1
|
Sharma R. Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology. Biogerontology 2021; 22:571-587. [PMID: 34490541 DOI: 10.1007/s10522-021-09936-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
An intricate relationship between impaired immune functions and the age-related accumulation of tissue senescent cells is rapidly emerging. The immune system is unique as it undergoes mutually inclusive and deleterious processes of immunosenescence and cellular senescence with advancing age. While factors inducing immunosenescence and cellular senescence may be shared, however, both these processes are fundamentally different which holistically influence the aging immune system. Our understanding of the biological impact of immunosenescence is relatively well-understood, but such knowledge regarding cellular senescence in immune cells, especially in the innate immune cells such as macrophages, is only beginning to be elucidated. Tissue-resident macrophages are long-lived, and while functioning in tissue-specific and niche-specific microenvironments, senescence in macrophages can be directly influenced by senescent host cells which may impact organismal aging. In addition, evidence of age-associated immunometabolic changes as drivers of altered macrophage phenotype and functions such as inflamm-aging is also emerging. The present review describes the emerging impact of cellular senescence vis-à-vis immunosenescence in aging macrophages, its biological relevance with other senescent non-immune cells, and known immunometabolic regulators. Gaps in our present knowledge, as well as strategies aimed at understanding cellular senescence and its therapeutics in the context of macrophages, have been reviewed.
Collapse
Affiliation(s)
- Rohit Sharma
- Faculty of Applied Sciences & Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, India.
| |
Collapse
|
2
|
Cell-Free Culture Supernatant of Probiotic Lactobacillus fermentum Protects Against H 2O 2-Induced Premature Senescence by Suppressing ROS-Akt-mTOR Axis in Murine Preadipocytes. Probiotics Antimicrob Proteins 2021; 12:563-576. [PMID: 31332650 DOI: 10.1007/s12602-019-09576-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Information regarding cellular anti-senescence attributes of probiotic bacteria vis-à-vis modulation of senescence-associated secretory phenotype (SASP) and mTOR signaling is very limited. The present study assessed anti-senescence potential of secretory metabolites of probiotic Lactobacillus fermentum (Lact. fermentum) using H2O2-induced model of senescence in 3T3-L1 preadipocytes. Application of H2O2-induced cellular senescence characterized by increased cell size and SA-β-gal activity, activation of SASP and reactive oxygen species (ROS), DNA damage response and induction of cell cycle inhibitors (p53/p21WAF1/p16INK4a). Further, a robust stimulation of the PI3K/Akt/mTOR pathway and AMPK signaling was also observed in H2O2-treated cells. However, exposure of cells to cell-free supernatant of Lact. fermentum significantly attenuated phosphorylation of PI3K/Akt/mTOR pathway and alleviated senescence markers p53, p21WAF1, SA-β-gal, p38MAPK, iNOS, cox-2, ROS, NF-κB, and DNA damage response. These results provide evidence that secretory metabolites of Lact. fermentum can mitigate the development as well as severity of stress-induced senescence thereby indicating its utility for use as anti-aging or age-delaying agent.
Collapse
|
3
|
Sharma R, Padwad Y. Nutraceuticals-Based Immunotherapeutic Concepts and Opportunities for the Mitigation of Cellular Senescence and Aging: A Narrative Review. Ageing Res Rev 2020; 63:101141. [PMID: 32810647 DOI: 10.1016/j.arr.2020.101141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The role of increased tissue senescent cell (SC) burden in driving the process of ageing and associated disorders is rapidly gaining attention. Amongst various plausible factors, impairment in immune functions is emerging as a critical regulator of known age-associated accumulation of SC. Immune cells dysfunctions with age are multi-faceted and are uniquely attributed to the independent processes of immunosenescence and cellular senescence which may collectively impair immune system mediated clearance of SC. Moreover, being functionally and phenotypically heterogenic, immune cells are also liable to be affected by senescence microenvironment in other tissues. Therefore, strategies aimed at improving immunosenescence and cellular senescence in immune cells can have pleiotropic effects on ageing physiology including the accumulation of SC. In this regard, nutraceutical's immunomodulatory attributes are well documented which may have implications in developing nutrition-oriented immunotherapeutic approaches against SC. In particular, the three diverse sources of bioactive ingredients, viz., phytochemicals, probiotic bacteria and omega-3-fatty acids have shown promising anti-immunosenescence and anti-cellular senescence potential in immune cells influencing aging and immunity in ways beyond modest stimulation of immune responses. The present narrative review describes the preventive and therapeutic attributes of phytochemicals such as polyphenols, probiotic microbes and omega-3-fatty acids in influencing the emerging nexus of immunosenescence, cellular senescence and SC during aging. Outstanding questions and nutraceuticals-based pro-longevity and niche research areas have been deliberated. Further research using integrative approaches is recommended for developing nutrition-based holistic immunotherapeutic strategies for 'healthy ageing'.
Collapse
|
4
|
Sharma R, Padwad Y. Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Plant-polyphenols based second-generation synbiotics: Emerging concepts, challenges, and opportunities. Nutrition 2020; 77:110785. [PMID: 32283341 DOI: 10.1016/j.nut.2020.110785] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
There is a growing interest in identifying alternatives to traditional oligosaccharide-based prebiotic agents owing to their undesirable attributes, such as a lack of microbial growth specificity and limited inherent bioactivity. In addition, a novel concept of second-generation synbiotic agents is currently emerging, which argues that prebiotic agents could be best defined on the basis of their physiological effects or functional capacities in the host rather than their specific microbial targets. Plant polyphenols are rapidly emerging as suitable prebiotic and synbiotic candidates that may fulfil these criteria. As we begin to understand the intricate interrelationship between dietary polyphenols and the gut microbiome, a functional synergy can be observed that suggests the appropriateness of the amalgamation of polyphenols and probiotic agents to develop second-generation synbiotic agents. In the present review, we study evidence pertaining to the prebiotic and synbiotic attributes of polyphenols, as well as their relationship with probiotic bacteria, and discuss their efficacy, suitability, and strategies to develop second-generation synbiotic agents. We provide a perspective that polyphenol-based synbiotic agents are fundamentally superior to the traditional carbohydrate-based synbiotic agents and could therefore offer health benefits of both polyphenols and probiotic agents in a synergistic manner.
Collapse
|
6
|
Barathikannan K, Chelliah R, Rubab M, Daliri EBM, Elahi F, Kim DH, Agastian P, Oh SY, Oh DH. Gut Microbiome Modulation Based on Probiotic Application for Anti-Obesity: A Review on Efficacy and Validation. Microorganisms 2019; 7:microorganisms7100456. [PMID: 31623075 PMCID: PMC6843309 DOI: 10.3390/microorganisms7100456] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/27/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
The growing prevalence of obesity has become an important problem worldwide as obesity has several health risks. Notably, factors such as excessive food consumption, a sedentary way of life, high sugar consumption, a fat-rich diet, and a certain genetic profile may lead to obesity. The present review brings together recent advances regarding the significance of interventions involving intestinal gut bacteria and host metabolic phenotypes. We assess important biological molecular mechanisms underlying the impact of gut microbiota on hosts including bile salt metabolism, short-chain fatty acids, and metabolic endotoxemia. Some previous studies have shown a link between microbiota and obesity, and associated disease reports have been documented. Thus, this review focuses on obesity and gut microbiota interactions and further develops the mechanism of the gut microbiome approach related to human obesity. Specifically, we highlight several alternative diet treatments including dietary changes and supplementation with probiotics. The future direction or comparative significance of fecal transplantation, synbiotics, and metabolomics as an approach to the modulation of intestinal microbes is also discussed.
Collapse
Affiliation(s)
- Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Momna Rubab
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Fazle Elahi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Dong-Hwan Kim
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai 600-034, India.
| | - Seong-Yoon Oh
- Three & Four Co., Ltd., 992-15, Jusan-ri, Hojeo-myeon, Wonju-si 26460, Korea.
| | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Korea.
| |
Collapse
|
7
|
Sharma R, Kumari M, Kumari A, Sharma A, Gulati A, Gupta M, Padwad Y. Diet supplemented with phytochemical epigallocatechin gallate and probiotic Lactobacillus fermentum confers second generation synbiotic effects by modulating cellular immune responses and antioxidant capacity in aging mice. Eur J Nutr 2019; 58:2943-2957. [DOI: 10.1007/s00394-018-01890-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/28/2018] [Indexed: 02/06/2023]
|
8
|
Moreno-Fernandez J, Diaz-Castro J, Alférez MJ, Boesch C, Nestares T, López-Aliaga I. Fermented goat milk improves antioxidant status and protects from oxidative damage to biomolecules during anemia recovery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1433-1442. [PMID: 27380761 DOI: 10.1002/jsfa.7882] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Iron deficiency anemia (IDA) is one of the most common nutritional problems in the world, and it is accepted that reactive oxygen species (ROS) production is altered during IDA. The aim of this study was to assess the influence of fermented goat and cow milks on enzymatic antioxidant activities and gene expression, and their role in protecting from oxidative damage during anemia recovery. RESULTS After feeding the fermented milks-based diets (cow or goat), a significant elevation of some antioxidant endogenous enzymes was found, together with an increase in total antioxidant status (TAS), and a decrease in 8-hydroxy-2'-deoxyguanosine (8-OHdG) was recorded in animals consuming fermented goat milk-based diet. In contrast, DNA strand breaks, hydroperoxides, 15-F2t-isoprostanes and protein carbonyl groups were lower in some tissues in animals fed fermented goat milk-based diet, revealing an improvement in both systemic and cellular antioxidant activity of plasma and tissues due to fermented goat milk consumption. CONCLUSION Fermented goat milk consumption induces a protective increase in TAS together with lower oxidative damage biomarkers, revealing that the milk protects main cell bioconstituents (lipids, protein, DNA, prostaglandins) from evoked oxidative damage during anemia recovery. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| | - María Jm Alférez
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - Teresa Nestares
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| | - Inmaculada López-Aliaga
- Department of Physiology, University of Granada, Granada, Spain
- Institute of Nutrition and Food Technology 'José Mataix Verdú', University of Granada, Granada, Spain
| |
Collapse
|
9
|
Miyazawa K, Kawase M, Kubota A, Yoda K, Harata G, Hosoda M, He F. Heat-killed Lactobacillus gasseri can enhance immunity in the elderly in a double-blind, placebo-controlled clinical study. Benef Microbes 2015; 6:441-9. [PMID: 25653155 DOI: 10.3920/bm2014.0108] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This double-blind, placebo-controlled clinical trial was conducted to test whether Lactobacillus gasseri TMC0356 (TMC0356) can modify the immune response in the elderly. Heat-killed TMC0356 or placebo was orally administered to 28 healthy subjects aged 50-70 years old for 4 weeks at a dosage of 1.0×10(9) cfu/day. Peripheral blood mononuclear cells (PBMCs) were collected from the subjects before and after the study completion, together with general health and blood examination records. Isolated PBMCs were examined for the number of T cells, CD8(+)CD28(+) cells, native T cells, B cells, natural killer (NK) cells and the ratios of CD4/CD8 T cells and native/memory T cells. NK cell activation and concanavalin A-induced lymphocyte transformation of the isolated PBMCs were also examined. The number of CD8(+) T cells significantly increased in the subjects after TMC0356 oral administration (P<0.05). Furthermore, the population of CD8(+)CD28(+) T cells and the amount of lymphocyte transformation both significantly decreased in PBMCs from the placebo group (P<0.05). However, such changes were not observed in the subjects exposed to TMC0356. These results suggest that TMC0356 can increase the number of CD8(+) T cells and reduce CD28 expression loss in CD8(+) T cells of the elderly. The effect of TMC0356 on immune responses in the elderly may enhance their natural defence mechanisms against pathogenic infections.
Collapse
Affiliation(s)
- K Miyazawa
- 1 Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama, Kanagawa 241-0023, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Ivanovic N, Minic R, Djuricic I, Dimitrijevic L, Sobajic S, Zivkovic I, Djordjevic B. Brain and liver fatty acid composition changes upon consumption of Lactobacillus rhamnosus LA68. Int J Food Sci Nutr 2014; 66:93-7. [PMID: 25431181 DOI: 10.3109/09637486.2014.979313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent reports suggest that the metabolic activity of the enteric microbiota may influence the fatty acid composition of the host tissue. There are many studies dealing with the influence of lactobacilli on various pathological conditions, and some of the effects are strain-specific. This study was designed to test the effects of a particular Lactobacillus strain, Lactobacillus rhamnosus LA68 on fatty acid composition of the liver and the brain of C57BL/6 mice in the absence of an underlying pathological condition. Female mice were supplemented with live L. rhamnosus LA68 bacteria for the duration of 1 month. Serum biochemistry was analyzed and liver and brain fatty acid composition was assessed by gas-liquid chromatography. Significant changes in liver and brain fatty acid composition were detected. In the liver tissue we detected an increase in palmitoleic acid (p = 0.038), while in the brain compartment we found an increase in palmitic (p = 0.042), stearic (p = 0.017), arachidonic acid (p = 0.009) and docosahexaenoic acid (p = 0.004) for control versus experimental group. These results show discrete changes caused by LA68 strain consumption. Even short duration of administration of LA68 influences the fatty acid composition of the host which adds to the existing knowledge about Lactobacillus host interaction, and adds to the growing knowledge of metabolic intervention possibilities.
Collapse
Affiliation(s)
- Nevena Ivanovic
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade , Belgrade , Serbia and
| | | | | | | | | | | | | |
Collapse
|
11
|
Sharma R, Kapila R, Kapasiya M, Saliganti V, Dass G, Kapila S. Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice. Nutr Res 2014; 34:968-81. [DOI: 10.1016/j.nutres.2014.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 09/12/2014] [Accepted: 09/19/2014] [Indexed: 12/17/2022]
|
12
|
Age-associated aberrations in mouse cellular and humoral immune responses. Aging Clin Exp Res 2014; 26:353-62. [PMID: 24343854 DOI: 10.1007/s40520-013-0190-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Several contradictions and inconsistent reports regarding nature of dysfunction of immune system with age are known. The lack of multipoint age comparisons in immune functions contributes to the observed ambiguity in understanding immunosenescence. Thus, the present study aimed at a concurrent analysis of different immune cells in an attempt to delineate the nature of dysregulation with progressive aging in mice. METHODS 4, 8, 12 and 16 months old mice were analyzed for various immune parameters involving neutrophils, peripheral blood lymphocytes, peritoneal macrophages, splenocytes, inflamm-aging markers in plasma and humoral immune response in intestine. RESULTS Neutrophils registered a remarkable decrease in activities of respiratory burst enzymes and phagocytosis, while macrophages recorded a decrease in TLR-2 and TLR-4 expression. MCP-1 and CRP levels increased in plasma, whereas stimulation index and CD28 expression decreased in lymphocytes. Interleukins analysis (IFN-γ, IL-4, IL-10) showed a remarkable shift towards Th2 response which further resulted in increased IgG1/IgG2a ratio and IgE levels in intestine. CONCLUSION A decline in cell-mediated immune response, chronic inflammation and aggravation of humoral immunity was evident which conclusively suggests a skewed Th2 pathway during aging.
Collapse
|
13
|
Sharma R, Kapila R, Dass G, Kapila S. Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9686. [PMID: 25037247 PMCID: PMC4150900 DOI: 10.1007/s11357-014-9686-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/26/2014] [Indexed: 05/28/2023]
Abstract
Imbalance in Th1/Th2 immune pathways and cellular antioxidant systems with progressive aging are among the leading causes of increased risk of morbidity and mortality in elderly. Although probiotics have been considered to boost immune system, there is a lack of comprehensive analysis of probiotic effects on aging physiology. The present study aimed at determining anti-immunosenescence potential of milk fermented with probiotic Lactobacillus rhamnosus (LR) in 16 months old mice by concurrent analysis of immunosenescence markers associated with Th1/Th2 profile of splenocytes, inflamm-aging in plasma, neutrophil functions and antibody response in intestine along with analysis of antioxidant enzymes in liver and red blood cells (RBCs) after feeding trials of 1 and 2 months, respectively. An enteropathogenic Escherichia coli (ATCC 14948)-based infection model in aging mice was also designed to validate protective attributes of LR. Splenocytes registered increased IFN-γ and decreased IL-4 and IL-10 production in LR-fed animals. Neutrophil respiratory burst enzymes and phagocytosis increased significantly while no aggravation in plasma levels of MCP-1 and TNF-α was observed. Further, owing to increased Th1 response, antibodies registered a decrease in IgG1/IgG2a ratio and IgE levels in LR groups. No significant variations were observed in secretory IgA and IgA + cells in the intestine. Antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in LR-fed groups recorded increased activities which were more pronounced in the liver than in RBCs. LR supplementation significantly reduced E. coli translocation to organs (intestine, liver, spleen, peritoneal fluid) by enhancing E. coli-specific antibodies (IgA and IgG1) and inflammatory proteins. In conclusion, LR supplementation alleviated immunosenescence-associated Th1/Th2 imbalance, improved antioxidant capacity, and enhanced resistance of aged mice to E. coli infection thereby signifying its potential in augmenting healthy aging.
Collapse
Affiliation(s)
- Rohit Sharma
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India 132001
| | - Rajeev Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India 132001
| | - Gulshan Dass
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India 132001
| | - Suman Kapila
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, India 132001
| |
Collapse
|
14
|
Abstract
Influenza is a major cause of death in the over 65s. Increased susceptibility to infection and reduced response to vaccination are due to immunosenscence in combination with medical history and lifestyle factors. Age-related alterations in the composition of the gut microbiota have a direct impact on the immune system and it is proposed that modulation of the gut microbiota using pre- and probiotics could offer an opportunity to improve immune responses to infections and vaccination in older people. There is growing evidence that probiotics have immunomodulatory properties, which to some extent are strain-dependent, and are strongly influenced by ageing. Randomised controlled trials suggest that probiotics may reduce the incidence and/or severity of respiratory infections, although there is limited data on older people. A small number of studies have examined the potential adjuvant effects of selected probiotics for vaccination against influenza; however, the data is inconsistent, particularly in older people. This review describes the impact of age-related changes in the gut on the immune response to respiratory infections and evaluates whether restoration of gut microbial homoeostasis by probiotics offers an opportunity to modulate the outcome of respiratory infections and vaccination against influenza in older people. Although there is promising evidence for effects of probiotics on human health, there is a lack of consistent data, perhaps partly due to strain-specific differences and an influence of the age of the host. Further research is critical in evaluating the potential use of probiotics in respiratory infections and vaccination in the ageing population.
Collapse
|
15
|
Kapila R, Sebastian R, Varma D VP, Sharma R, Kapasiya M, Salingati V, Kapila S, Dang AK. Comparison of innate immune activation after prolonged feeding of milk fermented with three species of Lactobacilli. Microbiol Immunol 2013; 57:778-84. [DOI: 10.1111/1348-0421.12092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/04/2013] [Accepted: 08/22/2013] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Ajay K. Dang
- Dairy Cattle Physiology; National Dairy Research Institute; Karnal 132001 India
| |
Collapse
|