1
|
Almeida-Porada G, Rodman C, Kuhlman B, Brudvik E, Moon J, George S, Guida P, Sajuthi SP, Langefeld CD, Walker SJ, Wilson PF, Porada CD. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis. Stem Cells Dev 2018; 27:1237-1256. [PMID: 29698131 DOI: 10.1089/scd.2018.0005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human hematopoietic stem cells (HSC) to simulated solar energetic particle (SEP) and galactic cosmic ray (GCR) radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In this study, we performed the first in-depth examination to define changes that occur in mesenchymal stem cells present in the human BM niche following exposure to accelerated protons and iron ions and assess the impact these changes have upon human hematopoiesis. Our data provide compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called "biological bystander effects" by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Christopher Rodman
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Bradford Kuhlman
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Egil Brudvik
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - John Moon
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Sunil George
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Peter Guida
- 2 Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory , Upton, New York
| | - Satria P Sajuthi
- 3 Division of Public Health Sciences, Department of Biostatistical Sciences, Center for Public Health Genomics , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carl D Langefeld
- 3 Division of Public Health Sciences, Department of Biostatistical Sciences, Center for Public Health Genomics , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Stephen J Walker
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Paul F Wilson
- 4 Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center , Sacramento, California
| | - Christopher D Porada
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
2
|
Rocca A, Tafuri D, Paccone M, Giuliani A, Zamboli AGI, Surfaro G, Paccone A, Compagna R, Amato M, Serra R, Amato B. Cell Based Therapeutic Approach in Vascular Surgery: Application and Review. Open Med (Wars) 2017; 12:308-322. [PMID: 29071303 PMCID: PMC5651406 DOI: 10.1515/med-2017-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Multipotent stem cells - such as mesenchymal stem/stromal cells and stem cells derived from different sources like vascular wall are intensely studied to try to rapidly translate their discovered features from bench to bedside. Vascular wall resident stem cells recruitment, differentiation, survival, proliferation, growth factor production, and signaling pathways transduced were analyzed. We studied biological properties of vascular resident stem cells and explored the relationship from several factors as Matrix Metalloproteinases (MMPs) and regulations of biological, translational and clinical features of these cells. In this review we described a translational and clinical approach to Adult Vascular Wall Resident Multipotent Vascular Stem Cells (VW-SCs) and reported their involvement in alternative clinical approach as cells based therapy in vascular disease like arterial aneurysms or peripheral arterial obstructive disease.
Collapse
Affiliation(s)
- Aldo Rocca
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, ItalyVia Sergio Pansini, 80131Naples, Italy
| | - Domenico Tafuri
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Marianna Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Antonio Giuliani
- A.O.R.N. A. Cardarelli Hepatobiliary and Liver Transplatation Center, Naples, Italy
| | | | - Giuseppe Surfaro
- Antonio Cardarelli Hospital, General Surgery Unit, Campobasso, Italy
| | - Andrea Paccone
- Department of Medicine and Health Sciences Vincenzo Tiberio, University of Molise, Campobasso, Italy
| | - Rita Compagna
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Maurizo Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Catanzaro, Italy
| | - Bruno Amato
- Department of Translational Medical Sciences, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
3
|
Amato B, Compagna R, Amato M, Grande R, Butrico L, Rossi A, Naso A, Ruggiero M, de Franciscis S, Serra R. Adult vascular wall resident multipotent vascular stem cells, matrix metalloproteinases, and arterial aneurysms. Stem Cells Int 2015; 2015:434962. [PMID: 25866513 PMCID: PMC4381852 DOI: 10.1155/2015/434962] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/23/2015] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Evidences have shown the presence of multipotent stem cells (SCs) at sites of arterial aneurysms: they can differentiate into smooth muscle cells (SMCs) and are activated after residing in a quiescent state in the vascular wall. Recent studies have implicated the role of matrix metalloproteinases in the pathogenesis of arterial aneurysms: in fact the increased synthesis of MMPs by arterial SMCs is thought to be a pivotal mechanism in aneurysm formation. The factors and signaling pathways involved in regulating wall resident SC recruitment, survival, proliferation, growth factor production, and differentiation may be also related to selective expression of different MMPs. This review explores the relationship between adult vascular wall resident multipotent vascular SCs, MMPs, and arterial aneurysms.
Collapse
Affiliation(s)
- Bruno Amato
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Rita Compagna
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Maurizio Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80100 Naples, Italy
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Lucia Butrico
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Alessio Rossi
- Department of Medicine and Health Sciences, University of Molise, 88100 Campobasso, Italy
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Michele Ruggiero
- Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Magna Graecia University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy ; Department of Medical and Surgical Sciences, University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Freistadt M, Eberle KE, Huang W, Schwarzenberger P. CD34+ hematopoietic stem cells support entry and replication of poliovirus: a potential new gene introduction route. Cancer Gene Ther 2013; 20:201-7. [PMID: 23392202 DOI: 10.1038/cgt.2013.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pluripotent hematopoietic stem cells (HSC) are critical in sustaining and constantly renewing the blood and immune system. The ability to alter biological characteristics of HSC by introducing and expressing genes would have enormous therapeutic possibilities. Previous unpublished work suggested that human HSC co-express CD34 (cluster of differentiation 34; an HSC marker) and CD155 (poliovirus receptor; also called Necl-5/Tage4/PVR/CD155). In the present study, we demonstrate the co-expression of CD34 and CD155 in primary human HSC. In addition, we demonstrate that poliovirus infects and replicates in human hematopoietic progenitor cell lines. Finally, we show that poliovirus replicates in CD34+ enriched primary HSC. CD34+ enriched HSC co-express CD155 and support poliovirus replication. These data may help further understanding of poliovirus spread in vivo and also demonstrate that human HSC may be amenable for gene therapy via poliovirus-capsid-based vectors. They may also help elucidate the normal function of Necl-5/Tage4/PVR/CD155.
Collapse
Affiliation(s)
- M Freistadt
- Science and Math, Delgado Community College, New Orleans, LA 70119, USA.
| | | | | | | |
Collapse
|
5
|
Fernández Vallone VB, Romaniuk MA, Choi H, Labovsky V, Otaegui J, Chasseing NA. Mesenchymal stem cells and their use in therapy: what has been achieved? Differentiation 2013; 85:1-10. [PMID: 23314286 DOI: 10.1016/j.diff.2012.08.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 07/10/2012] [Accepted: 08/16/2012] [Indexed: 12/13/2022]
Abstract
The considerable therapeutic potential of human multipotent mesenchymal stromal cells or mesenchymal stem cells (MSCs) has generated increasing interest in a wide variety of biomedical disciplines. Nevertheless, researchers report studies on MSCs using different methods of isolation and expansion, as well as different approaches to characterize them; therefore, it is increasingly difficult to compare and contrast study outcomes. To begin to address this issue, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy proposed minimal criteria to define human MSCs. First, MSCs must be plastic-adherent when maintained in standard culture conditions (α minimal essential medium plus 20% fetal bovine serum). Second, MSCs must express CD105, CD73 and CD90, and MSCs must lack expression of CD45, CD34, CD14 or CD11b, CD79α or CD19 and HLA-DR surface molecules. Third, MSCs must differentiate into osteoblasts, adipocytes and chondroblasts in vitro. MSCs are isolated from many adult tissues, in particular from bone marrow and adipose tissue. Along with their capacity to differentiate and transdifferentiate into cells of different lineages, these cells have also generated great interest for their ability to display immunomodulatory capacities. Indeed, a major breakthrough was the finding that MSCs are able to induce peripheral tolerance, suggesting that they may be used as therapeutic tools in immune-mediated disorders. Although no significant adverse events have been reported in clinical trials to date, all interventional therapies have some inherent risks. Potential risks for undesirable events, such as tumor development, that might occur while using these stem cells for therapy must be taken into account and contrasted against the potential benefits to patients.
Collapse
|
6
|
Schwab KE, Hutchinson P, Gargett CE. Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod 2008; 23:934-43. [PMID: 18305000 DOI: 10.1093/humrep/den051] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human endometrium is a highly regenerative tissue. We hypothesized that the source of endometrial stromal and vascular regeneration is a resident stromal stem/progenitor cell population. Putative human endometrial stromal stem/progenitor cells have been identified using clonal assays, a retrospective functional stem cell assay. Therefore, the aim of this study was to screen potential stem cell markers for the prospective isolation of human endometrial stromal stem/progenitor cells and to determine their capacity to identify colony-forming stromal cells. METHODS Single-cell suspensions of human endometrial stromal cells were sorted using fluorescence-activated cell sorting into positive and negative populations based on STRO-1, CD133, CD90 or CD146 expression for clonal assays. All markers were immunolocalized in human endometrium. RESULTS Small populations (2-9%) of human endometrial stromal cells expressed each of the markers. Only CD146(+) cells were enriched for colony-forming cells, and CD90(hi) cells showed a trend for greater enrichment compared with CD90(lo) cells. STRO-1 and CD146 were localized to perivascular cells of the endometrium. CD90 was strongly expressed by functionalis stroma and perivascular cells, but only weakly expressed in the basalis stroma. CD133 was expressed by epithelial cells of the endometrium, rather than by stroma or perivascular cells. CONCLUSIONS This study identified CD146 as a marker of colony-forming human endometrial stromal cells supporting the concept that human endometrium contains a population of candidate stromal stem/progenitor cells.
Collapse
Affiliation(s)
- K E Schwab
- Centre for Women's Health Research, Monash Institute of Medical Research and Monash University Department of Obstetrics and Gynaecology, Monash Medical Centre, Clayton, Victoria, Australia
| | | | | |
Collapse
|
7
|
Abstract
In this chapter we examine whether criteria usually defining adult tissue stem cells apply to mesenchymal stem cells (MSCs) that give rise to cells of the skeletal connective tissues. MSCs appear to constitute a heterogeneous population of undifferentiated and committed, lineage-primed cells, capable of: homing upon engraftment to a number of growth microenvironments, extensive proliferation, producing large numbers of differentiated progeny, and functional tissue repair after injury. In addition, MSCs are extensively distributed throughout tissues, and bone marrow MSCs provide the stromal component of the niche of hematopoietic stem cells. The capacity of apparently differentiated mesenchymal cells to shift their differentiation pathway with changing microenvironmental conditions (known as differentiation plasticity) may be due to de-differentiation and reprogramming in MSCs. Because they present several features setting them apart from other stem cells, MSCs may constitute another paradigm for stem cell systems, where self-renewal and hierarchy are no longer essential, but where plasticity is the major characteristic.
Collapse
Affiliation(s)
- Bruno Delorme
- Laboratoire d'Hématopoièse, Université François Rabelais, Faculté de medicine, Batiment Dutrochet, 10 Bvd Tonnellé, Tours 37032, France
| | | | | |
Collapse
|
8
|
Cool SM, Nurcombe V. Substrate induction of osteogenesis from marrow-derived mesenchymal precursors. Stem Cells Dev 2006; 14:632-42. [PMID: 16433618 DOI: 10.1089/scd.2005.14.632] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Therapeutic modalities aimed at bone regeneration are increasingly employing extracellular matrix (ECM) constituents to control bone marrow progenitor cell (BMPC) commitment, growth, and differentiation. However, the precise role these ECM elements play during stem cell differentiation remains unclear. (See also Salaszynk et al., Stem Cells Dev 14(6):608-620, 2005; and Schwartz et al., Stem Cells Dev. 14(6), 643-655, 2005, both in this issue.) Because bone formation ultimately begins with the recruitment and commitment of BMPCs into the osteogenic lineage, factors that enhance this process are clearly therapeutic targets. We hypothesized that BMPC attachment, proliferation, and osteogenic differentiation would be potentiated when cultured on ECM proteins normally found in the bone niche. To examine this, we cultured murine BMPCs on laminin-1, fibronectin, and collagen type-1 substrates for up to 14 days and assessed their homogeneity, attachment, proliferation, and expression of the specific bone lineage markers RUNX2, collagen-1, alkaline phosphatase, and osteocalcin. We found that freshly harvested mBMPCs contain a mixed population of progenitor cells and that the mesenchymal pool can be enriched by adherent culture in the presence of leucine methyl ester. Furthermore, mBMPCs attached to laminin, fibronectin, and collagen-1 with varying affinity up to 3 h (fibronectin>or=collagen>laminin), after which time no difference could be detected. Despite this, growth was unaffected; cells thereafter proliferated equally well on all substrates up to confluence (7 days). Notably, commitment to the osteoblast lineage (RUNX2) increased up to 14 days for cells cultured on the various substrates, yet no difference was observed at day 14 in the expression of collagen-1, alkaline phosphatase, or osteocalcin. We conclude that mBMPC differentiation down the osteoblastic lineage is time-dependent in osteogenic culture and that attachment to ECM matrices potentiates lineage commitment rather than growth.
Collapse
Affiliation(s)
- Simon M Cool
- Institute of Molecular and Cell Biology, and Department of Orthopaedic Surgery, National University of Singapore, Singapore 117597.
| | | |
Collapse
|
9
|
Huang W, La Russa V, Alzoubi A, Schwarzenberger P. Interleukin-17A: A T-Cell-Derived Growth Factor for Murine and Human Mesenchymal Stem Cells. Stem Cells 2006; 24:1512-8. [PMID: 16513762 DOI: 10.1634/stemcells.2005-0156] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interleukin-17A (IL-17A) is a proinflammatory cytokine expressed in activated T-cells. It is required for microbial host defense and is a potent stimulator of granulopoiesis. In a dose-dependent fashion, IL-17A expanded human mesenchymal stem cells (MSCs) and induced the proliferation of mature stroma cells in bone marrow-derived stroma cultures. Recombinant human interleukin-17A (rhIL-17A) nearly doubled colony-forming unit-fibroblast (CFU-f) frequency and almost tripled the surface area covered by stroma. In a murine transplant model, in vivo murine (m)IL-17A expression enhanced CFU-f by 2.5-fold. Enrichment of the graft with CD4(+) T-cell resulted in a 7.5-fold increase in CFU-f in normal C57BL/6, but only threefold in IL-17Ra(-/-) mice on day 14 post-transplant. In this transplant model, in vivo blockade of IL-17A in C57BL/6 mice resembled the phenotype of IL-17Ra(-/-) mice. Approximately half of the T-cell-mediated effect on MSC recovery following radiation-conditioned transplantation was attributed to the IL-17A/IL-17Ra pathway. Pluripotent MSCs have the potential of regenerating various tissues, and mature stroma cells are critical elements of the hematopoietic microenvironment (HME). The HME is pivotal for formation and maintenance of functional blood cells. As a newly identified stroma cell growth factor, IL-17A might have potential applications for novel treatment approaches involving MSCs, such as tissue graft engineering.
Collapse
Affiliation(s)
- Weitao Huang
- Department of Microbiology and Immunology, University of South Alabama, Mobile, 36688, USA
| | | | | | | |
Collapse
|
10
|
Hofer EL, La Russa V, Honegger AE, Bullorsky EO, Bordenave RH, Chasseing NA. Alteration on the expression of IL-1, PDGF, TGF-beta, EGF, and FGF receptors and c-Fos and c-Myc proteins in bone marrow mesenchymal stroma cells from advanced untreated lung and breast cancer patients. Stem Cells Dev 2006; 14:587-94. [PMID: 16305343 DOI: 10.1089/scd.2005.14.587] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previously, we reported a deficient cloning capacity of the bone marrow (BM) mesenchymal stem cells to give colony-forming unit fibroblast (CFU-F) and an inefficient confluence capacity of BM stromal cells in advanced untreated lung cancer patients (LCP) and breast cancer patients (BCP). Moreover, a decreased level of bFGF at day 7 in the conditioned media from BM CFU-F cultures was found in both cancer groups when compared to the normal range. The current study was specially undertaken, to evaluate the percentage of subconfluent fibroblasts expressing receptors (R) of interleukin-1 (IL-1), platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), transforming growth factor (TGF-beta), epidermal growth factor (EGF), and the proteins c-Fos and c-Myc in BM primary cultures from untreated LCP and BCP. An immunocytochemical study on subconfluent BM fibroblast cultures from 13 healthy patients, 16 LCP, and 8 BCP was performed, using as primary antibodies, anti-type I of IL-1 R (IL-1R-1), anti-alpha, beta chains of PDGF R (PDGFR-alpha, PDGFR-beta), anti-type I of FGF R (FGFR-I), anti-type I, II, and III of TGF-beta R (TGF-betaR-I, TGF- betaR-II, and TGF-betaR-III), anti-EGF R, anti-c-Fos, and anti-c-Myc. A diminished percentage of subconfluent fibroblasts expressing PDGFR-alpha, TGFbetaR-I, II, III, EGFR, and FGFR-I was found in LCP and BCP compared to healthy patients. A diminished percentage of subconfluent fibroblasts expressing c-Fos and c-Myc was found in patients when compared to healthy patients. The alterations we describe could help to explain the deficiency regarding the proliferative and confluence capacity of BM stroma cells in cancer patients.
Collapse
|
11
|
Sato H, Kuwashima N, Sakaida T, Hatano M, Dusak JE, Fellows-Mayle WK, Papworth GD, Watkins SC, Gambotto A, Pollack IF, Okada H. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther 2005; 12:757-68. [PMID: 15832173 DOI: 10.1038/sj.cgt.7700827] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have created a novel cellular vehicle for gene therapy of malignant gliomas by transfection of murine bone marrow stroma cells (MSCs) with a cDNA encoding epidermal growth factor receptor (EGFR). These cells (EGFR-MSCs) demonstrate enhanced migratory responses toward glioma-conditioned media in comparison to primary MSCs in vitro. Enhanced migration of EGFR-MSC was at least partially dependent on EGF-EGFR, PI3-, MAP kinase kinase, and MAP kinases, protein kinase C, and actin polymerization. Unlike primary MSCs, EGFR-MSCs were resistant to FasL-mediated cytotoxicity and were capable of stimulating allogeneic mixed lymphocyte reaction, suggesting EGFR-MSCs possess suitable characteristics as vehicles for brain tumor immuno-gene therapy. Following injection at various sites, including the contralateral hemisphere in the brain of syngeneic mice, EGFR-MSCs were able to migrate toward GL261 gliomas or B16 melanoma in vivo. Finally, intratumoral injection with EGFR-MSC adenovirally engineered to secrete interferon-alpha to intracranial GL261 resulted in significantly prolonged survival in comparison to controls. These data indicate that EGFR-MSCs may serve as attractive vehicles for infiltrating brain malignancies such as malignant gliomas.
Collapse
Affiliation(s)
- Hidemitsu Sato
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213-1863, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eblenkamp M, Aigner J, Hintermair J, Potthoff S, Hopfner U, Jacobs V, Niemeyer M, Wintermantel E. Umbilical Cord Stromal Cells (UCSC). DER ORTHOPADE 2004; 33:1338-45. [PMID: 15455199 DOI: 10.1007/s00132-004-0730-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The identification of appropriate cell types is necessary to establish cell-based therapies in regenerative medicine. These cell types must (1) be available in an appropriate amount, (2) be easy to obtain, (3) be sufficiently expandable in vitro, and (4) fit to or at least be able to differentiate into the required cell type. Since the umbilical cord is available without any intervention and represents a notable amount of tissue, we consider it to be a promising source for isolating cells for cell-based therapies. This study demonstrates that umbilical cord stromal cells (UCSC), the connective tissue cells of the umbilical cord, can be isolated in sufficient quantities and be well expanded. UCSC feature phenotypic plasticity and thus are functionally similar to stem cells. UCSC can be differentiated into cells with osteoblastic properties (expression of alkaline phosphatase, formation of bone nodules). It is concluded that the umbilical cord should no longer be regarded as valueless tissue and be unthinkingly discarded. Instead, it should be considered a valuable resource for the isolation of potent cells for cell-based therapies, especially for treatment of bone defects.
Collapse
Affiliation(s)
- M Eblenkamp
- Zentralinstitut für Medizintechnik der TU München.
| | | | | | | | | | | | | | | |
Collapse
|