1
|
Abdel-Rahman R, Abdel-Mohsen AM, Frankova J, Piana F, Kalina L, Gajdosova V, Kapralkova L, Thottappali MA, Jancar J. Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties. Biomacromolecules 2024; 25:3449-3463. [PMID: 38739908 PMCID: PMC11170955 DOI: 10.1021/acs.biomac.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Using supramolecular self-assembled nanocomposite materials made from protein and polysaccharide components is becoming more popular because of their unique properties, such as biodegradability, hierarchical structures, and tunable multifunctionality. However, the fabrication of these materials in a reproducible way remains a challenge. This study presents a new evaporation-induced self-assembly method producing layered hydrogel membranes (LHMs) using tropocollagen grafted by partially deacetylated chitin nanocrystals (CO-g-ChNCs). ChNCs help stabilize tropocollagen's helical conformation and fibrillar structure by forming a hierarchical microstructure through chemical and physical interactions. The LHMs show improved mechanical properties, cytocompatibility, and the ability to control drug release using octenidine dihydrochloride (OCT) as a drug model. Because of the high synergetic performance between CO and ChNCs, the modulus, strength, and toughness increased significantly compared to native CO. The biocompatibility of LHM was tested using the normal human dermal fibroblast (NHDF) and the human osteosarcoma cell line (Saos-2). Cytocompatibility and cell adhesion improved with the introduction of ChNCs. The extracted ChNCs are used as a reinforcing nanofiller to enhance the performance properties of tropocollagen hydrogel membranes and provide new insights into the design of novel LHMs that could be used for various medical applications, such as control of drug release in the skin and bone tissue regeneration.
Collapse
Affiliation(s)
- Rasha
M. Abdel-Rahman
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - A. M. Abdel-Mohsen
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
- Pretreatment
and Finishing of Cellulosic Based Textiles Department, Textile Industries Research Institute, National Research
Centre, 33 EL Buhouth
Street, Dokki, Giza 12622, Egypt
| | - Jana Frankova
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská, 3, 775 15, Olomouc, Czech Republic
| | - Francesco Piana
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Lukas Kalina
- Faculty
of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno 61200, Czech Republic
| | - Veronika Gajdosova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Ludmila Kapralkova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Muhammed Arshad Thottappali
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Josef Jancar
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Faculty
of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno 61200, Czech Republic
| |
Collapse
|
2
|
Rokade KA, Kumbhar DD, Patil SL, Sutar SS, More KV, Dandge PB, Kamat RK, Dongale TD. CogniFiber: Harnessing Biocompatible and Biodegradable 1D Collagen Nanofibers for Sustainable Nonvolatile Memory and Synaptic Learning Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312484. [PMID: 38501916 DOI: 10.1002/adma.202312484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Indexed: 03/20/2024]
Abstract
Here, resistive switching (RS) devices are fabricated using naturally abundant, nontoxic, biocompatible, and biodegradable biomaterials. For this purpose, 1D chitosan nanofibers (NFs), collagen NFs, and chitosan-collagen NFs are synthesized by using an electrospinning technique. Among different NFs, the collagen-NFs-based device shows promising RS characteristics. In particular, the optimized Ag/collagen NFs/fluorine-doped tin oxide RS device shows a voltage-tunable analog memory behavior and good nonvolatile memory properties. Moreover, it can also mimic various biological synaptic learning properties and can be used for pattern classification applications with the help of the spiking neural network. The time series analysis technique is employed to model and predict the switching variations of the RS device. Moreover, the collagen NFs have shown good cytotoxicity and anticancer properties, suggesting excellent biocompatibility as a switching layer. The biocompatibility of collagen NFs is explored with the help of NRK-52E (Normal Rat Kidney cell line) and MCF-7 (Michigan Cancer Foundation-7 cancer cell line). Additionally, the biodegradability of the device is evaluated through a physical transient test. This work provides a vital step toward developing a biocompatible and biodegradable switching material for sustainable nonvolatile memory and neuromorphic computing applications.
Collapse
Affiliation(s)
- Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Dhananjay D Kumbhar
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| | - Santosh S Sutar
- Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur, 416004, India
| | - Krantiveer V More
- Department of Chemistry, Shivaji University, Kolhapur, 416004, India
| | - Padma B Dandge
- Department of Biochemistry, Shivaji University, Kolhapur, 416004, India
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur, 416004, India
- The Institute of Science, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai, 400032, India
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, 416004, India
| |
Collapse
|
3
|
Anaya Mancipe JM, Boldrini Pereira LC, de Miranda Borchio PG, Dias ML, da Silva Moreira Thiré RM. Novel polycaprolactone (PCL)-type I collagen core-shell electrospun nanofibers for wound healing applications. J Biomed Mater Res B Appl Biomater 2023; 111:366-381. [PMID: 36068930 DOI: 10.1002/jbm.b.35156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/15/2022]
Abstract
Type I collagen (Col_1) is one of the main proteins present in the skin extracellular matrix, serving as support for skin regeneration and maturation in its granulation stage. Electrospun materials have been intensively studied as the next generation of skin wound dressing mainly due to their high surface area and fibrous porosity. However, the electrospinning of collagen-based solutions causes degradation of its structure. In this work, a coaxial electrospinning process was proposed to overcome this limitation. The production of mats of polycaprolactone (PCL)-Col_1/PVA (collagen/poly(vinyl alcohol)) composed of core-shell nanofibers was investigated. PCL solution was used as the core solution, while Col_1/PVA was used as the shell solution. PVA was used to improve the processability of collagen, while PCL was employed to improve the mechanical properties and morphology of Col_1/PVA fibers. The morphology and the cytotoxicity of the fibers were highly dependent on the processing parameters. Defect-free core-shell nanofibers were obtained with a shell/core flow rates ratio = 4, flight distance of 12 cm, and an applied voltage of 16 kV. Using this strategy, the triple helix structure characteristic of the collagen molecule was preserved. Moreover, the common post-processing of solvent removal could be suppressed, simplifying the manufacturing processing of these biomaterials. The nanostructured mats showed no cytotoxicity, high liquid absorption, structural stability, hydrophilic character, and collagen release capacity, making them a potential novel dressing for skin damage regeneration, in special in the case of chronic wounds treatment, in which exogenous collagen delivery is necessary.
Collapse
Affiliation(s)
- Javier Mauricio Anaya Mancipe
- Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalúrgica e de Materiais/COPPE, Cidade Universitária, Rio de Janeiro, Brazil.,Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, IMA, Cidade Universitária, Rio de Janeiro, Brazil
| | - Leonardo Cunha Boldrini Pereira
- Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Diretoria de Metrologia Aplicada as Ciências da Vida, DIMAV, Programa de Pós-graduação em Biomedicina Translacional - BIOTRANS, Duque de Caxias, Brazil
| | - Priscila Grion de Miranda Borchio
- Instituto Nacional de Metrologia, Qualidade e Tecnologia - INMETRO, Diretoria de Metrologia Aplicada as Ciências da Vida, DIMAV, Programa de Pós-graduação em Biomedicina Translacional - BIOTRANS, Duque de Caxias, Brazil
| | - Marcos Lopes Dias
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, IMA, Cidade Universitária, Rio de Janeiro, Brazil
| | - Rossana Mara da Silva Moreira Thiré
- Universidade Federal do Rio de Janeiro, Programa de Engenharia Metalúrgica e de Materiais/COPPE, Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|