1
|
Bento de Carvalho T, Silva BN, Tomé E, Teixeira P. Preventing Fungal Spoilage from Raw Materials to Final Product: Innovative Preservation Techniques for Fruit Fillings. Foods 2024; 13:2669. [PMID: 39272437 PMCID: PMC11394069 DOI: 10.3390/foods13172669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Spoilage fungi are a significant cause of financial loss in the food and beverage industry each year. These fungi thrive in challenging environments characterized by low acidity, low water activity and high sugar content, all of which are common in fruit fillings used in pastry products. Fruit fillings are therefore highly susceptible to fungal spoilage. Fungal growth can cause sensory defects in foods, such as changes in appearance, odor, flavor or texture, and can pose health risks due to the production of mycotoxins by certain mold species. To reduce food loss and waste and extend product shelf-life, it is critical that we prevent fungal spoilage. Synthetic chemicals such as sorbic acid and potassium sorbate are commonly used as preservatives to prevent fungal spoilage. However, with consumer demand for 'natural' and 'chemical-free' foods, research into clean-label preservative alternatives to replace chemical preservatives has increased. The objectives of this review are (i) to provide an overview of the sources of fungal contamination in fruit filling production systems, from pre-harvest of raw materials to storage of the final product, and to identify key control factors; and (ii) to discuss preservation techniques (both conventional and novel) that can prevent fungal growth and extend the shelf-life of fruit fillings.
Collapse
Affiliation(s)
- Teresa Bento de Carvalho
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Beatriz Nunes Silva
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Elisabetta Tomé
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
2
|
Chen X, Zhang M, Tang L, Huang S, Guo T, Li Q. Screening and characterization of biocontrol bacteria isolated from Ageratum conyzoides against Collectotrichum fructicola causing Chinese plum ( Prunus salicina Lindl.) anthracnose. Front Microbiol 2023; 14:1296755. [PMID: 38130944 PMCID: PMC10734640 DOI: 10.3389/fmicb.2023.1296755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chinese plum (Prunus salicina Lindl.) is a nutritionally and economically important stone fruit widely grown around the world. Anthracnose, caused by Collectotrichum spp., is one of the primary biotic stress factors limiting plum production. Medicinal plants may harbor rhizospheric or endophytic microorganisms that produce bioactive metabolites that can be used as anthracnose biocontrol agents. Here, 27 bacterial isolates from the medicinal plant A. conyzoides with diverse antagonistic activities against C. fructicola were screened. Based on morphological, physiological, biochemical, and molecular characterization, 25 of these isolates belong to different species of genus Bacillus, one to Pseudomonas monsensis, and one more to Microbacterium phyllosphaerae. Eight representative strains showed high biocontrol efficacy against plum anthracnose in a pot experiment. In addition, several Bacillus isolates showed a broad spectrum of inhibitory activity against a variety of fungal phytopathogens. Analysis of the volatile organic compound profile of these eight representative strains revealed a total of 47 compounds, most of which were ketones, while the others included alkanes, alkenes, alcohols, pyrazines, and phenols. Overall, this study confirmed the potential value of eight bacterial isolates for development as anthracnose biocontrol agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Qili Li
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
3
|
Dikmetas DN, Özer H, Karbancıoglu-Guler F. Biocontrol Potential of Antagonistic Yeasts on In Vitro and In Vivo Aspergillus Growth and Its AFB 1 Production. Toxins (Basel) 2023; 15:402. [PMID: 37368702 DOI: 10.3390/toxins15060402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Aspergillus flavus is a major aflatoxin B1, posing significant health concerns to humans, crops, and producer fungi. Due to the undesirable consequences of the usage of synthetic fungicides, biological control using yeasts has gained more attention. In this study, eight isolates of epiphytic yeasts belonging to Moesziomyces sp., Meyerozyma sp. and Metschnikowia sp., which have been identified as antagonists, were isolated from different plants, including grapes, blueberries, hawthorns, hoşkıran, beans and grape leaf. While volatile organic compounds (VOCs) produced by Moesziomyces bullatus DN-FY, Metschnikowia aff. pulcherrima DN-MP and Metschnikowia aff. pulcherrima 32-AMM reduced in vitro A. flavus mycelial growth and sporulation, only VOCs produced by Metschnikowia aff. fructicola 1-UDM were found to be effective at reducing in vitro AFB1 production. All yeasts reduced the mycelial growth of A. flavus by 76-91%, while AFB1 production reduced to 1.26-10.15 ng/g and the control plates' growth was 1773 ng/g. The most effective yeast, Metschnikowia aff. Pulcherrima DN-HS, reduced Aspergillus flavus growth and aflatoxin B1 production on hazelnuts. The AFB1 content on hazelnuts reduced to 333.01 ng/g from 536.74 ng/g. To our knowledge, this is the first report of yeasts isolated from plants being tested as potential biological control agents to reduce AFB1 production on hazelnuts.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| | - Hayrettin Özer
- The Scientific and Technological Research Council of Türkiye (TÜBİTAK), Marmara Research Center (MRC), 41470 Gebze, Türkiye
| | - Funda Karbancıoglu-Guler
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Türkiye
| |
Collapse
|
4
|
Li X, Zeng S, Wisniewski M, Droby S, Yu L, An F, Leng Y, Wang C, Li X, He M, Liao Q, Liu J, Wang Y, Sui Y. Current and future trends in the biocontrol of postharvest diseases. Crit Rev Food Sci Nutr 2022; 64:5672-5684. [PMID: 36530065 DOI: 10.1080/10408398.2022.2156977] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Postharvest diseases of fruits and vegetables cause significant economic losses to producers and marketing firms. Many of these diseases are caused by necrotrophic fungal pathogens that require wounded or injured tissues to establish an infection. Biocontrol of postharvest diseases is an evolving science that has moved from the traditional paradigm of one organism controlling another organism to viewing biocontrol as a system involving the biocontrol agent, the pathogen, the host, the physical environment, and most recently the resident microflora. Thus, the paradigm has shifted from one of simplicity to complexity. The present review provides an overview of how the field of postharvest biocontrol has evolved over the past 40 years, a brief review of the biology of necrotrophic pathogens, the discovery of BCAs, their commercialization, and mechanisms of action. Most importantly, current research on the use of marker-assisted-selection, the fruit microbiome and its relationship to the pathobiome, and the use of double-stranded RNA as a biocontrol strategy is discussed. These latter subjects represent evolving trends in postharvest biocontrol research and suggestions for future research are presented.
Collapse
Affiliation(s)
- Xiaojiao Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Shixian Zeng
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
| | - Michael Wisniewski
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Samir Droby
- Department of Postharvest Science, ARO, the Volcani Center, Rishon LeZion, Israel
| | - Longfeng Yu
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Fuquan An
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Yan Leng
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Chaowen Wang
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Xiaojun Li
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Min He
- School of Biotechnology and Bioengineering, West Yunnan University, Lincang, China
| | - Qinhong Liao
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Yong Wang
- College of Agriculture, Key Laboratory of Agricultural Microbiology of Guizhou Province, Guizhou University, Guiyang, Guizhou, China
| | - Yuan Sui
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| |
Collapse
|
5
|
Gorrasi S, Pasqualetti M, Muñoz-Palazon B, Novello G, Mazzucato A, Campiglia E, Fenice M. Comparison of the Peel-Associated Epiphytic Bacteria of Anthocyanin-Rich "Sun Black" and Wild-Type Tomatoes under Organic and Conventional Farming. Microorganisms 2022; 10:2240. [PMID: 36422310 PMCID: PMC9694333 DOI: 10.3390/microorganisms10112240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 07/30/2023] Open
Abstract
Tomatoes are among the most consumed vegetables worldwide and represent a source of health-beneficial substances. Our study represents the first investigating the peel-associated epiphytic bacteria of red and purple (anthocyanin-rich) tomatoes subjected to organic and conventional farming systems. Proteobacteria was the dominant phylum (relative abundances 79-91%) in all experimental conditions. Enterobacteriaceae represented a large fraction (39.3-47.5%) of the communities, with Buttiauxella and Atlantibacter as the most represented genera. The core microbiota was composed of 59 operational taxonomic units (OTUs), including the majority of the most abundant ones. The occurrence of the most abundant OTUs differed among the experimental conditions. OTU 1 (Buttiauxella), OTU 2 (Enterobacteriales), and OTU 6 (Bacillales) were higher in red and purple tomatoes grown under organic farming. OTU 5 (Acinetobacter) had the highest abundance in red tomatoes subjected to organic farming. OTU 3 (Atlantibacter) was among the major OTUs in red tomatoes under both farming conditions. OTU 7 (Clavibacter) and OTU 8 (Enterobacteriaceae) had abundances ≥1% only in red tomatoes grown under conventional farming. PCA and clustering analysis highlighted a high similarity between the bacterial communities of red and purple tomatoes grown under organic farming. Furthermore, the bacterial communities of purple tomatoes grown under organic farming showed the lowest diversity and evenness. This work paves the way to understand the role of nutritional superior tomato genotypes, combined with organic farming, to modulate the presence of beneficial/harmful bacteria and supply healthier foods within a sustainable agriculture.
Collapse
Affiliation(s)
- Susanna Gorrasi
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Marcella Pasqualetti
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Laboratory of Ecology of Marine Fungi, CoNISMa, Department of Ecological and Biological Sciences, University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| | - Barbara Muñoz-Palazon
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Institute of Water Research, University of Granada, 18071 Granada, Spain
| | - Giorgia Novello
- Department of Science, Technology and Innovation (DISIT), Università del Piemonte Orientale, Viale Teresa Michel, 11, 15121 Alessandria, Italy
| | - Andrea Mazzucato
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Enio Campiglia
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Massimiliano Fenice
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
- Laboratory of Applied Marine Microbiology, CoNISMa, University of Tuscia, Largo Università snc, 01100 Viterbo, Italy
| |
Collapse
|
6
|
Epiphytic and endophytic microorganisms associated to different cultivar of tomato fruits in greenhouse environment and characterization of beneficial bacterial strains for the control of post-harvest tomato pathogens. Int J Food Microbiol 2022; 379:109861. [DOI: 10.1016/j.ijfoodmicro.2022.109861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
|
7
|
Gomomo Z, Fanadzo M, Mewa-Ngongang M, Hoff J, Van der Rijst M, Okudoh V, Kriel J, du Plessis H. Control of Mould Spoilage on Apples Using Yeasts as Biological Control Agents. POL J FOOD NUTR SCI 2022. [DOI: 10.31883/pjfns/147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Oluba OM, Obokare O, Bayo-Olorunmeke OA, Ojeaburu SI, Ogunlowo OM, Irokanulo EO, Akpor OB. Fabrication, characterization and antifungal evaluation of polyphenolic extract activated keratin starch coating on infected tomato fruits. Sci Rep 2022; 12:4340. [PMID: 35288581 PMCID: PMC8921230 DOI: 10.1038/s41598-022-07972-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
In recent times, the application of protein-based bio-composite edible films in postharvest preservation of food and agricultural products is attracting increased attention due to their biodegradability, eco-friendliness and sustainability. In this study, an avocado pear peel polyphenolic extract enriched keratin-starch composite film was fabricated, characterized and evaluated for antimicrobial activity against fungal infected tomato fruits after 6 days of storage at room (25 ± 2 °C) temperature. The SEM/EDX and FTIR results revealed the successful film formation with high degree of compatibility and homogeneity. Following a 6-day post-coating loss in weight of the coated tomato fruits decreased significantly (p < 0.05) with increasing extract concentration while titratable acidity showed a significant (p < 0.05) increase with increasing extract load. Ascorbic acid and lycopene contents were significantly (p < 0.05) higher in the avocado pear peel polyphenolic extract-loaded films. No significant effect was observed in catechol oxidase activity of the tomato extract across the different treatment groups. In addition, fungal growth inhibition showed a dose dependent increase consistent with avocado pear peel polyphenolic load in coated tomato fruits compared to control. Results obtained in this study showed that polyphenolic activated keratin-starch coating was able to reduce spoilage-induce weight loss as well as conserve the overall quality (including titratable acid levels, lycopene and ascorbic acid contents) of fungal-infected tomato fruit and reduce microbial growth. Therefore polyphenolic activated keratin-starch coating could serve as a sustainable and ecofriendly postharvest preservation method to prolong the shelf life of tomato fruits.
Collapse
|
9
|
Jang H, Kim ST, Sang MK. Suppressive Effect of Bioactive Extracts of Bacillus sp. H8-1 and Bacillus sp. K203 on Tomato Wilt Caused by Clavibacter michiganensis subsp. michiganensis. Microorganisms 2022; 10:microorganisms10020403. [PMID: 35208859 PMCID: PMC8880269 DOI: 10.3390/microorganisms10020403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Tomatoes are cultivated worldwide, and are economically important. Clavibacter michiganensis subsp. michiganensis (Cmm) is a pathogen that causes canker and wilting in tomatoes, resulting in serious damage to tomato plants. We aimed to control Cmm proliferation using substances produced by useful microorganisms. The water extracts of strains H8-1 and K203 inhibited wilting caused by Cmm and slowed the pathogenic colonization in tomato plants. The relative expressions of celA, celB, pat1, and pelA of Cmm treated with the bacterial water extracts were reduced by 0.41-, 0.01-, 0.15-, and 0.14-fold for H8-1, respectively, and 0.45-, 0.02-, 0.13-, and 0.13-fold for K203, respectively, compared to controls at 72 h after treatments. In tomato plants inoculated with Cmm, when water extracts of H8-1 and K203 were treated, relative expression of ACO encoding 1-aminocyclopropane-1-carboxylic acid oxidase was suppressed by 0.26- and 0.23-fold, respectively, while PR1a was increased by 1.94- and 2.94-fold, respectively; PI2 expression was increased by 3.27-fold in water extract of H8-1-treated plants. As antioxidant enzymes of plants inoculated with Cmm, peroxidase and glutathione peroxidase levels were increased in K203-water-extract-treated plants, and catalase was increased in the case of the H8-1 water extract at 10 days after inoculation. In terms of soil enzyme activity, each water extract tended to increase urease activity and microbial diversity; in addition, K203 water extract increased plant growth. Thus, H8-1 and K203 water extracts can be used as potential biocontrol agents against Cmm.
Collapse
Affiliation(s)
- Hwajin Jang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Sang Tae Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.J.); (S.T.K.)
- Correspondence: ; Tel.: +82-63-238-3055; Fax: +82-63-238-3834
| |
Collapse
|