1
|
Liu Z, Cui M, Weng R, E H, Li H, Hati S, Hu L, Mo H. Incorporation of carbon dots into polyvinyl alcohol/corn starch based film and its application on shiitake mushroom preservation. Int J Biol Macromol 2024; 280:135998. [PMID: 39326594 DOI: 10.1016/j.ijbiomac.2024.135998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Developing eco-friendly edible packaging films with multi-functional properties is highly required. This study involved synthesizing carbon dots (CDs) from dragon fruit, then incorporating them into a composite film based on polyvinyl alcohol (PVA)/corn starch (CS) to create a functional package to extend the shelf life of fresh shiitake mushrooms. Functional composite films with varying levels of CDs were formulated. The films' characteristics of morphology, mechanical properties, antioxidant properties, etc. were then determined, as well as their preservation effect on the fresh shiitake mushrooms. The results showed that the PVA/CS/CDs composite film showed excellent mechanical property, Ultraviolet (UV) barrier capability, antioxidant and antimicrobial properties. Specifically, addition of 8 mg/mL CDs in the composite films reduced weight loss of shiitake mushrooms by 30.74 %, decreased the decline in soluble solids content by 10.48 %, and halved the reduction in total sugar content after a 7-day storage period compared to films without added CDs. Furthermore, the films effectively lowered the respiratory intensity and browning of the mushrooms. This research demonstrates that CDs can serve as an effective component for the development of eco-friendly edible packaging films, as well as for their application in food preservation.
Collapse
Affiliation(s)
- Zhenbin Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Min Cui
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rui Weng
- Key Laboratory of Agro-food Quality and Safety of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Quality Standard and Testing Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hengchao E
- Institute of Agro-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Road, Shanghai 201403, China
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat 388110, India
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
2
|
Asdullah HU, Chen F, Hassan MA, Abbas A, Sajad S, Rafiq M, Raza MA, Tahir A, Wang D, Chen Y. Recent advances and role of melatonin in post-harvest quality preservation of shiitake ( Lentinula edodes). Front Nutr 2024; 11:1348235. [PMID: 38571753 PMCID: PMC10987784 DOI: 10.3389/fnut.2024.1348235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Shiitake mushrooms are renowned for their popularity and robust nutritional value, are susceptible to spoilage due to their inherent biodegradability. Nevertheless, because of their lack of protection, these mushrooms have a short shelf life. Throughout the post-harvest phase, mushrooms experience a persistent decline in quality. This is evidenced by changes such as discoloration, reduced moisture content, texture changes, an increase in microbial count, and the depletion of nutrients and flavor. Ensuring postharvest quality preservation and prolonging mushroom shelf life necessitates the utilization of post-harvest preservation techniques, including physical, chemical, and thermal processes. This review provides a comprehensive overview of the deterioration processes affecting mushroom quality, covering elements such as moisture loss, discoloration, texture alterations, increased microbial count, and the depletion of nutrients and flavor. It also explores the key factors influencing these processes, such as temperature, relative humidity, water activity, and respiration rate. Furthermore, the review delves into recent progress in preserving mushrooms through techniques such as drying, cooling, packaging, irradiation, washing, and coating.
Collapse
Affiliation(s)
- Hafiz Umair Asdullah
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| | - Feng Chen
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | | | - Asad Abbas
- School of Science, Western Sydney University Hawkesbury, Sydney, NSW, Australia
| | - Shoukat Sajad
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Muhammad Rafiq
- Lushan Botanical Garden of Chinese Academy of Science, Jiujiang, China
| | | | - Arslan Tahir
- University College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Dongliang Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| | - Yougen Chen
- School of Horticulture, Anhui Agricultural University, Hefei, China
- Wandong Comprehensive Experimental Station, New Rural Development Institute, Anhui Agricultural University, Minguang, China
| |
Collapse
|
3
|
Huo J, Zhang M, Wang D, S Mujumdar A, Bhandari B, Zhang L. New preservation and detection technologies for edible mushrooms: A review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3230-3248. [PMID: 36700618 DOI: 10.1002/jsfa.12472] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/11/2022] [Accepted: 01/26/2023] [Indexed: 06/17/2023]
Abstract
Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingyi Huo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Dayuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Quebec, Canada
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Australia
| | - Lujun Zhang
- R&D Center, Shandong Qihe Biotechnology Co., Ltd, Zibo, China
| |
Collapse
|
4
|
Guo W, Tang X, Cui S, Zhang Q, Zhao J, Mao B, Zhang H. Recent advance in quality preservation of non-thermal preservation technology of fresh mushroom: a review. Crit Rev Food Sci Nutr 2023; 64:7878-7894. [PMID: 36971127 DOI: 10.1080/10408398.2023.2193636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fresh mushrooms have a long history of cultivation and consumption, but high postharvest losses are a concern in the commercial production of mushrooms worldwide. Thermal dehydration is widely used in the preservation of commercial mushrooms, but the flavor and taste of mushrooms are significantly altered after dehydration. Non-thermal preservation technology, which effectively maintains the characteristics of mushrooms, is a viable alternative to thermal dehydration. The objective of this review was to critically assess the factors affecting fresh mushroom quality after preservation is remarkable, with the ultimate goal of developing and promoting non-thermal preservation technology for preserving fresh mushroom quality, effectively extending the shelf life of fresh mushrooms. The factors influencing the quality degradation process of fresh mushrooms discussed herein include the internal factors associated with the mushroom itself and the external factors associated with the storage environment. We present a comprehensive discussion of the effects of different non-thermal preservation technologies on the quality and shelf life of fresh mushrooms. To prevent quality loss and extend the shelf life after postharvest, hybrid methods, such as physical or chemical techniques combined with chemical techniques, and novel nonthermal technologies are highly recommended.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Advances in the Role and Mechanisms of Essential Oils and Plant Extracts as Natural Preservatives to Extend the Postharvest Shelf Life of Edible Mushrooms. Foods 2023; 12:foods12040801. [PMID: 36832876 PMCID: PMC9956186 DOI: 10.3390/foods12040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
China has a large variety of edible mushrooms and ranks first in the world in terms of production and variety. Nevertheless, due to their high moisture content and rapid respiration rate, they experience constant quality deterioration, browning of color, loss of moisture, changes in texture, increases in microbial populations, and loss of nutrition and flavor during postharvest storage. Therefore, this paper reviews the effects of essential oils and plant extracts on the preservation of edible mushrooms and summarizes their mechanisms of action to better understand their effects during the storage of mushrooms. The quality degradation process of edible mushrooms is complex and influenced by internal and external factors. Essential oils and plant extracts are considered environmentally friendly preservation methods for better postharvest quality. This review aims to provide a reference for the development of new green and safe preservation and provides research directions for the postharvest processing and product development of edible mushrooms.
Collapse
|
6
|
Zeng Z, Wang J, Wen X, Wang Y, Li X, Liu D, Geng F. Metabolomic analysis provides insights into the mechanism of color and taste changes in Dictyophora indusiata fruiting bodies under different drying processes. Food Res Int 2022; 162:112090. [PMID: 36461398 DOI: 10.1016/j.foodres.2022.112090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
In this study, we systematically assessed how the morphology and texture of edible fruiting bodies of D. indusiata (EFD) varied under three drying techniques: vacuum freeze drying (FD), vacuum drying (VD), and hot air drying (HD). It was discovered that freeze-dried EFD samples (FD-EFD) had an intact microstructure, and thus, a good appearance, textural characteristics, and rehydration properties. Quantitative metabolomic analysis revealed 801 metabolites, where 236 211 metabolites were significantly different in abundance in the comparison of hot-air dried EFD samples (HD-EFD) versus FD-EFD and vacuum-dried EFD samples (VD-EFD) versus FD-EFD, respectively. VD and HD significantly affected the abundance of taste-related compounds and resulted in the improvement of EFD's umami. The acidity of EFD is provided by organic acids produced through the tricarboxylic acid cycle. The browning of HD-EFD was caused by Maillard reactions, oxidative degradation of ascorbic acid, and endogenous enzymatic browning process dominated by the phenylalanine metabolic pathway. The metabolomic analysis provides new insights into changes in EFD by different drying processes.
Collapse
Affiliation(s)
- Zhen Zeng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jinqiu Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| | - Xuefei Wen
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Yi Wang
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiang Li
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Dayu Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China.
| |
Collapse
|