluation. CONCLUSION This analysis might serve as state-of-the-art comparison and recommendation for usability studies in wearable robotics. We believe that by motivating for more balanced, comparable and user-oriented evaluation practices, we may support the wearable robotics field in tackling the technology acceptance limitations.
Collapse
Affiliation(s)
- Jan Thomas Meyer
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Roger Gassert
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence And Technological Enterprise (CREATE), Singapore, Singapore
| |
Collapse
|
39
|
Crea S, Beckerle P, De Looze M, De Pauw K, Grazi L, Kermavnar T, Masood J, O’Sullivan LW, Pacifico I, Rodriguez-Guerrero C, Vitiello N, Ristić-Durrant D, Veneman J. Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces. WEARABLE TECHNOLOGIES 2021; 2:e11. [PMID: 38486625 PMCID: PMC10936259 DOI: 10.1017/wtc.2021.11] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 03/17/2024]
Abstract
The large-scale adoption of occupational exoskeletons (OEs) will only happen if clear evidence of effectiveness of the devices is available. Performing product-specific field validation studies would allow the stakeholders and decision-makers (e.g., employers, ergonomists, health, and safety departments) to assess OEs' effectiveness in their specific work contexts and with experienced workers, who could further provide useful insights on practical issues related to exoskeleton daily use. This paper reviews present-day scientific methods for assessing the effectiveness of OEs in laboratory and field studies, and presents the vision of the authors on a roadmap that could lead to large-scale adoption of this technology. The analysis of the state-of-the-art shows methodological differences between laboratory and field studies. While the former are more extensively reported in scientific papers, they exhibit limited generalizability of the findings to real-world scenarios. On the contrary, field studies are limited in sample sizes and frequently focused only on subjective metrics. We propose a roadmap to promote large-scale knowledge-based adoption of OEs. It details that the analysis of the costs and benefits of this technology should be communicated to all stakeholders to facilitate informed decision making, so that each stakeholder can develop their specific role regarding this innovation. Large-scale field studies can help identify and monitor the possible side-effects related to exoskeleton use in real work situations, as well as provide a comprehensive scientific knowledge base to support the revision of ergonomics risk-assessment methods, safety standards and regulations, and the definition of guidelines and practices for the selection and use of OEs.
Collapse
Affiliation(s)
- Simona Crea
- Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy
- IRCCS Fondazione Don Gnocchi, Florence, Italy
| | - Philipp Beckerle
- Chair of Autonomous Systems and Mechatronics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Institute for Mechatronic Systems, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, and Brussels Human Robotics Research Center (BruBotics), Vrije Universiteit Brussel, Brussels, Belgium
| | - Lorenzo Grazi
- Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy
| | - Tjaša Kermavnar
- School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Jawad Masood
- Processes and Factory of the Future Department, CTAG – Centro Tecnológico de Automoción de Galicia, Pontevedra, Spain
| | - Leonard W. O’Sullivan
- School of Design, and Confirm Smart Manufacturing Centre, University of Limerick, Limerick, Ireland
| | - Ilaria Pacifico
- Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy
| | - Carlos Rodriguez-Guerrero
- Robotics and Multibody Mechanics Research Group, Department of Mechanical Engineering, Vrije Universiteit Brussel and Flanders Make, Brussel, Belgium
| | - Nicola Vitiello
- Scuola Superiore Sant’Anna, The BioRobotics Institute, Pontedera, Italy
- IRCCS Fondazione Don Gnocchi, Florence, Italy
| | | | - Jan Veneman
- Chair of COST Action 16116, Hocoma Medical GmbH, Zürich, Switzerland
| |
Collapse
|
40
|
Zhou X, Zheng L. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting. IISE Trans Occup Ergon Hum Factors 2021. [PMID: 34254566 DOI: 10.1080/24725838.2021.1954565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OCCUPATIONAL APPLICATIONSIn recent years, various upper limb exoskeletons have been developed aiming to support industrial workers for a range of tasks and reduce risks of work-related musculoskeletal disorders. Most commercially available upper limb exoskeletons are passive systems that use compliant elements such as springs or elastic components to store and release energy to assist the user's motion. In contrast, many active exoskeletons, which are typically comprised of one or more powered actuators to provide joint assistance, are still in the research and development stages. Nevertheless, the functions and efficacy of various exoskeleton systems need to be further compared and assessed. This study presents a model-based approach to evaluate different designs of passive and active assistance and demonstrates the benefits of both assistance methods in an overhead lifting task. In addition, the modeling and simulation indicate the potential advantages of using the active assistance, based on electromyography.
Collapse
Affiliation(s)
- Xianlian Zhou
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Liying Zheng
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
41
|
Jamsek M, Kunavar T, Bobek U, Rueckert E, Babic J. Predictive Exoskeleton Control for Arm-Motion Augmentation Based on Probabilistic Movement Primitives Combined With a Flow Controller. IEEE Robot Autom Lett 2021. [DOI: 10.1109/lra.2021.3068892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Bär M, Steinhilber B, Rieger MA, Luger T. The influence of using exoskeletons during occupational tasks on acute physical stress and strain compared to no exoskeleton - A systematic review and meta-analysis. APPLIED ERGONOMICS 2021; 94:103385. [PMID: 33676059 DOI: 10.1016/j.apergo.2021.103385] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES This systematic review and meta-analysis determined the effects of using an exoskeleton during occupational tasks on physical stress and strain compared to not using an exoskeleton. METHODS Systematic electronic database searches were performed and the review was prepared according to the PRISMA guidelines. Treatment effects on the predefined outcomes were calculated using standardized mean differences for continuous outcomes in several meta-analyses using Review Manager 5.3. Registration: PROSPERO (CRD42020168701). RESULTS 63 articles were included in qualitative syntheses and 52 in quantitative, but most of them did not extensively evaluate musculoskeletal stress and strain and the risk of bias was rated high for all included studies. Statistically significant effects of using back, upper-limb, or lower-limb exoskeletons have been observed in the supported body areas (e.g. reduced muscle activity, joint moments and perceived strain). Studies which did not exclusively focus on the supported body area also showed statistically significant effects in the non-supported areas (e.g. changed muscle activity and perceived strain) and in physiological outcomes (e.g. reduced energy expenditure). CONCLUSIONS Using an exoskeleton during occupational tasks seems to reduce user's acute physical stress and strain in the exoskeleton's target area. However, impact on workers' health is still unknown, primarily because of missing long-term evaluations under real working conditions. Furthermore, this systematic review highlights a lack of studies (1) following high quality methodological criteria, (2) evaluating various inter-related stress and strain parameters instead of only focusing on one specific, and (3) evaluating non-target body areas instead of only the directly supported body area.
Collapse
Affiliation(s)
- Mona Bär
- Institute of Occupational and Social Medicine and Health Services Research, University of Tübingen and University Hospital Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Benjamin Steinhilber
- Institute of Occupational and Social Medicine and Health Services Research, University of Tübingen and University Hospital Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Monika A Rieger
- Institute of Occupational and Social Medicine and Health Services Research, University of Tübingen and University Hospital Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| | - Tessy Luger
- Institute of Occupational and Social Medicine and Health Services Research, University of Tübingen and University Hospital Tübingen, Wilhelmstraße 27, 72074, Tübingen, Germany.
| |
Collapse
|
43
|
Evaluation of two upper-limb exoskeletons during overhead work: influence of exoskeleton design and load on muscular adaptations and balance regulation. Eur J Appl Physiol 2021; 121:2811-2823. [PMID: 34173059 DOI: 10.1007/s00421-021-04747-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Overhead works (OHW) are identified as a major risk factor for shoulder musculoskeletal disorders. The use of upper-limb exoskeletons (EXOUL) is emerging to address these challenges. This research tested the influence of EXOUL design and load on the upper-limb and postural muscles activity, and on the balance control, during OHW. METHODS This study compared two passive EXOUL, notably differing by the level of assistive torque delivered. Both EXOUL was examined in two load conditions (2 vs. 8 kg). Twenty-nine volunteers performed a static OHW for each condition. RESULTS Both EXOUL led to similar reductions in shoulder flexor muscle activity (12.3 ± 7.8% of RMSREF), compared to without equipment (29.0 ± 14.2% RMSREF). Both EXOUL resulted in a reduction in the activity of shoulder (3.6 ± 3.2% RMSREF) and wrist (2.4 ± 1.7% RMSREF) extensor muscles (4.9 ± 3.9 and 5.9 ± 6.1% RMSREF, respectively). The use of EXOUL led to reductions in back muscle activity, depending on the exoskeleton design (in % RMSREF, 12.9 ± 9.4 for EXO1, 22.8 ± 12.6 for EXO2 and 32.0 ± 18.4 without equipment). Wearing EXOUL induced changes in balance regulation, depending on both exoskeleton design and load condition. CONCLUSION The increase of assistive torque was not associated with an increase in EXOUL performance. However, the exoskeleton design (mass, balance, and assistive torque) has to be suitable for the load handled during static OHW to optimize the effects of using an EXOUL on the postural muscles.
Collapse
|
44
|
Nassour J, Zhao G, Grimmer M. Soft pneumatic elbow exoskeleton reduces the muscle activity, metabolic cost and fatigue during holding and carrying of loads. Sci Rep 2021; 11:12556. [PMID: 34131179 PMCID: PMC8206112 DOI: 10.1038/s41598-021-91702-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/17/2021] [Indexed: 10/26/2022] Open
Abstract
To minimize fatigue, sustain workloads, and reduce the risk of injuries, the exoskeleton Carry was developed. Carry combines a soft human-machine interface and soft pneumatic actuation to assist the elbow in load holding and carrying. We hypothesize that the assistance of Carry would decrease, muscle activity, net metabolic rate, and fatigue. With Carry providing 7.2 Nm of assistance, we found reductions of up to 50% for the muscle activity, up to 61% for the net metabolic rate, and up to 99% for fatigue in a group study of 12 individuals. Analyses of operation dynamics and autonomous use demonstrate the applicability of Carry to a variety of use cases, presumably with increased benefits for increased assistance torque. The significant benefits of Carry indicate this device could prevent systemic, aerobic, and/or possibly local muscle fatigue that may increase the risk of joint degeneration and pain due to lifting, holding, or carrying.
Collapse
Affiliation(s)
- John Nassour
- Department of Electrical and Computer Engineering, Technical University of Munich, 80333, Munich, Germany.
| | - Guoping Zhao
- Institute of Sport Science, Technical University Darmstadt, 64289, Darmstadt, Germany
| | - Martin Grimmer
- Institute of Sport Science, Technical University Darmstadt, 64289, Darmstadt, Germany.
| |
Collapse
|
45
|
de Vries AW, Krause F, de Looze MP. The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities. ERGONOMICS 2021; 64:712-721. [PMID: 33402050 DOI: 10.1080/00140139.2020.1868581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The supportive effect of arm-support exoskeletons has been mainly studied for single postures or movements. The aim of this study is to analyse the effect of such an exoskeleton on shoulder muscle activity and perceived exertion, in six tasks of plasterers, each including multiple arm movements. The tasks of 'applying gypsum', 'screeding' and 'finishing' were performed at a ceiling and a wall, with exoskeleton (Exo) and without (NoExo). EMG was recorded of six muscles involved in upper arm elevation, four agonists and two antagonists, and plasterers rated their perceived exertion (RPE). In all tasks, the EMG amplitudes of three agonist muscles, Trapezius and Medial Deltoid, and Biceps Brachii, were lower in Exo vs NoExo, while the agonist, Anterior Deltoid, showed lower EMG values in Exo in most tasks. None of the antagonists (Triceps Brachii, Pectoralis Major) showed increased EMG values in the Exo condition. RPE's were lower in Exo condition for all tasks, except for 'applying gypsum to the wall'. Overall, the exoskeleton seems to reduce loads in realistic plastering tasks. Practitioner summary: Exoskeletons are an emerging technology in the field of ergonomics. Passive arm support exoskeletons have mainly been tested in lab studies using continuous overhead work, involving one posture or movement. However, in reality, working tasks generally involve multiple movements. This study investigates the effectiveness of an arm support exoskeleton in work that requires multiple arm movements, specifically in plastering. Muscle activity, as well as perceived exertion were both reduced when working with an exoskeleton. Abbreviations: Exo: with exoskeleton; NoExo: without exoskeleton; RPE: rated perceived exertion; EMG: electromyography; Trap: upper trapezius; AD: anterior deltoid; MD: medial deltoid; BB: biceps brachii; TB: triceps brachii; PM: pectoralis major; RPD: rated perceived discomfort; p50: 50th percentile; p90: 90th percentile; MVC: maximum voluntary contraction; GEE: generalised estimated equations.
Collapse
Affiliation(s)
- Aijse Willem de Vries
- Sustainable Productivity and Employability, Healthy Living, TNO, Leiden, The Netherlands
| | - Frank Krause
- Sustainable Productivity and Employability, Healthy Living, TNO, Leiden, The Netherlands
| | | |
Collapse
|
46
|
Kuber PM, Rashedi E. Product ergonomics in industrial exoskeletons: potential enhancements for workforce efficiency and safety. THEORETICAL ISSUES IN ERGONOMICS SCIENCE 2020. [DOI: 10.1080/1463922x.2020.1850905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Pranav Madhav Kuber
- Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Ehsan Rashedi
- Biomechanics and Ergonomics Lab, Industrial and Systems Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
47
|
Jamšek M, Petrič T, Babič J. Gaussian Mixture Models for Control of Quasi-Passive Spinal Exoskeletons. SENSORS 2020; 20:s20092705. [PMID: 32397455 PMCID: PMC7248695 DOI: 10.3390/s20092705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 11/27/2022]
Abstract
Research and development of active and passive exoskeletons for preventing work related injuries has steadily increased in the last decade. Recently, new types of quasi-passive designs have been emerging. These exoskeletons use passive viscoelastic elements, such as springs and dampers, to provide support to the user, while using small actuators only to change the level of support or to disengage the passive elements. Control of such devices is still largely unexplored, especially the algorithms that predict the movement of the user, to take maximum advantage of the passive viscoelastic elements. To address this issue, we developed a new control scheme consisting of Gaussian mixture models (GMM) in combination with a state machine controller to identify and classify the movement of the user as early as possible and thus provide a timely control output for the quasi-passive spinal exoskeleton. In a leave-one-out cross-validation procedure, the overall accuracy for providing support to the user was 86.72±0.86% (mean ± s.d.) with a sensitivity and specificity of 97.46±2.09% and 83.15±0.85% respectively. The results of this study indicate that our approach is a promising tool for the control of quasi-passive spinal exoskeletons.
Collapse
Affiliation(s)
- Marko Jamšek
- Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.P.); (J.B.)
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Tadej Petrič
- Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.P.); (J.B.)
| | - Jan Babič
- Laboratory for Neuromechanics and Biorobotics, Department of Automation, Biocybernetics and Robotics, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.P.); (J.B.)
| |
Collapse
|
48
|
Nussbaum MA, Lowe BD, de Looze M, Harris-Adamson C, Smets M. An Introduction to the Special Issue on Occupational Exoskeletons. IISE Trans Occup Ergon Hum Factors 2020. [DOI: 10.1080/24725838.2019.1709695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maury A. Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Brian D. Lowe
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | - Carisa Harris-Adamson
- Occupational and Environmental Medicine, University of California, San Francisco, CA, USA
| | - Marty Smets
- Advanced Manufacturing, Ford Motor Company, Glendale, MI, USA
| |
Collapse
|