1
|
Li Z, Wang J, Lin K, Liu M, Wang J, Zhang L, Xia C, Liu L, Zhang B, Yangzong Y, Han J, Zhao Y, Ye X, Huang Y, Cui Z. Insights into the Antifungal Properties of Myxobacteria Outer Membrane β-1,6-Glucanase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37326459 DOI: 10.1021/acs.jafc.3c00578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fungal cell wall decomposition enzymes exhibit great potential for the development of efficient antifungal agents. However, their practical application is restricted due to incomplete understanding of the action mode. In our previous study, we identified that a novel outer membrane (OM) β-1,6-glucanase GluM is deployed by predatory myxobacteria to feed on fungi. In this work, we provide deep insights into the antifungal mechanism of β-1,6-glucanase and its potential in improving plant disease resistance. The fungal cell wall decomposition ability of GluM resulted in irregular hyphae morphology, changed chitin distribution, increased membrane permeability, and leakage of cell constituents in Magnaporthe oryzae Guy11. Under the attack pattern, the cell wall integrity pathway was activated by strain Guy11 for self-protection. GluM exhibited a distinct endo-model toward fungal cell wall; the favorite substrate of GluM toward fungal β-1,6-glucan may give reason for its efficient antifungal activity compared with Trichoderma β-1,6-glucanase. Moreover, released glucans from GluM hydrolysis of fungal cell wall functioned as an elicitor and induced rice immunity by means of jasmonic acid pathway. Based on the dual roles of antifungal properties, gluM transgenic plants conferred enhanced resistance against fungal infection.
Collapse
Affiliation(s)
- Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kanghui Lin
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Muxing Liu
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
| | - Juying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyao Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Biying Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunzhen Yangzong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Han
- College of Agriculture, Xinjiang Agricultural University, Ürümqi, XinJiang 830052, China
| | - Yuqiang Zhao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Abstract
Inhalation of conidia of the opportunistic mold Aspergillus fumigatus by immunocompromised hosts can lead to invasive pulmonary disease. Inhaled conidia that escape immune defenses germinate to form filamentous hyphae that invade lung tissues. Conidiation rarely occurs during invasive infection of the human host, allowing the bulk of fungal energy to be directed toward vegetative growth. We hypothesized that forced induction of conidiation during infection can suppress A. fumigatus vegetative growth, impairing the ability of this organism to cause disease. To study the effects of conidiation pathway dysregulation on A. fumigatus virulence, a key transcriptional regulator of conidiation (brlA) was expressed under the control of a doxycycline-inducible promoter. Time- and dose-dependent brlA overexpression was observed in response to doxycycline both in vitro and in vivo. Exposure of the inducible brlA overexpression strain to low doses of doxycycline under vegetative growth conditions in vitro induced conidiation, whereas high doses arrested growth. Overexpression of brlA attenuated A. fumigatus virulence in both an invertebrate and mouse model of invasive aspergillosis. RNA sequencing studies and phenotypic analysis revealed that brlA overexpression results in altered cell signaling, amino acid, and carbohydrate metabolism, including a marked upregulation of trehalose biosynthesis and a downregulation in the biosynthesis of the polysaccharide virulence factor galactosaminogalactan. This proof of concept study demonstrates that activation of the conidiation pathway in A. fumigatus can reduce virulence and suggests that brlA-inducing small molecules may hold promise as a new class of therapeutics for A. fumigatus infection.IMPORTANCE The mold Aspergillus fumigatus reproduces by the production of airborne spores (conidia), a process termed conidiation. In immunocompromised individuals, inhaled A. fumigatus conidia can germinate and form filaments that penetrate and damage lung tissues; however, conidiation does not occur during invasive infection. In this study, we demonstrate that forced activation of conidiation in filaments of A. fumigatus can arrest their growth and impair the ability of this fungus to cause disease in both an insect and a mouse model of invasive infection. Activation of conidiation was linked to profound changes in A. fumigatus metabolism, including a shift away from the synthesis of polysaccharides required for cell wall structure and virulence in favor of carbohydrates used for energy storage and stress resistance. Collectively, these findings suggest that activation of the conidiation pathway may be a promising approach for the development of new agents to prevent or treat A. fumigatus infection.
Collapse
|
3
|
Yoshimi A, Miyazawa K, Abe K. Cell wall structure and biogenesis in Aspergillus species. Biosci Biotechnol Biochem 2016; 80:1700-11. [DOI: 10.1080/09168451.2016.1177446] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections.
Collapse
Affiliation(s)
- Akira Yoshimi
- ABE-project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
| | - Ken Miyazawa
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Keietsu Abe
- ABE-project, New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan
- Laboratory of Applied Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
4
|
Nano-LC-Q-TOF Analysis of Proteome Revealed Germination of Aspergillus flavus Conidia is Accompanied by MAPK Signalling and Cell Wall Modulation. Mycopathologia 2016; 181:769-786. [PMID: 27576557 DOI: 10.1007/s11046-016-0056-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Aspergillus flavus is the second most leading cause of aspergillosis. The ability of A. flavus to adapt within the host environment is crtical for its colonization. Onset of germination of conidia is one of the crucial events; thus, in order to gain insight into A. flavus molecular adaptation while germination, protein profile of A. flavus was obtained. Approximately 82 % of conidia showed germination at 7 h; thus, samples were collected followed by protein extraction and subjected to nLC-Q-TOF mass spectrometer. Q-TOF data were analysed using Protein Lynx Global Services (PLGS 2.2.5) software. A total of 416 proteins were identified from UniProt Aspergillus species database. Orthologues of A. flavus was observed in A. fumigatus, A. niger, A. terreus, A. oryzae, etc. Proteins were further analysed in NCBI database, which showed that 27 proteins of A. flavus are not reported in UniProt and NCBI database. Functional characterization of proteins resulted majorly to cell wall synthesis and degradation, metabolisms (carbohydrate and amino acid metabolism), protein synthesis and degradation. Proteins/enzymes associated with aflatoxin biosynthesis were observed. We also observed Dicer-like proteins 1, 2 and autophagy-related proteins 2, 9, 18, 13, 11, 22. Expression of protein/enzymes associated with MAPK signalling pathway suggests their role during the germination process. Overall, the data present a catalogue of proteins/enzymes involved in the germination of A. flavus conidia and could also be applied to other Aspergillus species.
Collapse
|
5
|
Miyazawa K, Yoshimi A, Zhang S, Sano M, Nakayama M, Gomi K, Abe K. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase. Biosci Biotechnol Biochem 2016; 80:1853-63. [PMID: 27442340 DOI: 10.1080/09168451.2016.1209968] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions.
Collapse
Affiliation(s)
- Ken Miyazawa
- a Laboratory of Applied Microbiology, Department of Microbial Biotechnology , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Akira Yoshimi
- b Microbial Genomics Laboratory , New Industry Creation Hatchery Center, Tohoku University , Sendai , Japan
| | - Silai Zhang
- c Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Motoaki Sano
- d Genome Biotechnology Laboratory , Kanazawa Institute of Technology , Hakusan , Japan
| | - Mayumi Nakayama
- a Laboratory of Applied Microbiology, Department of Microbial Biotechnology , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- c Laboratory of Bioindustrial Genomics, Department of Bioindustrial Informatics and Genomics , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan
| | - Keietsu Abe
- a Laboratory of Applied Microbiology, Department of Microbial Biotechnology , Graduate School of Agricultural Science, Tohoku University , Sendai , Japan.,b Microbial Genomics Laboratory , New Industry Creation Hatchery Center, Tohoku University , Sendai , Japan
| |
Collapse
|
6
|
Mizutani O, Shiina M, Yoshimi A, Sano M, Watanabe T, Yamagata Y, Nakajima T, Gomi K, Abe K. Substantial decrease in cell wall α-1,3-glucan caused by disruption of the kexB gene encoding a subtilisin-like processing protease in Aspergillus oryzae. Biosci Biotechnol Biochem 2016; 80:1781-91. [PMID: 26980104 DOI: 10.1080/09168451.2016.1158632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Disruption of the kexB encoding a subtilisin-like processing protease in Aspergillus oryzae (ΔkexB) leads to substantial morphological defects when the cells are grown on Czapek-Dox agar plates. We previously found that the disruption of kexB causes a constitutive activation of the cell wall integrity pathway. To understand how the disruption of the kexB affects cell wall organization and components, we analyzed the cell wall of ΔkexB grown on the plates. The results revealed that both total N-acetylglucosamine content, which constitutes chitin, and chitin synthase activities were increased. Whereas total glucose content, which constitutes β-1,3-glucan and α-1,3-glucan, was decreased; this decrease was attributed to a remarkable decrease in α-1,3-glucan. Additionally, the β-1,3-glucan in the alkali-insoluble fraction of the ΔkexB showed a high degree of polymerization. These results suggested that the loss of α-1,3-glucan in the ΔkexB was compensated by increases in the chitin content and the average degree of β-1,3-glucan polymerization.
Collapse
Affiliation(s)
- Osamu Mizutani
- a Department of Enzymology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan.,b Department of Application Research , National Research Institute of Brewing , Higashi-Hiroshima , Japan
| | - Matsuko Shiina
- a Department of Enzymology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Akira Yoshimi
- c ABE-Project , New Industry Creation Hatchery Center, Tohoku University , Sendai , Japan
| | - Motoaki Sano
- d Department of Genome Biotechnology , Kanazawa Institute of Technology , Hakusan , Japan
| | - Takeshi Watanabe
- e Department of Applied Biological Chemistry, Faculty of Agriculture , Niigata University , Niigata , Japan
| | - Youhei Yamagata
- a Department of Enzymology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Tasuku Nakajima
- a Department of Enzymology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- f Bioindustrial Genomics, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Keietsu Abe
- c ABE-Project , New Industry Creation Hatchery Center, Tohoku University , Sendai , Japan.,g Applied Microbiology, Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
7
|
Recent advances in the understanding of the Aspergillus fumigatus cell wall. J Microbiol 2016; 54:232-42. [PMID: 26920883 DOI: 10.1007/s12275-016-6045-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 10/24/2022]
Abstract
Over the past several decades, research on the synthesis and organization of the cell wall polysaccharides of Aspergillus fumigatus has expanded our knowledge of this important fungal structure. Besides protecting the fungus from environmental stresses and maintaining structural integrity of the organism, the cell wall is also the primary site for interaction with host tissues during infection. Cell wall polysaccharides are important ligands for the recognition of fungi by the innate immune system and they can mediate potent immunomodulatory effects. The synthesis of cell wall polysaccharides is a complicated process that requires coordinated regulation of many biosynthetic and metabolic pathways. Continuous synthesis and remodeling of the polysaccharides of the cell wall is essential for the survival of the fungus during development, reproduction, colonization and invasion. As these polysaccharides are absent from the human host, these biosynthetic pathways are attractive targets for antifungal development. In this review, we present recent advances in our understanding of Aspergillus fumigatus cell wall polysaccharides, including the emerging role of cell wall polysaccharides in the host-pathogen interaction.
Collapse
|
8
|
Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes 2015; 3:467-495. [PMID: 28248281 PMCID: PMC5217390 DOI: 10.3390/proteomes3040467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/23/2015] [Accepted: 12/08/2015] [Indexed: 12/17/2022] Open
Abstract
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Collapse
|
9
|
Beaussart A, El-Kirat-Chatel S, Fontaine T, Latgé JP, Dufrêne YF. Nanoscale biophysical properties of the cell surface galactosaminogalactan from the fungal pathogen Aspergillus fumigatus. NANOSCALE 2015; 7:14996-15004. [PMID: 26308550 DOI: 10.1039/c5nr04399a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Many fungal pathogens produce cell surface polysaccharides that play essential roles in host-pathogen interactions. In Aspergillus fumigatus, the newly discovered polysaccharide galactosaminogalactan (GAG) mediates adherence to a variety of substrates through molecular mechanisms that are poorly understood. Here we use atomic force microscopy to unravel the localization and adhesion of GAG on living fungal cells. Using single-molecule imaging with tips bearing anti-GAG antibodies, we found that GAG is massively exposed on wild-type (WT) germ tubes, consistent with the notion that this glycopolymer is secreted by the mycelium of A. fumigatus, while it is lacking on WT resting conidia and on germ tubes from a mutant (Δuge3) deficient in GAG. Imaging germ tubes with tips bearing anti-β-glucan antibodies shows that exposure of β-glucan is strongly increased in the Δuge3 mutant, indicating that this polysaccharide is masked by GAG during hyphal growth. Single-cell force measurements show that expression of GAG on germ tubes promotes specific adhesion to pneumocytes and non-specific adhesion to hydrophobic substrates. These results provide a molecular foundation for the multifunctional adhesion properties of GAG, thus suggesting it could be used as a potential target in anti-adhesion therapy and immunotherapy. Our methodology represents a powerful approach for characterizing the nanoscale organization and adhesion of cell wall polysaccharides during fungal morphogenesis, thereby contributing to increase our understanding of their role in biofilm formation and immune responses.
Collapse
Affiliation(s)
- Audrey Beaussart
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Al-Askar AA, Baka ZA, Rashad YM, Ghoneem KM, Abdulkhair WM, Hafez EE, Shabana YM. Evaluation of Streptomyces griseorubens E44G for the biocontrol of Fusarium oxysporum f. sp. lycopersici: ultrastructural and cytochemical investigations. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-014-1019-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Park J, Tefsen B, Arentshorst M, Lagendijk E, van den Hondel CA, van Die I, Ram AF. Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger. Fungal Biol Biotechnol 2014; 1:6. [PMID: 28955448 PMCID: PMC5598270 DOI: 10.1186/s40694-014-0006-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Galactofuranose (Galf)-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Galf-containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity (CWI)-pathway is activated to reinforce the strength of the cell wall. Activation of CWI-pathway in Aspergillus niger is characterized by the specific induction of the agsA gene, which encodes a cell wall α-glucan synthase. RESULTS In this study, we screened a collection of cell wall mutants with an induced expression of agsA for defects in Galf biosynthesis using a with anti-Galf antibody (L10). From this collection of mutants, we previously identified mutants in the UDP-galactopyranose mutase encoding gene (ugmA). Here, we have identified six additional UDP-galactopyranose mutase (ugmA) mutants and one mutant (named mutant #41) in an additional complementation group that displayed strongly reduced Galf-levels in the cell wall. By using a whole genome sequencing approach, 21 SNPs in coding regions were identified between mutant #41 and its parental strain which changed the amino acid sequence of the encoded proteins. One of these mutations was in gene An14g03820, which codes for a putative UDP-glucose-4-epimerase (UgeA). The A to G mutation in this gene causes an amino acid change of Asn to Asp at position 191 in the UgeA protein. Targeted deletion of ugeA resulted in an even more severe reduction of Galf in N-linked glucans, indicating that the UgeA protein in mutant #41 is partially active. The ugeA gene is also required for growth on galactose despite the presence of two UgeA homologs in the A. niger genome. CONCLUSION By using a classical mutant screen and whole genome sequencing of a new Galf-deficient mutant, the UDP-glucose-4-epimerase gene (ugeA) has been identified. UgeA is required for the biosynthesis of Galf as well as for galactose metabolism in Aspergillus niger.
Collapse
Affiliation(s)
- Joohae Park
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van den Boechorststraat 7, Amsterdam, 1081 BT The Netherlands.,Present Address: Department of Biological Sciences, Xi'an Jiaotong Liverpool University, 111 Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123 Jiangsu, China
| | - Mark Arentshorst
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Ellen Lagendijk
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Cees Amjj van den Hondel
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van den Boechorststraat 7, Amsterdam, 1081 BT The Netherlands
| | - Arthur Fj Ram
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| |
Collapse
|
12
|
Hadley B, Maggioni A, Ashikov A, Day CJ, Haselhorst T, Tiralongo J. Structure and function of nucleotide sugar transporters: Current progress. Comput Struct Biotechnol J 2014; 10:23-32. [PMID: 25210595 PMCID: PMC4151994 DOI: 10.1016/j.csbj.2014.05.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The proteomes of eukaryotes, bacteria and archaea are highly diverse due, in part, to the complex post-translational modification of protein glycosylation. The diversity of glycosylation in eukaryotes is reliant on nucleotide sugar transporters to translocate specific nucleotide sugars that are synthesised in the cytosol and nucleus, into the endoplasmic reticulum and Golgi apparatus where glycosylation reactions occur. Thirty years of research utilising multidisciplinary approaches has contributed to our current understanding of NST function and structure. In this review, the structure and function, with reference to various disease states, of several NSTs including the UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine, GDP-fucose, UDP-N-acetylglucosamine/UDP-glucose/GDP-mannose and CMP-sialic acid transporters will be described. Little is known regarding the exact structure of NSTs due to difficulties associated with crystallising membrane proteins. To date, no three-dimensional structure of any NST has been elucidated. What is known is based on computer predictions, mutagenesis experiments, epitope-tagging studies, in-vitro assays and phylogenetic analysis. In this regard the best-characterised NST to date is the CMP-sialic acid transporter (CST). Therefore in this review we will provide the current state-of-play with respect to the structure–function relationship of the (CST). In particular we have summarised work performed by a number groups detailing the affect of various mutations on CST transport activity, efficiency, and substrate specificity.
Collapse
Affiliation(s)
- Barbara Hadley
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Andrea Maggioni
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Angel Ashikov
- Institut für Zelluläre Chemie, Zentrum Biochemie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, 30625 Hannover, Germany ; Laboratory of Genetic, Endocrine and Metabolic Diseases, Department of Neurology, Radboud University Medical Center, Geert Grooteplein Zuid 10 (route 830), Nijmegen, The Netherlands
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| | - Joe Tiralongo
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland 4222, Australia
| |
Collapse
|
13
|
Castelli MV, Butassi E, Monteiro MC, Svetaz LA, Vicente F, Zacchino SA. Novel antifungal agents: a patent review (2011 – present). Expert Opin Ther Pat 2014; 24:323-38. [DOI: 10.1517/13543776.2014.876993] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Jeon J, Goh J, Yoo S, Chi MH, Choi J, Rho HS, Park J, Han SS, Kim BR, Park SY, Kim S, Lee YH. A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:525-534. [PMID: 18393612 DOI: 10.1094/mpmi-21-5-0525] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Insertional mutagenesis of Magnaporthe oryzae led to the identification of MCK1, a pathogenicity gene predicted to encode mitogen-activated protein kinase kinase kinase (MAPKKK) homologous to BCK1 in Saccharomyces cerevisiae. Targeted disruption of MCK1 resulted in the fungus undergoing autolysis and showing hypersensitivity to cell-wall-degrading enzyme. The mck1 produced significantly reduced numbers of conidia and developed appressoria in a slightly retarded manner compared with the wild type. Appressorium of the mck1 mutant was unable to penetrate into plant tissues, thereby rendering the mutant nonpathogenic. Cytorrhysis assay and monitoring of lipid mobilization suggested that the appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, the mck1 mutant failed to grow inside plant tissue. Complementation of the mutated gene restored its ability to cause disease symptoms, demonstrating that MCK1 is required for fungal pathogenicity. Taken together, our results suggest that MCK1 is an MAPKKK involved in maintaining cell wall integrity of M. oryzae, and that remodeling of the cell wall in response to host environments is essential for fungal pathogenesis.
Collapse
Affiliation(s)
- Junhyun Jeon
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Warris A, Netea MG, Wang JE, Gaustad P, Kullberg BJ, Verweij PE, Abrahamsen TG. Cytokine release in healthy donors and patients with chronic granulomatous disease upon stimulation with Aspergillus fumigatus. ACTA ACUST UNITED AC 2003; 35:482-7. [PMID: 14514148 DOI: 10.1080/00365540310013009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The release of tumour necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6) and IL-10 upon stimulation with non-viable conidia and hyphal fragments from Aspergillus fumigatus was investigated in an ex vivo whole-blood model. In healthy volunteers, high numbers of conidia (between 10(6) and 3 x 10(8)/ml) induced a moderate release of TNF-alpha and IL-6. Hyphal fragments (2.5 x 10(5)/ml) were more potent in stimulating the release of these pro-inflammatory cytokines. Although some IL-10 release was observed upon stimulation with either conidia or hyphal fragments, it was not significantly different from that in unstimulated controls. In comparison, in whole blood obtained from 4 patients with chronic granulomatous disease (CGD), a high release of pro-inflammatory cytokines together with a significantly higher IL-10 release than in the healthy controls was seen after stimulation with A. fumigatus. In conclusion, A. fumigatus can trigger the release of pro-inflammatory cytokines in a human whole-blood system, which is likely to be central to the activation of antifungal defence mechanisms. In contrast, A. fumigatus stimulates a higher release of anti-inflammatory cytokines in CGD patients, which may suggest that a dysregulation between pro- and anti-inflammatory cytokines contributes to the increased susceptibility to invasive aspergillosis in this patient group.
Collapse
Affiliation(s)
- Adilia Warris
- Department of Microbiology, Rikshospitalet University Hospital, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|