1
|
Qin C, Li L, Tian G, Ding M, Zhu S, Song W, Hu J, Seeberger PH, Yin J. Chemical Synthesis and Antigenicity Evaluation of Shigella dysenteriae Serotype 10 O-Antigen Tetrasaccharide Containing a ( S)-4,6- O-Pyruvyl Ketal. J Am Chem Soc 2022; 144:21068-21079. [DOI: 10.1021/jacs.2c05953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Meiru Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Wuqiong Song
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
2
|
Hada N, Umeda Y, Kumada H, Shimazaki Y, Yamano K, Schweizer F, Oshima N, Takeda T, Kiuchi F. Synthesis of the Non Reducing End Oligosaccharides of Glycosphingolipids from <i>Ascaris suum</i>. Chem Pharm Bull (Tokyo) 2019; 67:143-154. [DOI: 10.1248/cpb.c18-00768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Noriyasu Hada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Faculty of Pharmacy, Keio University
| | | | | | | | | | - Frank Schweizer
- Departments of Chemistry and Medical Microbiology, University of Manitoba
| | - Naohiro Oshima
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | | | | |
Collapse
|
3
|
Marino C, Baldoni L. Synthesis of D-galactofuranose-containing molecules: design of galactofuranosyl acceptors. Chembiochem 2014; 15:188-204. [PMID: 24420700 DOI: 10.1002/cbic.201300638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 11/11/2022]
Abstract
D-Galactofuranose (D-Galf) is present in glycoconjugates of several pathogenic microorganisms but is absent in mammals, so it is a good target for the development of chemotherapeutic agents for the treatment of microbial infections. This fact has increased interest in the synthesis of D-Galf-containing molecules for corresponding glycobiological studies. The synthesis of oligosaccharides, glycoconjugates, and mimetics of D-Galf requires specific methods for the preparation of galactose derivatives in the furanosic configuration, the synthesis of appropriate acceptors, and efficient glycosylation methods for the construction of α- and β-D-Galf linkages. This review summarizes the different strategies developed for the preparation of partially protected derivatives of D-Galf, suitable as acceptors for the construction of (1→2), (1→3), (1→5), and (1→6) link- ages, and describes recent applications.
Collapse
Affiliation(s)
- Carla Marino
- CIHIDECAR-CONICET-UBA, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, 1428 Buenos Aires (Argentina).
| | | |
Collapse
|
4
|
Affiliation(s)
- Sujit S. Mahajan
- a UC Chemical and Biosensors Group, Department of Chemistry , University of Cincinnati , Cincinnati , OH , 45221-0172 , USA
| | - Suri S. Iyer
- a UC Chemical and Biosensors Group, Department of Chemistry , University of Cincinnati , Cincinnati , OH , 45221-0172 , USA
| |
Collapse
|
5
|
Mendoza VM, Kashiwagi GA, de Lederkremer RM, Gallo-Rodriguez C. Synthesis of trisaccharides containing internal galactofuranose O-linked in Trypanosoma cruzi mucins. Carbohydr Res 2009; 345:385-96. [PMID: 20044082 DOI: 10.1016/j.carres.2009.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/24/2009] [Accepted: 12/05/2009] [Indexed: 11/19/2022]
Abstract
The trisaccharides beta-D-Galf-(1-->2)-beta-D-Galf-(1-->4)-D-GlcNAc (5) and beta-D-Galp-(1-->2)-beta-D-Galf-(1-->4)-D-GlcNAc (6) constitute novel structures isolated as alditols when released by reductive beta-elimination from mucins of Trypanosoma cruzi (Tulahuen strain). Trisaccharides 5 and 6 were synthesized employing the aldonolactone approach. Thus, a convenient D-galactono-1,4-lactone derivative was used for the introduction of the internal galactofuranose and the trichloroacetimidate method was employed for glycosylation reactions. Due to the lack of anchimeric assistance on O-2 of the galactofuranosyl precursor, glycosylation studies were performed under different conditions. The nature of the solvent strongly determined the stereochemical course of the glycosylation reactions when the galactofuranosyl donor was substituted either by 2-O-Galp or 2-O-Galf.
Collapse
Affiliation(s)
- Verónica M Mendoza
- CIHIDECAR, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
6
|
Jonsson KHM, Weintraub A, Widmalm G. Structural studies of the O-antigenic polysaccharides from Shigella dysenteriae type 3 and Escherichia coli O124, a reinvestigation. Carbohydr Res 2006; 341:2986-9. [PMID: 17081507 DOI: 10.1016/j.carres.2006.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/01/2006] [Accepted: 10/03/2006] [Indexed: 11/18/2022]
Abstract
The structures of the O-antigenic part of the lipopolysaccharides from Shigella dysenteriae type 3 and Escherichia coli O124 have been reinvestigated. (1)H and (13)C NMR spectroscopy in combination with selected 2D NMR techniques were used to determine the O-antigen pentasaccharide repeating units with the following structure: [see text]. From biosynthetic considerations this should also be the biological repeating unit. The structures of the repeating units also explain the previously observed cross-reactivity between the strains and to E. coli O164, which only differs in the terminal sugar residue that is lacking the (R)-1-carboxyethyl group.
Collapse
Affiliation(s)
- K Hanna M Jonsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
7
|
Zhang G, Fu M, Ning J. First synthesis of 5,6-branched galacto-hexasaccharide, the dimer of the trisaccharide repeating unit of the cell-wall galactans of Bifidobacterium catenulatum YIT 4016. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.tetasy.2004.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Zhang G, Fu M, Ning J. An efficient and concise synthesis of a β-(1→6)-linked d-galactofuranosyl hexasaccharide. Carbohydr Res 2005; 340:155-9. [PMID: 15620679 DOI: 10.1016/j.carres.2004.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2004] [Revised: 10/20/2004] [Accepted: 11/01/2004] [Indexed: 10/26/2022]
Abstract
A beta-(1-->6)-linked D-galactofuranosyl hexasaccharide was synthesized efficiently in a block construction manner by the well-known Schmidt glycosylation method using 6-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-galactofuranosyl trichloroacetimidate (1) and allyl 2,3,5-tri-O-benzoyl-beta-D-galactofuranoside (3) as the key synthons. Coupling of 3 with 1 gave beta-(1-->6)-linked disaccharide 4. Subsequent selective deacetylation of 4 afforded the disaccharide acceptor 5, while deallylation of 4 followed by trichloroacetimidate formation produced the disaccharide donor 6. Condensation of 5 with 6 gave the tetrasaccharide 7, and subsequent deacetylation afforded the tetrasaccharide acceptor 8. Finally, coupling of 8 with 6 followed by deacylation yielded the target beta-(1-->6)-linked galactofuranose hexasaccharide 10. All of the reactions in the synthesis were carried out smoothly and in high yield.
Collapse
Affiliation(s)
- Guohua Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, Beijing 100085, China
| | | | | |
Collapse
|