1
|
Kaur B, Panesar PS, Thakur A. Biovalorization of mango byproduct through enzymatic extraction of dietary fiber. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57455-57465. [PMID: 38102433 DOI: 10.1007/s11356-023-31450-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Mango is considered one of the most important tropical fruits worldwide in terms of its consumption and consumer acceptability. Its processing generates huge quantities of mango byproducts, which is often discarded unscrupulously into the environment and, therefore, needs effective waste management practices. The extraction of mango peels' dietary fiber using enzymatic method can be a useful valorization strategy for management of mango by-products. In the present investigation, dietary fiber (soluble and insoluble fraction) was extracted by enzymatic hydrolysis using α-amylase, protease, and amyloglucosidase. Highest yield of dietary fiber (67.5%, w/w) was obtained at 60 °C temperature using recommended enzyme concentrations including α-amylase (40 µL), protease (110 µL), and amyloglucosidase (200 µL) after a treatment time of 60 min. SEM analysis indicated the increased porosity of dietary fiber samples caused due to the hydrolytic effect of enzymes on its surface structure, whereas FTIR analysis confirmed the functional groups present in dietary fiber. The coexistence of crystalline and amorphous nature of polymers present in soluble and insoluble fractions of dietary fiber was assessed by XRD analysis. Further, the analysis of functional properties including WHC, OHC, and SC revealed the suitability of using extracted mango peel's dietary fiber in the food systems.
Collapse
Affiliation(s)
- Brahmeet Kaur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| | - Parmjit Singh Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India.
| | - Avinash Thakur
- Department of Chemical Engineering, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| |
Collapse
|
2
|
Yupanqui-Mendoza SL, Sánchez-Moncada BJ, Las-Casas B, Castro-Alvarado ÁP. Simple one-step treatment for saccharification of mango peels using an optimized enzyme cocktail of Aspergillus niger ATCC 9642. Braz J Microbiol 2024; 55:1151-1166. [PMID: 38472698 PMCID: PMC11153387 DOI: 10.1007/s42770-024-01303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024] Open
Abstract
Developing efficient microbiological methods to convert polysaccharide-rich materials into fermentable sugars, particularly monosaccharides, is vital for advancing the bioeconomy and producing renewable chemicals and energy sources. This study focused on optimizing the production conditions of an enzyme cocktail from Aspergillus niger ATCC 9642 using solid-state fermentation (SSF) and assessing its effectiveness in saccharifying mango peels through a simple, rapid, and efficient one-step process. A rotatable central composite design was employed to determine optimal conditions of moisture, time, and pH for enzyme production in SSF medium. The optimized enzyme cocktail exhibited cellulase activity (CMCase) at 6.28 U/g, filter paper activity (FPase) at 3.29 U/g, and pectinase activity at 117.02 U/g. These optimal activities were achieved with an SSF duration of 81 h, pH of 4.66, and a moisture content of 59%. The optimized enzyme cocktail effectively saccharified the mango peels without the need for chemical agents. The maximum saccharification yield reached approximately 81%, indicating efficient conversion of mango peels into sugars. The enzyme cocktail displayed consistent thermal stability within the tested temperature range of 30-60°C. Notably, the highest sugar release occurred within 36 h, with glucose, arabinose, galactose, and xylose being the primary monosaccharides released during saccharification. This study highlights the potential application of Aspergillus niger ATCC 9642 and SSF for enzymatic production, offering a simple and high-performance process for monosaccharide production. The optimized enzyme cocktail obtained through solid-state fermentation demonstrated efficient saccharification of mango peels, suggesting its suitability for industrial-scale applications.
Collapse
Affiliation(s)
- Sergio Luis Yupanqui-Mendoza
- Department of Biotechnology, Laboratory of Applied Bionanotechnology, Lorena School of Engineering, University of São Paulo, Lorena/SP, 12602-810, Brazil.
| | | | - Bruno Las-Casas
- Department of Biotechnology, Laboratory of Applied Bionanotechnology, Lorena School of Engineering, University of São Paulo, Lorena/SP, 12602-810, Brazil
| | - Ángel Pablo Castro-Alvarado
- Department of Science, Biotechnology Research Laboratory, National University of Santa, 02712, Chimbote, Peru
| |
Collapse
|
3
|
Marçal S, Sousa S, Araújo-Rodrigues H, Silva IV, Campos DA, Pintado M. Impact of washing and freezing on nutritional composition, bioactive compounds, antioxidant activity and microstructure of mango peels. Food Chem 2024; 442:138368. [PMID: 38219565 DOI: 10.1016/j.foodchem.2024.138368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Mango peels are widely produced and highly perishable. Disinfectant washing and freezing are among the most used methods to preserve foods. However, their impact on products' properties is conditioned by the foods' features. This study evaluated for the first time the phytochemical composition, antioxidant activity, and microstructure of mango peels washed with peracetic acid (27 mg/mL for 19 min) and frozen at -20 °C for 30 days. Washing decreased the content of vitamin C (-7%), penta-O-galloyl-β-d-glucose (-23 %), catechin (-30 %), and lutein (-24 %), but the antioxidant activity was preserved. Freezing changed mango peels' microstructure, increased free phenolic compounds, namely acid gallic (+36 %) and catechin (+51 %), but reduced bound phenolic compounds (-12 % to -87 %), bound phenolic compounds' antioxidant activity (-51 % to -72 %), and violaxanthin (-51 %). Both methods were considered adequate to conserve mango peels since fiber and the main bioactive compounds (free mangiferin, free gallic acid, and β-carotene) remained unchanged or increased.
Collapse
Affiliation(s)
- Sara Marçal
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sérgio Sousa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Helena Araújo-Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Inês V Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Débora A Campos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
4
|
Rodriguez-Amaya DB, Esquivel P, Meléndez-Martínez AJ. Comprehensive Update on Carotenoid Colorants from Plants and Microalgae: Challenges and Advances from Research Laboratories to Industry. Foods 2023; 12:4080. [PMID: 38002140 PMCID: PMC10670565 DOI: 10.3390/foods12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The substitution of synthetic food dyes with natural colorants continues to be assiduously pursued. The current list of natural carotenoid colorants consists of plant-derived annatto (bixin and norbixin), paprika (capsanthin and capsorubin), saffron (crocin), tomato and gac fruit lycopene, marigold lutein, and red palm oil (α- and β-carotene), along with microalgal Dunaliella β-carotene and Haematococcus astaxanthin and fungal Blakeslea trispora β-carotene and lycopene. Potential microalgal sources are being sought, especially in relation to lutein, for which commercial plant sources are lacking. Research efforts, manifested in numerous reviews and research papers published in the last decade, have been directed to green extraction, microencapsulation/nanoencapsulation, and valorization of processing by-products. Extraction is shifting from conventional extraction with organic solvents to supercritical CO2 extraction and different types of assisted extraction. Initially intended for the stabilization of the highly degradable carotenoids, additional benefits of encapsulation have been demonstrated, especially the improvement of carotenoid solubility and bioavailability. Instead of searching for new higher plant sources, enormous effort has been directed to the utilization of by-products of the fruit and vegetable processing industry, with the application of biorefinery and circular economy concepts. Amidst enormous research activities, however, the gap between research and industrial implementation remains wide.
Collapse
Affiliation(s)
- Delia B. Rodriguez-Amaya
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Patricia Esquivel
- Centro Nacional de Ciencia y Tecnología (CITA), Universidad de Costa Rica, San José 11501, Costa Rica;
- Escuela de Tecnología de Alimentos, Universidad de Costa Rica, San José 11501, Costa Rica
| | | |
Collapse
|
5
|
Ojeda GA, Vallejos MM, Sgroppo SC, Sánchez-Moreno C, de Ancos B. Enhanced extraction of phenolic compounds from mango by-products using deep eutectic solvents. Heliyon 2023; 9:e16912. [PMID: 37484239 PMCID: PMC10360955 DOI: 10.1016/j.heliyon.2023.e16912] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Deep eutectic solvents (DESs) potential for the extraction of polyphenolic compounds (PC) from mango by-products (peel and seed) was evaluated. Ultrasound (US) and agitation were applied to evaluate the effects of solvent and extraction methodology. The extracts were characterized with antioxidant capacity and HPLC-DAD profile. A theoretical study was performed using density functional theory and the QTAIM approach. β-alanine and choline chloride based DESs were effective to extract PC from peel and seed. Some DES increased PC extraction up to three times for peel (23.05 ± 1.22 mg/g DW) and up to five time for seeds (60.01 ± 1.40 mg/g DW). The PC profile varied with the solvent (DES vs EtOH/MeOH), procedure (US vs agitation) and material (peel or seed). Mangiferin extraction from peels was significantly increased with β-alanine based DES (676.08 ± 20.34 μg/gDW). The strength of H-bonds had a determining effect on the viscosity of DESs. The solute-solvent solvation energy was suitable to estimate the strength of H-bond interactions between DES and target compounds. This study demonstrates the remarkable capacity of DESs to extract PC from mango by-products and provides insights into the factors controlling extraction properties.
Collapse
Affiliation(s)
- Gonzalo A. Ojeda
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA-CONICET), Universidad Nacional del Nordeste (UNNE), Av. Libertad 5400, Corrientes, Argentina
| | - Margarita M. Vallejos
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA-CONICET), Universidad Nacional del Nordeste (UNNE), Av. Libertad 5400, Corrientes, Argentina
| | - Sonia C. Sgroppo
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA-CONICET), Universidad Nacional del Nordeste (UNNE), Av. Libertad 5400, Corrientes, Argentina
| | - Concepción Sánchez-Moreno
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 6, Madrid, Spain
| | - Begoña de Ancos
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 6, Madrid, Spain
| |
Collapse
|
6
|
Kaur B, Panesar PS, Anal AK. Ultrasound‐assisted extraction of mango seed kernel butter and assessment of its physicochemical, thermal, and structural properties. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brahmeet Kaur
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal India
| | - Parmjit Singh Panesar
- Department of Food Engineering and Technology Sant Longowal Institute of Engineering and Technology Longowal India
| | - Anil Kumar Anal
- Department of Food, Agriculture, and Bioresources, School of Environment, Resources and Development Asian Institute of Technology Khlong Luang Thailand
| |
Collapse
|