1
|
Fabrication of a Highly Sensitive Electrochemical Sensor for the Rapid Detection of Nimodipine. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
2
|
Hybrid NiO nanostructured/sulfanilamide polymeric film for studying possible pharmacokinetic interaction between avanafil and nimodipine in real human serum by their simultaneous determination using square-wave voltammetry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Abstract
Background:Calcium Channel Blockers (CCBs) are widely used in the treatment of cardiovascular and ischemic heart diseases in recent years. They treat arrhythmias by reducing cardiac cycle contraction and also benefit ischemic heart diseases. Electroanalytical methods are very powerful analytical methods used in the pharmaceutical industry because of the determination of therapeutic agents and/or their metabolites in clinical samples at extremely low concentrations (10-50 ng/ml). The purpose of this review is to gather electroanalytical methods used for the determination of calcium channel blocker drugs in pharmaceutical dosage forms and biological media selected mainly from current articles.Methods:This review mainly includes recent determination studies of calcium channel blockers by electroanalytical methods from pharmaceutical dosage forms and biological samples. The studies of calcium channel blockers electroanalytical determination in the literature were reviewed and interpreted.Results:There are a lot of studies on amlodipine and nifedipine, but the number of studies on benidipine, cilnidipine, felodipine, isradipine, lercanidipine, lacidipine, levamlodipine, manidipine, nicardipine, nilvadipine, nimodipine, nisoldipine, nitrendipine, diltiazem, and verapamil are limited in the literature. In these studies, DPV and SWV are the most used methods. The other methods were used less for the determination of calcium channel blocker drugs.Conclusion:Electroanalytical methods especially voltammetric methods supply reproducible and reliable results for the analysis of the analyte. These methods are simple, more sensitive, rapid and inexpensive compared to the usually used spectroscopic and chromatographic methods.
Collapse
Affiliation(s)
- Fatma Ağın
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Sundaresan P, Karthik R, Chen SM, Vinoth Kumar J, Muthuraj V, Nagarajan ER. Ultrasonication-assisted synthesis of sphere-like strontium cerate nanoparticles (SrCeO 3 NPs) for the selective electrochemical detection of calcium channel antagonists nifedipine. ULTRASONICS SONOCHEMISTRY 2019; 53:44-54. [PMID: 30559078 DOI: 10.1016/j.ultsonch.2018.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
In this work, strontium cerate nanoparticles (SrCeO3 NPs, SC NPs) were developed through facile synthetic techniques (Ultrasound-Assisted (UA) and Stirring-Assisted (SA) synthesis) and utilized as an electrocatalyst for the selective and sensitive electrochemical detection of calcium channel blocker nifedipine (NDF). The as-prepared UASC NPs and SASC NPs were characterized using XRD, Raman, TEM, EDS, mapping, XPS and BET analysis which exposed the formation of SC NPs in the form of spherical in shape and well crystalline in nature. BET studies reveal that UASC NPs have maximum surface area than that of SASC NPs. Further, the use of the as-developed UASC NPs and SASC NPs as an electrocatalyst for the detection of NDF. Interestingly, the UASC NPs modified screen printed carbon electrode (UASC NPs/SPCE) exhibited an excellent electrocatalytic activity in terms of lower reduction potential and enhanced reduction peak current when compared to SASC NPs and unmodified SPCE. Moreover, as-prepared UASC NPs/SPCE displayed wide linear response range (LR, 0.02-174 µM), lower detection limit (LOD, 5 nM) and good sensitivity (1.31 µA µM-1 cm-2) than that of SASC NPs (LR = 0.02-157 µM, LOD = 6.4 nM, sensitivity - 1.27 µA µM-1cm-2). Furthermore, UASC NPs/SPCE showed an excellent selectivity even in the existence of potentially co-interfering compounds such as similar functional group containing drugs, pollutants, biological substances and some common cations/anions. The developed sensor was successfully employed for the determination of NDF in real lake water, commercial NDF tablet and urine samples with acceptable recovery.
Collapse
Affiliation(s)
- Periyasamy Sundaresan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Raj Karthik
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Jeyaraj Vinoth Kumar
- Department of Chemistry, VHNSN College, Virudhunagar 626001, Tamil Nadu, India; Department of Chemistry, Nanomaterials Laboratory, IRC, Kalasalingam Academy of Research and Education, Krishnankoil 626 126, Tamil Nadu, India
| | - Velluchamy Muthuraj
- Department of Chemistry, VHNSN College, Virudhunagar 626001, Tamil Nadu, India
| | - E R Nagarajan
- Department of Chemistry, Nanomaterials Laboratory, IRC, Kalasalingam Academy of Research and Education, Krishnankoil 626 126, Tamil Nadu, India
| |
Collapse
|
5
|
Highly dispersive hollow PdAg alloy nanoparticles modified ionic liquid functionalized graphene nanoribbons for electrochemical sensing of nifedipine. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.04.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Electrochemical biosensor based on silica sol–gel entrapment of horseradish peroxidase onto the carbon paste electrode toward the determination of 2-aminophenol in non-aqueous solvents: A voltammetric study. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Raghu P, Reddy TM, Gopal P, Reddaiah K, Sreedhar N. A novel horseradish peroxidase biosensor towards the detection of dopamine: A voltammetric study. Enzyme Microb Technol 2014; 57:8-15. [DOI: 10.1016/j.enzmictec.2014.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 01/02/2014] [Accepted: 01/04/2014] [Indexed: 11/30/2022]
|
8
|
Raghu P, Madhusudana Reddy T, Reddaiah K, Kumara Swamy B, Sreedhar M. Acetylcholinesterase based biosensor for monitoring of Malathion and Acephate in food samples: A voltammetric study. Food Chem 2014; 142:188-96. [DOI: 10.1016/j.foodchem.2013.07.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 10/26/2022]
|
9
|
Yang X, Sun D, Xie X, Zhang H. Sensitive and rapid determination of nifedipine using polyvinylpyrrolidone-modified carbon paste electrode. RUSS J ELECTROCHEM+ 2013. [DOI: 10.1134/s1023193513110128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Reddaiah K, Reddy MM, Raghu P, Reddy TM. An electrochemical sensor based on poly (solochrome dark blue) film coated electrode for the determination of dopamine and simultaneous separation in the presence of uric acid and ascorbic acid: A voltammetric method. Colloids Surf B Biointerfaces 2013; 106:145-50. [DOI: 10.1016/j.colsurfb.2013.01.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
|
11
|
Kor K, Zarei K. β-Cyclodextrin Incorporated Carbon Nanotube Paste Electrode as Electrochemical Sensor for Nifedipine. ELECTROANAL 2013. [DOI: 10.1002/elan.201200652] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Raghu P, Madhusudana Reddy T, Reddaiah K, Jaidev L, Narasimha G. A novel electrochemical biosensor based on horseradish peroxidase immobilized on Ag-nanoparticles/poly(l-arginine) modified carbon paste electrode toward the determination of pyrogallol/hydroquinone. Enzyme Microb Technol 2013; 52:377-85. [DOI: 10.1016/j.enzmictec.2013.02.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/21/2013] [Accepted: 02/24/2013] [Indexed: 11/17/2022]
|
14
|
Reddaiah K, Madhusudana Reddy T, Raghu P. Electrochemical investigation of L-dopa and simultaneous resolution in the presence of uric acid and ascorbic acid at a poly (methyl orange) film coated electrode: A voltammetric study. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2012.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
References. Anal Chem 2012. [DOI: 10.1201/b11478-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Raghu P, Kumara Swamy B, Madhusudana Reddy T, Chandrashekar B, Reddaiah K. Sol–gel immobilized biosensor for the detection of organophosphorous pesticides: A voltammetric method. Bioelectrochemistry 2012; 83:19-24. [DOI: 10.1016/j.bioelechem.2011.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 10/17/2022]
|
17
|
Development of AChE biosensor for the determination of methyl parathion and monocrotophos in water and fruit samples: A cyclic voltammetric study. J Electroanal Chem (Lausanne) 2012. [DOI: 10.1016/j.jelechem.2011.11.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Sreedhar M, Reddy TM, Balaji K, Reddy SJ. Electrochemical Reduction Behavior and Polarographic Determination of Methoxy Triazine Herbicides in Environmental Samples. ANAL LETT 2010. [DOI: 10.1080/00032710903408108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|