Chichigina OA, Dubkov AA, Valenti D, Spagnolo B. Stability in a system subject to noise with regulated periodicity.
PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011;
84:021134. [PMID:
21928976 DOI:
10.1103/physreve.84.021134]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Indexed: 05/31/2023]
Abstract
The stability of a simple dynamical system subject to multiplicative one-side pulse noise with hidden periodicity is investigated both analytically and numerically. The stability analysis is based on the exact result for the characteristic functional of the renewal pulse process. The influence of the memory effects on the stability condition is analyzed for two cases: (i) the dead-time-distorted poissonian process, and (ii) the renewal process with Pareto distribution. We show that, for fixed noise intensity, the system can be stable when the noise is characterized by high periodicity and unstable at low periodicity.
Collapse