Al Saadi MM, Meo SA, Mustafa A, Shafi A, Tuwajri ASA. Effects of Montelukast on free radical production in whole blood and isolated human polymorphonuclear neutrophils (PMNs) in asthmatic children.
Saudi Pharm J 2011;
19:215-20. [PMID:
23960762 DOI:
10.1016/j.jsps.2011.06.002]
[Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022] Open
Abstract
Montelukast is a highly selective leukotriene-receptor antagonist (LTRA). It is widely used in the treatment of bronchial asthma, primarily as an adjunct to corticosteroids. Reactive oxygen species (ROSs) play an important role in the pathogenesis of asthma and oxidative stress contributing to the initiation and worsening of inflammatory respiratory disorders, such as asthma. Antioxidant drugs may have a role in minimizing or preventing damage in asthmatic children. The aim of this study was to assess the antioxidant effect of montelukast on the production of free radicals in the whole blood and polymorphonuclear neutrophils (PMNs) in asthmatic children. A group of 48 (38 males and 10 females), apparently healthy asthmatic children were recruited with ages ranging between 6 and 14 years. In asthmatic children, base line (premedication) and post medication free radicals activity in the whole blood and polymorphonuclear neutrophils (PMNs) was determined by measuring chemiluminescence (CL) response through chemiluminescence luminometer. Free radical productions were significantly decreased in the whole blood, when stimulated with Phorbol Myristate Acetate (p < 0.04) and Opsonised Zymosan (p < 0.05). The free radicals were also significantly decreased in isolated polymorphonuclear neutrophils (PMNs) when stimulated with Opsonised Zymosan (p < 0.05) after the post medication treatment of montelukast in asthmatic children. Montelukast decreased the reactive oxygen species production, both in the whole blood as well as isolated PMNs in asthmatic children.
Collapse