1
|
Shim MS, Sim EJ, Betsch K, Desikan V, Su CC, Pastor-Valverde D, Sun Y, Liton PB. Class I PI3Ks activate stretch-induced autophagy in trabecular meshwork cells. Cell Mol Life Sci 2025; 82:82. [PMID: 39985671 PMCID: PMC11846827 DOI: 10.1007/s00018-025-05615-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 01/13/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, a leading cause of irreversible blindness worldwide. IOP homeostasis is maintained through a balance between aqueous humor production and its drainage through the trabecular meshwork (TM)/Schlemm's Canal (SC) outflow pathway. Prior studies by our laboratory reported a key role of mechanical forces and primary cilia (PC)-dependent stretch-induced autophagy in IOP homeostasis. However, the precise mechanism regulating this process remains elusive. In this study, we investigated the upstream signaling pathway orchestrating autophagy activation during cyclic mechanical stretch (CMS) in primary cultured human TM cells, using biochemical and cell biological analyses. Our results indicate that TM cells express catalytic subunits of class IA PI3Ks (PIK3CA, B, and D), and that inhibition of class IA isoforms, but not class II and III, significantly prevent CMS-induced autophagy. Importantly, PIK3CA was found to localize in the PC. Furthermore, we identified a coordinated action of Class IA PI3Ks along INPP4A/B, a 4' inositol phosphatase, responsible for the formation of PI(3,4)P2 and PI(3)P and stretch-induced autophagy in TM cells. These findings contribute to a deeper understanding of the molecular mechanisms underlying IOP homeostasis.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Department of Ophthalmology, Duke Eye Center, Duke University, AERI Bldg, Office 4004, Erwin, Rd. Box 3802, Durham, NC, 27713, USA
| | - Ethan J Sim
- Department of Ophthalmology, Duke Eye Center, Duke University, AERI Bldg, Office 4004, Erwin, Rd. Box 3802, Durham, NC, 27713, USA
| | - Kevin Betsch
- Department of Ophthalmology, Duke Eye Center, Duke University, AERI Bldg, Office 4004, Erwin, Rd. Box 3802, Durham, NC, 27713, USA
| | - Vaibhav Desikan
- Department of Ophthalmology, Duke Eye Center, Duke University, AERI Bldg, Office 4004, Erwin, Rd. Box 3802, Durham, NC, 27713, USA
| | - Chien-Chia Su
- Department of Ophthalmology, Duke Eye Center, Duke University, AERI Bldg, Office 4004, Erwin, Rd. Box 3802, Durham, NC, 27713, USA
| | - Diego Pastor-Valverde
- Department of Ophthalmology, Duke Eye Center, Duke University, AERI Bldg, Office 4004, Erwin, Rd. Box 3802, Durham, NC, 27713, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Paloma B Liton
- Department of Ophthalmology, Duke Eye Center, Duke University, AERI Bldg, Office 4004, Erwin, Rd. Box 3802, Durham, NC, 27713, USA.
| |
Collapse
|
2
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|