1
|
Moon CR, Ju YW, Pyo SH, Park SW, Lee S, Benashvili M, Son YJ. Physicochemical properties of surimi made from edible insects using washing and pH shift methods. Curr Res Food Sci 2024; 10:100952. [PMID: 39760012 PMCID: PMC11698935 DOI: 10.1016/j.crfs.2024.100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/07/2025] Open
Abstract
Edible insects, characterized by their eco-friendly nature and high nutrient value, are promising protein sources. Therefore, we aimed to assess the suitability of insects as source ingredients for surimi, a widely-used, intermediate food material. Mealworm (Tenebrio molitor L.) and two-spotted cricket (Gryllus bimaculatus L.) surimi were prepared, and their physicochemical and rheological properties were examined. Myofibrillar protein-rich fractions were obtained using the washing and pH shift methods. For the pH shift method, the myofibrillar proteins were extracted at acid (pH 2) or alkaline (pH 11) conditions, and surimi gel was prepared by heating myofibrillar protein-rich fractions. The pH shift method resulted in a higher surimi yield from edible insects than the washing method, whereas the washing method resulted in a higher surimi yield from tilapia (Oreochromis niloticus) and chicken breast (Gallus gallus domesticus). After acid treatment, lipid oxidation increased in all samples; however, edible insect surimi exhibited lower oxidation levels than tilapia and chicken breast surimi. Insect proteins, except for acid-treated mealworm proteins, successfully formed gel structures upon heating, resulting in softer gels than those obtained from tilapia and chicken breast. Consequently, the pH shift method resulted in elevated insect surimi yield, and the alkaline treatment was more appropriate for producing fine-quality edible insect surimi. Our study demonstrates the usefulness of edible insects as surimi ingredients, particularly for soft-gel food production. These findings emphasize the innovative application of edible insects in the food industry, suggesting the possibility of expanding their use as alternative protein food ingredients.
Collapse
Affiliation(s)
- Chae-Ryun Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young-Woong Ju
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Su-Hyeon Pyo
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - So-Won Park
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Seul Lee
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Mzia Benashvili
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Yang-Ju Son
- Department of Food and Nutrition, Chung-Ang University, Anseong, 17546, Republic of Korea
| |
Collapse
|
2
|
Gao YL, Yoshida A, Liu JY, Yuan J, Maeda S, Wang Y, Jiang YR, Sun XM, Chen CP, Wang Y, Okajima T, Osatomi K. Quality improvement of threadfin bream (Nemipterus virgatus) surimi-gel using soy protein as a natural food additive. Food Chem 2024; 460:140423. [PMID: 39067386 DOI: 10.1016/j.foodchem.2024.140423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Previously, we identified sarcoplasmic serine proteinase (SSP) as a modori-inducing proteinase from threadfin bream belly muscle. In this study, we investigated the autolytic activity of commercial threadfin bream surimi under modori-inducing conditions. High autolytic activity was detected in commercial surimi and was inhibited by a soybean trypsin inhibitor, indicating that SSP still remained in the commercial surimi. The effects of soy protein, defatted soy protein (DSP) and isolated soy protein (ISP), on SSP activity and surimi-gel properties were evaluated. The results showed that the modori phenomenon was induced at 70 °C, and that both DSP and ISP suppressed SSP activity and strengthened the breaking strength and breaking distance of the modori-induced gel. Surimi-gel with DSP performed better on gel whiteness than that of ISP, and 1 g/kg DSP had optimal gel properties. In conclusion, soy protein proved to be a good natural food additive for surimi-gel production of threadfin bream.
Collapse
Affiliation(s)
- Yi-Li Gao
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi 315300, China
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Faculty of Fisheries, Nagasaki University, Nagasaki, 852-8521, Japan.
| | - Jin-Yang Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100015, China
| | - Jing Yuan
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Cixi 315300, China
| | - Shinnosuke Maeda
- Faculty of Fisheries, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Youjun Wang
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yan-Rong Jiang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| | - Xiao-Mi Sun
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | - Yajun Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, 200137, China
| | | | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; Faculty of Fisheries, Nagasaki University, Nagasaki, 852-8521, Japan
| |
Collapse
|
3
|
Khushboo, Kaushik N, Widell KN, Slizyte R, Kumari A. Optimization of single-step gelatin extraction from pink perch (Nemipterus japonicus) skin and bone obtained from surimi industry using a green solvent. J Food Sci 2023; 88:5044-5062. [PMID: 37876355 DOI: 10.1111/1750-3841.16809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Surimi industry produces a large quantity of byproducts that are currently being utilized to produce low-value commodities. This study aims to extract gelatin from pink perch skin and bone obtained from the surimi industry using a green single-step extraction method. In addition to using a green solvent, that is, acetic acid, the new method combines the multiple steps of pre-treatment and hydrolysis into one single-step extraction process. Response surface methodology was used to optimize extraction parameters (pH, temperature, and time) to maximize yield and l-hydroxyproline (l-hyp) content. The optimum condition for gelatin extraction was obtained at pH 3, 75°C, and 30 min. At optimum conditions, gelatin yield and l-hyp content were observed to be 16.07% and 41.26 mg g-1 , respectively. The gelatin obtained at optimized condition was further compared with commercial bovine gelatin (BG) in terms of chemical composition and textural, functional, and rheological properties. The results suggested that the optimized pink perch gelatin had higher protein content (92.06%), better gel strength (251.08 g), higher imino acid (18.01%), and improved textural and functional properties than the commercially available BG. The optimized single-step gelatin extraction method from pink perch skin and bones is a promising, rapid, and efficient method for the production of good-quality gelatin, which can be further used for the development of high-value products such as food formulations. PRACTICAL APPLICATION: Fish gelatin is widely used in food product development. Most of the existing methods of the development of high-value product such as gelatin, use multi-step process and harsh mineral acid, therefore, are time-consuming and harmful to the environment. This study provides a green single-step gelatin extraction method that provides an efficient, rapid, and convenient method of gelatin extraction and a sustainable solution for fish industry byproduct utilization. The data obtained with this laboratory-scale study provides a strong basis for scale-up studies.
Collapse
Affiliation(s)
- Khushboo
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| | | | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Asha Kumari
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
4
|
Khushboo, Kaushik N, Widell KN, Slizyte R, Kumari A. Effect of Pink Perch Gelatin on Physiochemical, Textural, Sensory, and Storage Characteristics of Ready-to-Cook Low-Fat Chicken Meatballs. Foods 2023; 12:995. [PMID: 36900512 PMCID: PMC10001017 DOI: 10.3390/foods12050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years consumer demand for low-fat convenience food is increasing rapidly. This study was designed to develop low-fat ready-to-cook (RTC) chicken meatballs using pink perch gelatin. Meatballs were prepared using different concentrations of fish gelatin (3%, 4%, 5%, and 6%). The effect of fish gelatin content on the physico-chemical, textural, cooking, and sensory properties of meatballs was studied. Further, the shelf-life of meatballs was also studied at 4 °C for 15 days and -18 °C for 60 days. The addition of fish gelatin to meatballs decreased the fat content by 67.2% and 79.7% and increased the protein content by 20.1% and 66.4% in comparison to control and Branded Meatballs, respectively. As compared to the Control Meatballs, the addition of fish gelatin also reduced hardness by 26.4% and increased yield and moisture retention in the RTC meatballs by 15.4% and 20.9%, respectively. Sensory analysis suggested that a 5% fish gelatin addition in meatballs has the best acceptability among all tested treatments. Storage study indicated that the addition of fish gelatin to RTC meatballs delayed lipid oxidation during both refrigerated and frozen storage. The results suggested that pink perch gelatin can be used as a fat replacer in chicken meatballs and can potentially increase their shelf-life.
Collapse
Affiliation(s)
- Khushboo
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
- Amity Institute of Food Technology, Amity University Uttar Pradesh, Noida 201313, India
| | - Nutan Kaushik
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| | - Kristina Norne Widell
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Rasa Slizyte
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Asha Kumari
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
5
|
Biochemical and Microstructural Characteristics of Collagen Biopolymer from Unicornfish ( Naso reticulatus Randall, 2001) Bone Prepared with Various Acid Types. Polymers (Basel) 2023; 15:polym15041054. [PMID: 36850337 PMCID: PMC9964761 DOI: 10.3390/polym15041054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Biopolymer-like collagen has great industrial potential in terms of its excellent properties, such as strong biocompatibility, high degradability, and low antigenicity. Collagen derived from fish by-products is preferable as it is safer (free from transmittable diseases) and acceptable to most religious beliefs. This study aimed to characterize the unicornfish (Naso reticulatus Randall, 2001) bone collagens prepared with different type of acids, i.e., acetic acid, lactic acid, and citric acid. A higher yield (Y) (p < 0.05) was obtained in the citric-acid-soluble collagen (CASC) (Y = 1.36%), followed by the lactic-acid-soluble collagen (LASC) (Y = 1.08%) and acetic-acid-soluble collagen (AASC) (Y = 0.40%). All extracted collagens were classified as type I due to the presence of 2-alpha chains (α1 and α2). Their prominent absorption spectra were located at the wavelengths of 229.83 nm to 231.17 nm. This is similar to wavelengths reported for other fish collagens. The X-ray diffraction (XRD) and infrared (IR) data demonstrated that the triple-helical structure of type I collagens was still preserved after the acid-extraction process. In terms of thermal stability, all samples had similar maximum transition temperatures (Tmax = 33.34-33.51 °C). A higher relative solubility (RS) of the unicornfish bone collagens was observed at low salt concentration (0-10 g/L) (RS > 80%) and at acidic condition (pH 1.0 to pH 3.0) (RS > 75%). The extracted collagen samples had an irregular and dense flake structure with random coiled filaments. Overall, bones of unicornfish may be used as a substitute source of collagen.
Collapse
|
6
|
Matarsim NN, Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Type I Collagen from the Skin of Barracuda ( Sphyraena sp.) Prepared with Different Organic Acids: Biochemical, Microstructural and Functional Properties. J Funct Biomater 2023; 14:jfb14020087. [PMID: 36826886 PMCID: PMC9958788 DOI: 10.3390/jfb14020087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
This study was carried out to compare the extractability and characteristics of barracuda (Sphyraena sp.) skin collagen using various organic acids. Acetic-solubilized collagen (ASBS), lactic-solubilized collagen (LSBS) and citric-solubilized collagen (CSBS) yielded 6.77 g/100 g, 10.06 g/100 g and 8.35 g/100 g, respectively, and those yields were significantly different (p < 0.05). All acid-solubilized collagens were considered as type I because of their two alpha chains (α1 and α2) detected in acrylamide gel after electrophoresis. Ultraviolet-visible (UV-vis) analysis confirmed that ASBS, LSBS and CSBS had similar absorption peaks (230.5 nm) and the results were in accordance with other fish collagens. Under infrared (IR) and X-ray diffraction (XRD) analysis, the triple helical structure of type I collagens extracted from barracuda skin was maintained. From a thermostability study, all type I collagens showed a higher maximum transition temperature (Tmax = 40.16 to 41.29 °C) compared to other fish skin collagens. In addition, the functional properties of the extracted collagens revealed the ASBS had higher water and oil absorption capacities than the CSBS and LSBS samples. The highest level of the emulsion ability index (EAI) (>200 m2/g) was detected under acidic conditions (pH 4), while lower EAIs were recorded under the alkaline (pH 10) and neutral treatments (pH 7). All type I collagens had a higher relative solubility (>60%) at a low pH test but the solubility level sharply decreased at a neutral pH. In addition to this, a lower concentration of NaCl (0-20 g/L) showed the higher percentage of solubility (>60%) while adding over 30 g/L of NaCl decreased solubility (>40%). From a microstructural test, all type I samples had an irregular and dense flake structure with random coiled filaments. Overall, collagen extracted from the barracuda skin may be applied as an alternative collagen from an industry perspective.
Collapse
Affiliation(s)
- Nur Nadiah Matarsim
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | | | | | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan 90509, Malaysia
- Correspondence:
| |
Collapse
|
7
|
Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Extraction and Characterization of Type I Collagen from Parrotfish ( Scarus sordidus Forsskål, 1775) Scale solubilized with the Aid of Acetic Acid and Pepsin. Int J Biomater 2023; 2023:7312447. [PMID: 37151379 PMCID: PMC10156459 DOI: 10.1155/2023/7312447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/01/2023] [Accepted: 03/03/2023] [Indexed: 05/09/2023] Open
Abstract
Waste from marine fish processing is an important source of valuable products. Fish collagen is considered a alternative biomaterial due to its excellent properties, and it is widely used for industrial purposes. Thus, this present study aimed to characterize acid and pepsin-soluble collagens from the waste of parrotfish (Scarus sordidus Forsskål, 1775) scales. The yields (p > 0.05) of acid-soluble collagen (ASC-PFS) and pepsin-soluble collagen (PSC-PFS) were 1.17 g/100 g and 1.00 g/100 g, respectively. Both collagen samples were categorized as type I owing to the presence of two alpha chain subunits (α1 and α1) after being confirmed by a sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Under the fourier transform infrared (FTIR) test, the triple helical structure of type I collagens from the ASC-PFS and PSC-PFS was maintained. Moreover, the study of UV visible spectra and X-ray diffraction (XRD) showed the similarity of collagens derived from different fish species, and the thermostability (T max) evaluation of all extracted collagens was in the range of 36.22-37.78°C, and their values were comparable to previous research on the fish scale collagens. The effect of various pH and sodium chloride (NaCl) treatments on solubility exhibited that the ASC-PFS and PSC-PFS were highly soluble in an acidic condition (pH < 5.0) and low concentration of sodium chloride (<30 g/L). Taken together, collagens extracted from parrotfish scale waste can be an alternative source for industries.
Collapse
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | | | | | - Nurul Huda
- Faculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sandakan 90509, Sabah, Malaysia
| |
Collapse
|
8
|
Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Physicochemical and Microstructural Analyses of Pepsin-Soluble Collagens Derived from Lizardfish ( Saurida tumbil Bloch, 1795) Skin, Bone and Scales. Gels 2022; 8:gels8080471. [PMID: 36005071 PMCID: PMC9407154 DOI: 10.3390/gels8080471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
Reducing food waste is critical for sustainability. In the case of fish processing, more than sixty percent of by-products are generated as waste. Lizardfish (Saurida tumbil Bloch, 1795) is an economically important species for surimi production. To address waste disposal and maximize income, an effective utilization of fish by-products is essential. This study aims to isolate and characterize pepsin-soluble collagens from the skin, bone and scales of lizardfish. Significant differences (p < 0.05) in the yields of collagen were noted with the highest yield recorded in pepsin-soluble skin collagen (PSSC) (3.50 ± 0.11%), followed by pepsin-soluble bone collagen (PSBC) (3.26 ± 0.10%) and pepsin-soluble scales collagen (PSCC) (0.60 ± 0.65%). Through SDS−polyacrylamide gel electrophoresis, the presence of two alpha chains were noted and classified as type I. From Fourier transform infrared spectroscopy (FTIR) analysis, the triple-helix structure of the collagen was maintained. The X-ray diffraction and UV visible spectra characteristics of the lizardfish collagens in this study are similar to the previously reported fish collagens. In terms of thermostability, PSSC (Tmax = 43.89 °C) had higher thermostability in comparison to PSBC (Tmax = 31.75 °C) and PSCC (Tmax = 30.54 °C). All pepsin-soluble collagens were highly soluble (>70%) in acidic conditions (particularly at pH 4.0) and at low sodium chloride concentrations (0−30 g/L). Microstructural analysis depicted that all extracted collagens were multi-layered, irregular, dense, sheet-like films linked by random coiled filaments. Overall, pepsin-soluble collagens from lizardfish skin, bone and scales could serve as potential alternative sources of collagens.
Collapse
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | | | | | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
- Correspondence: ; Tel.: +60-12-4843-144
| |
Collapse
|
9
|
Valorization of fish waste and sugarcane bagasse for Alcalase production by Bacillus megaterium via a circular bioeconomy model. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Biochemical and Microstructural Properties of Lizardfish ( Saurida tumbil) Scale Collagen Extracted with Various Organic Acids. Gels 2022; 8:gels8050266. [PMID: 35621564 PMCID: PMC9141987 DOI: 10.3390/gels8050266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this research was to extract collagen from the scales of lizardfish (Saurida tumbil) using various acids. Acetic acid-extracted collagen (AScC) produced a higher yield (1.8 mg/g) than lactic acid-extracted collagen (LScC) and citric acid-extracted collagen (CScC) although not significantly different (p > 0.05). All extracted collagens were categorized as type I collagens with the presence of alpha chains (α1 and α2) based on the SDS-PAGE profiles. The triple-helical structure of the collagen was maintained in the AScC, LScC, and CScC as confirmed by the FTIR spectra. The UV-vis and X-ray diffraction spectra observed in all collagens were in agreement with previous work on fish scale and calfskin (commercial) collagens. The thermal stability of AScC (Tmax = 31.61 °C) was greater than LScC (Tmax = 30.86 °C) and CScC (Tmax = 30.88 °C). The microstructure of acid-extracted collagens was characterized as complex, fibrous, and multilayered, with irregular sheet-like structures. All samples were highly soluble in acidic pH (1.0−4.0) and in low concentrations of NaCl (0−20 g/L). In conclusion, the lizardfish scale collagen, particularly AScC, may be used as an alternative to terrestrial animal collagen.
Collapse
|
11
|
Jaziri AA, Shapawi R, Mokhtar RAM, Noordin WNM, Huda N. Microstructural and Physicochemical Analysis of Collagens from the Skin of Lizardfish ( Saurida tumbil Bloch, 1795) Extracted with Different Organic Acids. Molecules 2022; 27:molecules27082452. [PMID: 35458650 PMCID: PMC9028408 DOI: 10.3390/molecules27082452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 01/25/2023] Open
Abstract
Marine fish collagen has attracted considerable attention due to its characteristics, including its biodegradability, biocompatibility, and weak antigenicity, and is considered a safer material compared to collagen from terrestrial animals. The aim of this study was to extract and characterize collagen from the skin of lizardfish (Saurida tumbil Bloch, 1795) with three different acids. The yields of acetic acid-extracted collagen (AESkC), lactic acid-extracted collagen (LESkC), and citric acid-extracted collagen (CESkC) were 11.73 ± 1.14%, 11.63 ± 1.10%, and 11.39 ± 1.05% (based on wet weight), respectively. All extracted collagens were categorized as type I collagen with mainly alpha chains (α1 and α2) detected and γ and β chains to some extent. Fourier transform infrared (FTIR) spectra showed an intact triple-helical structure in the AESkC, LESkC, and CESkC. UV-vis spectra and X-ray diffraction further demonstrated the similarity of the extracted collagens to previously reported fish skin collagens. AESkC (Tmax = 40.24 °C) had higher thermostability compared to LESkC (Tmax = 38.72 °C) and CESkC (Tmax = 36.74 °C). All samples were highly soluble in acidic pH and low concentrations of NaCl (0-20 g/L). Under field emission scanning electron microscopy (FESEM) observation, we noted the loose, fibrous, and porous structures of the collagens. The results suggest that the lizardfish skin collagens could be a potential alternative source of collagen, especially the AESkC due to its greater thermostability characteristic.
Collapse
Affiliation(s)
- Abdul Aziz Jaziri
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
- Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang 65145, Indonesia
| | - Rossita Shapawi
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | | | | | - Nurul Huda
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
- Correspondence:
| |
Collapse
|