1
|
Jiffrin R, Razak SIA, Jamaludin MI, Hamzah ASA, Mazian MA, Jaya MAT, Nasrullah MZ, Majrashi M, Theyab A, Aldarmahi AA, Awan Z, Abdel-Daim MM, Azad AK. Electrospun Nanofiber Composites for Drug Delivery: A Review on Current Progresses. Polymers (Basel) 2022; 14:polym14183725. [PMID: 36145871 PMCID: PMC9506405 DOI: 10.3390/polym14183725] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
A medication’s approximate release profile should be sustained in order to generate the desired therapeutic effect. The drug’s release site, duration, and rate must all be adjusted to the drug’s therapeutic aim. However, when designing drug delivery systems, this may be a considerable hurdle. Electrospinning is a promising method of creating a nanofibrous membrane since it enables drugs to be placed in the nanofiber composite and released over time. Nanofiber composites designed through electrospinning for drug release purposes are commonly constructed of simple structures. This nanofiber composite produces matrices with nanoscale fiber structure, large surface area to volume ratio, and a high porosity with small pore size. The nanofiber composite’s large surface area to volume ratio can aid with cell binding and multiplication, drug loading, and mass transfer processes. The nanofiber composite acts as a container for drugs that can be customized to a wide range of drug release kinetics. Drugs may be electrospun after being dissolved or dispersed in the polymer solution, or they can be physically or chemically bound to the nanofiber surface. The composition and internal structure of the nanofibers are crucial for medicine release patterns.
Collapse
Affiliation(s)
- Renatha Jiffrin
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
| | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
- Sports Innovation & Technology Center, Institute of Human Centered Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
- Correspondence: (S.I.A.R.); (M.M.A.-D.); (A.K.A.)
| | - Mohamad Ikhwan Jamaludin
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
| | - Amir Syahir Amir Hamzah
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muadz Ahmad Mazian
- Faculty of Applied Science, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | | | - Mohammed Z. Nasrullah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Majrashi
- Department of Pharmacology, Faculty of Medicine, University of Jeddah, Jeddah 23881, Saudi Arabia
| | - Abdulrahman Theyab
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Ahmed A. Aldarmahi
- Basic Science Department, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, National Guard-Health Affairs, P.O. Box 9515, Jeddah 21423, Saudi Arabia
| | - Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Correspondence: (S.I.A.R.); (M.M.A.-D.); (A.K.A.)
| | - Abul Kalam Azad
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
- Correspondence: (S.I.A.R.); (M.M.A.-D.); (A.K.A.)
| |
Collapse
|
2
|
Ferreira CAM, Guerreiro SFC, Valente JFA, Patrício TMF, Alves N, Mateus A, Dias JR. Advanced Face Mask Filters Based on PCL Electrospun Meshes Dopped with Antimicrobial MgO and CuO Nanoparticles. Polymers (Basel) 2022; 14:polym14163329. [PMID: 36015586 PMCID: PMC9413239 DOI: 10.3390/polym14163329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
The pandemic situation caused by coronavirus clearly demonstrated the need for alternatives able to protect the respiratory tract and inactivate the infectious agents. Based on this, antibacterial face-mask filters of polycaprolactone (PCL) dopped with magnesium oxide (MgO) and copper oxide (CuO) nanoparticles (NPs) were produced using an electrospinning technique. A morphological analysis of electrospun meshes evaluated the success of nanoparticles’ incorporation as well as the average fibers’ diameters (481 ± 272 nm). The performance of electrospun nanofibers was also assessed in terms of tensile strength (0.88 ± 0.25 MPa), water vapor permeability (11,178.66 ± 35.78 g·m−2·day−1), stability under wet conditions and antibacterial activity according to the standard guidelines. The filters showed structural stability up to 2 h of washing and improved antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for optimized concentrations of MgO and CuO NPs. Overall, electrospun meshes with antibacterial activity were successfully developed for advanced filtering applications.
Collapse
Affiliation(s)
- Carolina A. M. Ferreira
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
- Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Marine and Environmental Sciences Centre (MARE), ESTM, Instituto Politécnico de Leiria, 2050-641 Peniche, Portugal
| | - Sara F. C. Guerreiro
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
- Medical Physics Department, Portuguese Institute of Oncology (IPO-Porto), 4200-072 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana F. A. Valente
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Tatiana M. F. Patrício
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Artur Mateus
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
| | - Juliana R. Dias
- Centre for Rapid and Sustainable Product Development (CDRSP), Instituto Politécnico de Leiria, 2030-028 Marinha Grande, Portugal
- Correspondence:
| |
Collapse
|
3
|
Mahdavi MR, Kehtari M, Mellati A, Mansour RN, Mahdavi M, Mahdavi M, Enderami SE. Improved biological behaviours and osteoinductive capacity of the gelatin nanofibers while composites with GO/MgO. Cell Biochem Funct 2022; 40:189-198. [PMID: 35118692 DOI: 10.1002/cbf.3688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/06/2022]
Abstract
Among the many polymers introduced for bone tissue engineering, natural polymers have more advantages due to their high biocompatibility and biodegradability, despite their low mechanical properties. Herein, gelatin nanofibers with and without magnesium oxide (MgO) and graphene oxide (GO) nanoparticles were fabricated by electrospinning. The fabricated gelatin and gelatin/GO/MgO nanofibers were examined using scanning electron microscopy, protein adsorption, cell attachment and viability assays. The results revealed that biological behaviours of the gelatin nanofibers significantly improved while incorporated with MgO and GO nanoparticles. In the following, osteosupportive capacity of the fabricated scaffolds was investigated by Alizarin-red staining, alkaline phosphatase activity, and calcium content, and bone-related gene and protein assays. The results revealed that the highest osteogenic differentiation potential of human-induced pluripotent stem cells (hiPSCs) was detected while these cells were cultured on the gelatin/GO/MgO nanofibers. However, these makers in the hiPSCs cultured on the gelatin nanofibers were also significantly increased in comparison with the cells cultured on the tissue culture plates as a control. In conclusion, the results revealed that predictable disadvantages in gelatin nanofibers can be greatly improved by the addition of MgO and GO nanoparticles, and the resulting composite scaffold could be a potential candidate for use in bone tissue engineering.
Collapse
Affiliation(s)
| | - Mousa Kehtari
- School of Biology, Faculty of Science, University of Tehran, Tehran, Iran
| | - Amir Mellati
- Department of Tissue Engineering and regenerative medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mehrad Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Mahan Mahdavi
- Department of Cellular and Molecular, Sinaye Mehr Research Center, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|