Sarkar PK, Pawar SS, Rath SK, Kandasubramanian B. Anti-barnacle biofouling coatings for the protection of marine vessels: synthesis and progress.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022;
29:26078-26112. [PMID:
35076840 DOI:
10.1007/s11356-021-18404-3]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Marine biofouling has gnawed both mobile and non-mobile marine structures since time immemorial, leading to the deterioration of designed operational capabilities as well as a loss of valuable economic revenues. Mitigation of biofouling has been the primary focus of researchers and scientists from across the globe to save billions of dollars wasted due to the biological fouling of marine structures. The availability of an appropriate environment along with favorable substrata initiates biofilm formation within a few minutes. The crucial element in establishing a gelatinous biofilm is the excreted metabolites of destructive nature and exopolymeric substances (EPSs). These help in securing as well as signaling numerous foulants to establish themselves on this substrate. The larvae of various benthic invertebrates adhere to these suitable surfaces and transform from juveniles to adult barnacles depending upon the environment. Despite biofouling being characteristically witnessed for a month or lengthier timeframe, the preliminary phases of the fouling process typically transpire on a much lesser timescale. A few natural and synthetic additives had demonstrated excellent non-toxic anti barnacle establishment capability; however, further development into commercial products is still far-fetched. This review collates the specific anti-barnacle coatings, emphasizing natural additives, their sources of extraction, general life cycle analysis, and concluding future perspectives of this niche product.
Collapse