1
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
2
|
Yang T, Ou J, Yildirim E. Xist exerts gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Nat Commun 2022; 13:4464. [PMID: 35915095 PMCID: PMC9343370 DOI: 10.1038/s41467-022-32273-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally delete Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HSPCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis. Here the authors investigate the functional relevance of X-chromosome inactivation (XCI) regulator Xist in hematopoiesis. They find that Xist loss leads to changes in the ratio of hematopoietic progenitor cells and results in chromatin accessibility and transcriptional upregulation on the inactive X chromosome, including XCI escape genes known to be associated with cell cycle and immune response.
Collapse
Affiliation(s)
- Tianqi Yang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA
| | - Eda Yildirim
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA. .,Duke Regeneration Center, Duke University, Durham, NC, 27710, USA. .,Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Aprile M, Katopodi V, Leucci E, Costa V. LncRNAs in Cancer: From garbage to Junk. Cancers (Basel) 2020; 12:E3220. [PMID: 33142861 PMCID: PMC7692075 DOI: 10.3390/cancers12113220] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Sequencing-based transcriptomics has significantly redefined the concept of genome complexity, leading to the identification of thousands of lncRNA genes identification of thousands of lncRNA genes whose products possess transcriptional and/or post-transcriptional regulatory functions that help to shape cell functionality and fate. Indeed, it is well-established now that lncRNAs play a key role in the regulation of gene expression through epigenetic and posttranscriptional mechanims. The rapid increase of studies reporting lncRNAs alteration in cancers has also highlighted their relevance for tumorigenesis. Herein we describe the most prominent examples of well-established lncRNAs having oncogenic and/or tumor suppressive activity. We also discuss how technical advances have provided new therapeutic strategies based on their targeting, and also report the challenges towards their use in the clinical settings.
Collapse
Affiliation(s)
- Marianna Aprile
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| | - Vicky Katopodi
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KULeuven, LKI, Herestraat 49, 3000 Leuven, Belgium; (V.K.); (E.L.)
| | - Valerio Costa
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, CNR, 80131 Naples, Italy;
| |
Collapse
|
4
|
Transmission of X-linked Ovarian Cancer: Characterization and Implications. Diagnostics (Basel) 2020; 10:diagnostics10020090. [PMID: 32046210 PMCID: PMC7167857 DOI: 10.3390/diagnostics10020090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
We recently reported evidence that a strong, BRCA-independent locus on the X-chromosome may contribute to ovarian cancer predisposition in families ascertained from the Familial Ovarian Cancer Registry (Buffalo, NY, USA). While it has been estimated that approximately 20% of all ovarian cancer cases are hereditary, it is possible that a significant proportion of cases previously believed to be sporadic may, in fact, be X-linked. Such X-linked disease has a distinct pattern; it implies that a father will necessarily pass a risk allele to each of his daughters, increasing the prevalence of cancers clustered within a family. X-chromosome inactivation further influences the expression of X-linked alleles and may represent a novel target for screening and therapy. Herein, we review the current literature regarding X-linked ovarian cancer and interpret allele transmission-based models to characterize X-linked ovarian cancer and develop a framework for clinical and epidemiological familial ascertainment to inform the design of future studies.
Collapse
|
5
|
Winham SJ, Larson NB, Armasu SM, Fogarty ZC, Larson MC, McCauley BM, Wang C, Lawrenson K, Gayther S, Cunningham JM, Fridley BL, Goode EL. Molecular signatures of X chromosome inactivation and associations with clinical outcomes in epithelial ovarian cancer. Hum Mol Genet 2019; 28:1331-1342. [PMID: 30576442 DOI: 10.1093/hmg/ddy444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022] Open
Abstract
X chromosome inactivation (XCI) is a key epigenetic gene expression regulatory process, which may play a role in women's cancer. In particular tissues, some genes are known to escape XCI, yet patterns of XCI in ovarian cancer (OC) and their clinical associations are largely unknown. To examine XCI in OC, we integrated germline genotype with tumor copy number, gene expression and DNA methylation information from 99 OC patients. Approximately 10% of genes showed different XCI status (either escaping or being subject to XCI) compared with the studies of other tissues. Many of these genes are known oncogenes or tumor suppressors (e.g. DDX3X, TRAPPC2 and TCEANC). We also observed strong association between cis promoter DNA methylation and allele-specific expression imbalance (P = 2.0 × 10-10). Cluster analyses of the integrated data identified two molecular subgroups of OC patients representing those with regulated (N = 47) and dysregulated (N = 52) XCI. This XCI cluster membership was associated with expression of X inactive specific transcript (P = 0.002), a known driver of XCI, as well as age, grade, stage, tumor histology and extent of residual disease following surgical debulking. Patients with dysregulated XCI (N = 52) had shorter time to recurrence (HR = 2.34, P = 0.001) and overall survival time (HR = 1.87, P = 0.02) than those with regulated XCI, although results were attenuated after covariate adjustment. Similar findings were observed when restricted to high-grade serous tumors. We found evidence of a unique OC XCI profile, suggesting that XCI may play an important role in OC biology. Additional studies to examine somatic changes with paired tumor-normal tissue are needed.
Collapse
Affiliation(s)
- Stacey J Winham
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nicholas B Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sebastian M Armasu
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zachary C Fogarty
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Melissa C Larson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Brian M McCauley
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kate Lawrenson
- Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon Gayther
- Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Julie M Cunningham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Brooke L Fridley
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA
| | - Ellen L Goode
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Li W, Ren Y, Si Y, Wang F, Yu J. Long non-coding RNAs in hematopoietic regulation. CELL REGENERATION 2018; 7:27-32. [PMID: 30671227 PMCID: PMC6326246 DOI: 10.1016/j.cr.2018.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 02/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) have crucial roles via tethering with DNA, RNA or protein in diverse biological processes. These lncRNA-mediated interactions enhance gene regulatory networks and modulate a wide range of downstream genes. It has been demonstrated that several lncRNAs act as key regulators in hematopoiesis. This review highlights the roles of lncRNAs in normal hematopoietic development and discusses how lncRNA dysregulation correlates with disease prognoses and phenotypes.
Collapse
Affiliation(s)
- Weiqian Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), Peking Union Medical College (PUMC), Beijing, 100005, China.,Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
7
|
Bautista F, Fioravantti V, Hernández C, de Prada I, López-Pino MÁ, Ramírez M, Madero L, Moreno L. Glioblastoma, 47XXY/45,X mosaicism, and hyperpigmented skin lesions. Pediatr Blood Cancer 2018; 65:e27299. [PMID: 30010240 DOI: 10.1002/pbc.27299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Francisco Bautista
- Clinical Research Unit, Pediatric Oncology, Hematology and Stem Cell Transplant Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Victoria Fioravantti
- Clinical Research Unit, Pediatric Oncology, Hematology and Stem Cell Transplant Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Carmen Hernández
- Clinical Research Unit, Pediatric Oncology, Hematology and Stem Cell Transplant Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Inmaculada de Prada
- Pathology Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Manuel Ramírez
- Clinical Research Unit, Pediatric Oncology, Hematology and Stem Cell Transplant Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Luis Madero
- Clinical Research Unit, Pediatric Oncology, Hematology and Stem Cell Transplant Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Lucas Moreno
- Clinical Research Unit, Pediatric Oncology, Hematology and Stem Cell Transplant Department, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| |
Collapse
|
8
|
Affiliation(s)
- Chao-Po Lin
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| | - Lin He
- Division of Cellular and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94705
| |
Collapse
|
9
|
Robert Finestra T, Gribnau J. X chromosome inactivation: silencing, topology and reactivation. Curr Opin Cell Biol 2017; 46:54-61. [PMID: 28236732 DOI: 10.1016/j.ceb.2017.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 01/22/2023]
Abstract
To ensure X-linked gene dosage compensation between females (XX) and males (XY), one X chromosome undergoes X chromosome inactivation (XCI) in female cells. This process is tightly regulated throughout development by many different factors, with Xist as a key regulator, encoding a long non-coding RNA, involved in establishment of several layers of repressive epigenetic modifications. Several recent studies on XCI focusing on identification and characterization of Xist RNA-protein interactors, revealed new factors involved in gene silencing, genome topology and nuclear membrane attachment, amongst others. Also, new insights in higher order chromatin organization have been presented, revealing differences between the topological organization of active and inactive X chromosomes (Xa and Xi), with associated differences in gene expression. Finally, further evidence indicates that the inactive state of the Xi can be (partially) reversed, and that this X chromosome reactivation (XCR) might be associated with disease.
Collapse
Affiliation(s)
- Teresa Robert Finestra
- Department of Developmental Biology, Erasmus MC, Wytemaweg 80, Rotterdam CN 3015, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Wytemaweg 80, Rotterdam CN 3015, The Netherlands.
| |
Collapse
|
10
|
Yang T, Yildirim E. Epigenetic and LncRNA-Mediated Regulation of X Chromosome Inactivation and Its Impact on Pathogenesis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Richard JLC, Ogawa Y. Understanding the Complex Circuitry of lncRNAs at the X-inactivation Center and Its Implications in Disease Conditions. Curr Top Microbiol Immunol 2015; 394:1-27. [PMID: 25982976 DOI: 10.1007/82_2015_443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Balanced gene expression is a high priority in order to maintain optimal functioning since alterations and variations could result in acute consequences. X chromosome inactivation (X-inactivation) is one such strategy utilized by mammalian species to silence the extra X chromosome in females to uphold a similar level of expression between the two sexes. A functionally versatile class of molecules called long noncoding RNA (lncRNA) has emerged as key regulators of gene expression and plays important roles during development. An lncRNA that is indispensable for X-inactivation is X-inactive specific transcript (Xist), which induces a repressive epigenetic landscape and creates the inactive X chromosome (Xi). With recent advents in the field of X-inactivation, novel positive and negative lncRNA regulators of Xist such as Jpx and Tsix, respectively, have broadened the regulatory network of X-inactivation. Xist expression failure or dysregulation has been implicated in producing developmental anomalies and disease states. Subsequently, reactivation of the Xi at a later stage of development has also been associated with certain tumors. With the recent influx of information about lncRNA biology and advancements in methods to probe lncRNA, we can now attempt to understand this complex network of Xist regulation in development and disease. It has become clear that the presence of an extra set of genes could be fatal for the organism. Only by understanding the precise ways in which lncRNAs function can treatments be developed to bring aberrations under control. This chapter summarizes our current understanding and knowledge with regard to how lncRNAs are orchestrated at the X-inactivation center (Xic), with a special focus on how genetic diseases come about as a consequence of lncRNA dysregulation.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yuya Ogawa
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
12
|
Olivier-Van Stichelen S, Hanover JA. X-inactivation normalizes O-GlcNAc transferase levels and generates an O-GlcNAc-depleted Barr body. Front Genet 2014; 5:256. [PMID: 25136351 PMCID: PMC4120696 DOI: 10.3389/fgene.2014.00256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/11/2014] [Indexed: 11/13/2022] Open
Abstract
O-GlcNAc Transferase (OGT) catalyzes protein O-GlcNAcylation, an abundant and dynamic nuclear and cytosolic modification linked to epigenetic regulation of gene expression. The steady-state levels of O-GlcNAc are influenced by extracellular glucose concentrations suggesting that O-GlcNAcylation may serve as a metabolic sensor. Intriguingly, human OGT is located on the X-chromosome (Xq13) close to the X-inactivation center (XIC), suggesting that OGT levels may be controlled by dosage compensation. In human female cells, dosage compensation is accomplished by X-inactivation. Long noncoding RNAs and polycomb repression act together to produce an inactive X chromosome, or Barr body. Given that OGT has an established role in polycomb repression, it is uniquely poised to auto-regulate its own expression through X-inactivation. In this study, we examined OGT expression in male, female and triple-X female human fibroblasts, which differ in the number of inactive X chromosomes (Xi). We demonstrate that OGT is subjected to random X-inactivation in normal female and triple X cells to regulate OGT RNA levels. In addition, we used chromatin isolation by RNA purification (ChIRP) and immunolocalization to examine O-GlcNAc levels in the Xi/Barr body. Despite the established role of O-GlcNAc in polycomb repression, OGT and target proteins bearing O-GlcNAc are largely depleted from the highly condensed Barr body. Thus, while O-GlcNAc is abundantly present elsewhere in the nucleus, its absence from the Barr body suggests that the transcriptional quiescence of the Xi does not require OGT or O-GlcNAc.
Collapse
Affiliation(s)
- Stéphanie Olivier-Van Stichelen
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health Bethesda, MD, USA
| | - John A Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health Bethesda, MD, USA
| |
Collapse
|
13
|
Tanaka T, Koie T, Iwabuchi I, Ogasawara M, Kawaguchi T, Ohyama C. Primary leiomyosarcoma of a horseshoe kidney in a woman with Turner syndrome: a case report. BMC Res Notes 2014; 7:491. [PMID: 25090932 PMCID: PMC4124479 DOI: 10.1186/1756-0500-7-491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 07/28/2014] [Indexed: 01/15/2023] Open
Abstract
Background Turner syndrome is characterized by complete or partial X-chromosome monosomy and has various clinical features, including horseshoe kidney. Leiomyosarcoma is an extremely rare tumor that accounts for only 0.1% of all invasive renal tumors. Case presentation A 50-year-old Japanese woman presented at a community hospital with a chief complaint of abdominal pain. Computed tomography revealed a horseshoe kidney with a hypovascular tumor (size, 9 × 7 cm) showing calcification in the upper pole of the right kidney. Open right heminephrectomy and division of the isthmus were performed. Histological examination revealed alternating fascicles of spindle cells with blunt ended non-tapering nuclei and eosinophilic cytoplasm. The tumor had high mitotic activity with a mitotic count of 8 mitoses/10 high-power fields. On the basis of these findings, we diagnosed the patient as having leiomyosarcoma. Conclusion Primary leiomyosarcoma of the horseshoe kidney in a patient with Turner syndrome is a very rare occurrence.
Collapse
Affiliation(s)
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, 5 Zaifucho, Hirosaki 036-8562, Japan.
| | | | | | | | | |
Collapse
|
14
|
Olivier-Van Stichelen S, Abramowitz LK, Hanover JA. X marks the spot: does it matter that O-GlcNAc transferase is an X-linked gene? Biochem Biophys Res Commun 2014; 453:201-7. [PMID: 24960196 DOI: 10.1016/j.bbrc.2014.06.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 01/07/2023]
Abstract
O-GlcNAcylation has emerged as a critical post-translational modification important for a wide array of cellular processes. This modification has been identified on a large pool of intracellular proteins that have wide-ranging roles, including transcriptional regulation, cell cycle progression, and signaling, among others. Interestingly, in mammals the single gene encoding O-GlcNAc Transferase (OGT) is located on the X-chromosome near the Xist locus suggesting that tight dosage regulation is necessary for normal development. Herein, we highlight the importance of OGT dosage and consider how its genomic location can contribute to a gender-specific increased risk for a number of diseases.
Collapse
Affiliation(s)
- Stéphanie Olivier-Van Stichelen
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - Lara K Abramowitz
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - John A Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Han BW, Chen YQ. Potential pathological and functional links between long noncoding RNAs and hematopoiesis. Sci Signal 2013; 6:re5. [PMID: 23962981 DOI: 10.1126/scisignal.2004099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differential abundance and activity of long noncoding RNAs (lncRNAs) are recognized as the hallmark features in various diseases. We highlight the lncRNAs that play a functional role in the development of blood cells. Many lncRNAs and the protein complexes within which they interact have been implicated in various types of cancers. Multiple lncRNAs participate in normal and may be implicated in malignant hematopoiesis associated with blood cell cancers, such as leukemia, by regulating gene expression through such mechanisms as redirecting chromatin remodeling complexes and activating epigenetic silencing, either of which can inactivate tumor suppressor genes or activate oncogenes. Because of their potential importance in cancers of the blood, lncRNAs may be useful as diagnostic and prognostic markers, and it may be possible to develop lncRNA-mediated therapy.
Collapse
Affiliation(s)
- Bo-Wei Han
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | | |
Collapse
|
16
|
Lee JT, Bartolomei MS. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 2013; 152:1308-23. [PMID: 23498939 DOI: 10.1016/j.cell.2013.02.016] [Citation(s) in RCA: 503] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Indexed: 12/22/2022]
Abstract
X chromosome inactivation and genomic imprinting are classic epigenetic processes that cause disease when not appropriately regulated in mammals. Whereas X chromosome inactivation evolved to solve the problem of gene dosage, the purpose of genomic imprinting remains controversial. Nevertheless, the two phenomena are united by allelic control of large gene clusters, such that only one copy of a gene is expressed in every cell. Allelic regulation poses significant challenges because it requires coordinated long-range control in cis and stable propagation over time. Long noncoding RNAs have emerged as a common theme, and their contributions to diseases of imprinting and the X chromosome have become apparent. Here, we review recent advances in basic biology, the connections to disease, and preview potential therapeutic strategies for future development.
Collapse
Affiliation(s)
- Jeannie T Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
17
|
Yildirim E, Kirby JE, Brown DE, Mercier FE, Sadreyev RI, Scadden DT, Lee JT. Xist RNA is a potent suppressor of hematologic cancer in mice. Cell 2013; 152:727-42. [PMID: 23415223 PMCID: PMC3875356 DOI: 10.1016/j.cell.2013.01.034] [Citation(s) in RCA: 373] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 12/04/2012] [Accepted: 01/23/2013] [Indexed: 02/06/2023]
Abstract
X chromosome aneuploidies have long been associated with human cancers, but causality has not been established. In mammals, X chromosome inactivation (XCI) is triggered by Xist RNA to equalize gene expression between the sexes. Here we delete Xist in the blood compartment of mice and demonstrate that mutant females develop a highly aggressive myeloproliferative neoplasm and myelodysplastic syndrome (mixed MPN/MDS) with 100% penetrance. Significant disease components include primary myelofibrosis, leukemia, histiocytic sarcoma, and vasculitis. Xist-deficient hematopoietic stem cells (HSCs) show aberrant maturation and age-dependent loss. Reconstitution experiments indicate that MPN/MDS and myelofibrosis are of hematopoietic rather than stromal origin. We propose that Xist loss results in X reactivation and consequent genome-wide changes that lead to cancer, thereby causally linking the X chromosome to cancer in mice. Thus, Xist RNA not only is required to maintain XCI but also suppresses cancer in vivo.
Collapse
Affiliation(s)
- Eda Yildirim
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Gottlieb B, Alvarado C, Wang C, Gharizadeh B, Babrzadeh F, Richards B, Batist G, Basik M, Beitel LK, Trifiro M. Making sense of intratumor genetic heterogeneity: altered frequency of androgen receptor CAG repeat length variants in breast cancer tissues. Hum Mutat 2013; 34:610-8. [PMID: 23377847 DOI: 10.1002/humu.22287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 01/14/2013] [Indexed: 11/07/2022]
Abstract
To examine the significance of intratumor genetic heterogeneity (ITGH) of the androgen receptor (AR) gene in breast cancer, patient-matched samples of laser capture microdissected breast tumor cells, adjacent normal breast epithelia cells, and peripheral blood leukocytes were sequenced using a novel next generation sequencing protocol. This protocol measured the frequency of distribution of a variable AR CAG repeat length, a functional polymorphism associated with breast cancer risk. All samples exhibited some degree of ITGH with up to 30 CAG repeat length variants identified. Each type of tissue exhibited a different distribution profile of CAG repeat lengths with substantial differences in the frequencies of zero and 18-25 CAG AR variants. Tissue differences in the frequency of ARs with each of these CAG repeat lengths were significant as measured by paired, twin t-tests. These results suggest that preferential selection of 18-25 CAG repeat length variants in breast tumors may be associated with breast cancer, and support the observation that shorter CAG repeats may protect against breast cancer. They also suggest that merely identifying variant genes will be insufficient to determine the critical mutational events of oncogenesis, which will require measuring the frequency of distribution of mutations within cancerous and matching normal tissues.
Collapse
Affiliation(s)
- Bruce Gottlieb
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cancer cells silence autosomal tumor suppressor genes by Knudson's two-hit mechanism in which loss-of-function mutations and then loss of heterozygosity occur at the tumor suppressor gene loci. However, the identification of X-linked tumor suppressor genes has challenged the traditional theory of 'two-hit inactivation' in tumor suppressor genes, introducing the novel concept that a single genetic hit can cause loss of tumor suppressor function. The mechanism through which these genes are silenced in human cancer is unclear, but elucidating the details will greatly enhance our understanding of the pathogenesis of human cancer. Here, we review the identification of X-linked tumor suppressor genes and discuss the potential mechanisms of their inactivation. In addition, we also discuss how the identification of X-linked tumor suppressor genes can potentially lead to new approaches in cancer therapy.
Collapse
Affiliation(s)
- Runhua Liu
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| | - Mandy Kain
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Lizhong Wang
- Division of Immunotherapy, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Department of Genetics, School of Medicine, University of Alabama at Birmingham and Comprehensive Cancer Center, Birmingham, AL, USA
| |
Collapse
|
20
|
Rohozinski J, Anderson ML, Broaddus RE, Edwards CL, Bishop CE. Spermatogenesis associated retrogenes are expressed in the human ovary and ovarian cancers. PLoS One 2009; 4:e5064. [PMID: 19333399 PMCID: PMC2660244 DOI: 10.1371/journal.pone.0005064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 02/06/2009] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer is the second most prevalent gynecologic cancer in women. However, it is by far the most lethal. This is generally attributed to the absence of easily detectable markers specific to ovarian cancers that can be used for early diagnosis and specific therapeutic targets. Methodology/Principal Findings Using end point PCR we have found that a family of retrogenes, previously thought to be expressed only in the male testis during spermatogenesis in man, are also expressed in normal ovarian tissue and a large percentage of ovarian cancers. In man there are at least eleven such autosomal retrogenes, which are intronless copies of genes on the X chromosome, essential for normal spermatogenesis and expressed specifically in the human testis. We tested for the expression of five of the known retrogenes, UTP14C, PGK2, RPL10L, RPL39L and UBL4B in normal human ovary and ovarian cancers. Conclusions/Significance We propose that the activation of the testis specific retrogenes in the ovary and ovarian cancers is of biological significance in humans. Because these retrogenes are specifically expressed in the ovary and ovarian cancers in the female they may prove useful in developing new diagnostic and/or therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Jan Rohozinski
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | |
Collapse
|
21
|
Sun Y, Wu J, Wu SH, Thakur A, Bollig A, Huang Y, Liao DJ. Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat 2008; 118:185-96. [PMID: 18777135 DOI: 10.1007/s10549-008-0171-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/21/2008] [Indexed: 12/19/2022]
Abstract
c-Myc is a transcription factor overexpression of which induces mammary cancer in transgenic mice. To explore whether certain microRNAs (mirRNA) mediate c-Myc induced mammary carcinogenesis, we studied mirRNA expression profile in mammary tumors developed from MMTV-c-myc transgenic mice, and found 50 and 59 mirRNAs showing increased and decreased expression, respectively, compared with lactating mammary glands of wild type mice. Twenty-four of these mirRNAs could be grouped into eight clusters because they had the same chromosomal localizations and might be processed from the same primary RNA transcripts. The increased expression of mir-20a, mir-20b, and mir-9 as well as decreased expression of mir-222 were verified by RT-PCR, real-time RT-PCR, and cDNA sequencing. Moreover, we fortuitously identified a novel non-coding RNA, the level of which was decreased in proliferating mammary glands of MMTV-c-myc mice was further decreased to undetectable level in the mammary tumors. Sequencing of this novel RNA revealed that it was transcribed from a region of mouse chromosome 19 that harbored the metastasis associated lung adenocarcinoma transcript-1 (Malat-1), a non-protein-coding gene. These results suggest that certain mirRNAs and the chromosome 19 derived non-coding RNAs may mediate c-myc induced mammary carcinogenesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Viral/genetics
- Chromosome Mapping
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Neoplastic
- Genes, myc
- Lactation/genetics
- Mammary Glands, Animal/metabolism
- Mammary Neoplasms, Experimental/genetics
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
Collapse
Affiliation(s)
- Yuan Sun
- Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Upregulation of c-myc gene accompanied by PU.1 deficiency in radiation-induced acute myeloid leukemia in mice. Exp Hematol 2008; 36:871-85. [PMID: 18375040 DOI: 10.1016/j.exphem.2008.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 12/30/2007] [Accepted: 01/28/2008] [Indexed: 11/20/2022]
Abstract
OBJECTIVE High-dose radiation exposure induces acute myeloid leukemia (AML) in C3H mice, most of which have a frequent hemizygous deletion around the D2Mit15 marker on chromosome 2. This region includes PU.1, a critical candidate gene for initiation of leukemogenesis. To identify novel cooperative genes with PU.1, relevant to radiation-induced leukemogenesis, we analyzed the copy number alterations of tumor-related gene loci by array CGH, and their expressions in primary and transplanted AMLs. MATERIALS AND METHODS For the induction of AMLs, C3H/He Nrs mice were exposed to 3 Gy of x-rays or gamma-rays. The genomic alterations of 35 primary AMLs and 34 transplanted AMLs obtained from the recipient mice transplanted the primary AMLs were analyzed by array CGH. According to the genomic alterations and mutations of the 235th arginine of PU.1 allele, we classified the radiogenic AMLs into three types such as Chr2(del) PU.1(del/R235-) AML, Chr2(del) PU.1(del/R235+) AML and Chr2(intact) PU.1(R235+/R235+) AML, to compare the expression levels of 8 tumor-related genes quantitatively by real-time polymerase chain reaction and cell-surface antigen expression. Results. In addition to well-known loss of PU.1 with hemizygous deletion of chromosome 2, novel genomic alterations such as partial gain of chromosome 6 were recurrently detected in AMLs. In this study, we found similarity between cell-surface antigen expressions of bone marrows and those of spleens in AML mice and significantly higher expressions of c-myc and PU.1 expression, especially in the PU.1-deficient (Chr2(del) PU.1(del/R235-)) AML and Chr2(del) PU.1(del/R235+) compared to Chr2(intact) PU.1(R235+/R235+) AMLs. CONCLUSION The new finding on upregulation of c-myc and PU.1 in both and hemizygous PU.1-deficient AMLs and different genomic alterations detected by array CGH suggests that the molecular mechanism for development of radiation-induced AML should be different among three types of AML.
Collapse
|
23
|
Abstract
BACKGROUND Turner syndrome, one of the most common cytogenetic abnormalities, is characterised by complete or partial X-chromosome monosomy. Cancer risks in women with Turner syndrome have not been clearly established. We aimed to compare the risk of cancer in women with this syndrome with that of the general population. METHODS We formed a national cohort of 3425 women who were cytogenetically diagnosed with Turner syndrome in Great Britain between 1959 and 2002. Identifying information for these patients was sent to the National Health Service Central Register (NHSCR) for England and Wales and to the NHSCR for Scotland. Individuals who were identified on this register were followed-up for cancer incidence. Standardised incidence ratios (SIRs) and 95% CIs were calculated on the basis of the number of cancers observed compared with that expected based on national incidence rates. Cumulative risk estimates were obtained by use of the Kaplan-Meier method. FINDINGS A total of 58,299 person-years were accrued during the study, with a mean of 17.0 years (SD 8.6) follow-up per patient. 73 malignancies other than non-melanoma skin cancer occurred (SIR 0.9 [95% CI 0.7-1.2]). Risks were significantly increased for tumours of the CNS (n=13; 4.3 [2.3-7.4]), especially for meningioma (n=7; 12.0 [4.8-24.8]) and childhood brain tumours (n=3; 10.3 [2.1-30.1]), and for cancers of the bladder and urethra (n=5; 4.0 [1.3-9.2]) and eye (n=2; 10.5 [1.3-37.9]), compared with the general population. However, the risk of breast cancer was significantly decreased (n=10; 0.3 [0.2-0.6]). The SIR for cutaneous melanoma was 2.2 (95% CI 1.0-4.4; n=8), and one of the ocular cancers was a melanoma. The risk of corpus uteri cancer was significantly increased at ages 15-44 years (n=3; 8.0 [1.6-23.2]). During follow-up, five women, all with a Y-chromosome lineage, developed gonadoblastoma of the ovary, corresponding to a cumulative risk of 7.9% (95% CI 3.1-19.0) by age 25 years in this group. INTERPRETATION This study shows that, in addition to having an increased risk of gonadoblastoma, women with Turner syndrome seem to be at increased risk for meningioma and childhood brain tumours, and possibly bladder cancer, melanoma, and corpus uteri cancer, but are at a decreased risk for breast cancer. Reasons for these risks might relate to genetic and hormonal factors or to the effects of hormonal treatments given to women with Turner syndrome.
Collapse
|
24
|
Thakur A, Rahman KW, Wu J, Bollig A, Biliran H, Lin X, Nassar H, Grignon DJ, Sarkar FH, Liao JD. Aberrant expression of X-linked genes RbAp46, Rsk4, and Cldn2 in breast cancer. Mol Cancer Res 2007; 5:171-81. [PMID: 17314274 DOI: 10.1158/1541-7786.mcr-06-0071] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The consequence of activation status or gain/loss of an X-chromosome in terms of the expression of tumor suppressor genes or oncogenes in breast cancer has not been clearly addressed. In this study, we investigated the activation status of the X-chromosomes in a panel of human breast cancer cell lines, human breast carcinoma, and adjacent mammary tissues and a panel of murine mammary epithelial sublines ranging from low to high invasive potentials. Results show that most human breast cancer cell lines were homozygous, but both benign cell lines were heterozygous for highly polymorphic X-loci (IDS and G6PD). On the other hand, 60% of human breast carcinoma cases were heterozygous for either IDS or G6PD markers. Investigation of the activation status of heterozygous cell lines revealed the presence of only one active X-chromosome, whereas most heterozygous human breast carcinoma cases had two active X-chromosomes. Furthermore, we determined whether or not an additional active X-chromosome affects expression levels of tumor suppressor genes and oncogenes. Reverse transcription-PCR data show high expression of putative tumor suppressor genes Rsk4 and RbAp46 in 47% and 79% of breast carcinoma cases, respectively, whereas Cldn2 was down-regulated in 52% of breast cancer cases compared with normal adjacent tissues. Consistent with mRNA expression, immunostaining for these proteins also showed a similar pattern. In conclusion, our data suggest that high expression of RbAp46 is likely to have a role in the development or progression of human breast cancer. The activation status of the X-chromosome may influence the expression levels of X-linked oncogenes or tumor suppressor genes.
Collapse
Affiliation(s)
- Archana Thakur
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, 110 East Warren Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Thakur A, Xu H, Wang Y, Bollig A, Biliran H, Liao JD. The role of X-linked genes in breast cancer. Breast Cancer Res Treat 2006; 93:135-43. [PMID: 16187233 DOI: 10.1007/s10549-005-4516-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
While contribution of X chromosome in the susceptibility of prostate and ovarian cancer has been demonstrated, the role of X-linked genes in breast carcinogenesis is not clearly known. This study investigated and compared the X-linked gene expression profiles of MMTV-c-myc transgenic mammary tumor (MT) or MMTV-c-myc/MT-tgf-alpha double transgenic mouse mammary tumor (DT) to lactating mammary gland. cDNA microarray analysis using the Affymetrix system identified 1081 genes localized on the X chromosome with 174 and 194 genes at +/-2-fold change levels in MT and DT samples, respectively. Differentially expressed X-linked genes were predominantly related to chromatin structure/remodeling (e.g., Hdac8, Suv39h1, RbAp46 and Adr1), segregation (e.g., CENP-I and smc111) and, ribosomal biogenesis and translational control (e.g., Dkc1, Rpl44, Rpl39, Eif2s3x, Gspt2 and Rsk4). Confirmation of microarray data by semi-quantitative and quantitative RT-PCR in selected X-linked genes also showed similar pattern. In addition, the expression pattern of two chromosomal regions, XE3 and XF5, suggests that XE3 may have escaped from inactivation and XF5 subjected to inactivation. In conclusion, our data suggest that X-linked genes may play the key regulatory roles in the maintenance of chromatin structure, accurate chromosomal segregation and translational control; hence deregulation of X-linked genes may promote mammary gland tumorigenesis by promoting genetic instability and cell proliferation. Increased understanding of the role of X-linked genes and genetic pathways will provide the strategies to develop the molecular therapeutics to treat and prevent reproductive related cancers.
Collapse
Affiliation(s)
- Archana Thakur
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wood M, Udagawa T, Hida Y, D'Amato RJ. X-Linked Dominant Growth Suppression of Transplanted Tumors in C57BL/6J- scid Mice. Cancer Res 2005; 65:5690-5. [PMID: 15994943 DOI: 10.1158/0008-5472.can-04-3573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Tumor susceptibility, angiogenesis, and immune response differ between mouse strains. We, therefore, examined the growth rates of tumor xenografts in three genetically isolated strains of severe combined immunodeficient mice (C.B-17, C57BL/6J, and C3H). Tumors grew at significantly reduced rates in the C57BL/6J-scid strain. Engrafting bone marrow from the C57BL/6J-scid strain onto C.B-17-scid mice did not transfer the slow-growing tumor phenotype to the recipient mice; this counters the supposition that the slow-growing tumor phenotype is caused by a greater immune response to the xenograft in the C57BL/6J-scid strain. To establish the inheritance pattern of the slow-growing tumor phenotype, we reciprocally crossed C.B-17-scid mice and C57BL/6J-scid mice. Tumor growth was suppressed in all of the F1 progeny except the male mice derived from the cross between C.B-17-scid female and C57BL/6J-scid male mice. The F1 male mice that received the X chromosome from the C.B-17 strain displayed a fast-growing tumor phenotype. These results confirm that there are significant strain differences in capacity to support the growth of tumor xenografts. In addition, these results reveal the existence of a dominant allele involved in host suppression of tumor growth on the X chromosome of C57BL/6J mice.
Collapse
Affiliation(s)
- Mark Wood
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
27
|
D'Adda T, Bottarelli L, Azzoni C, Pizzi S, Bongiovanni M, Papotti M, Pelosi G, Maisonneuve P, Antonetti T, Rindi G, Bordi C. Malignancy-associated X chromosome allelic losses in foregut endocrine neoplasms: further evidence from lung tumors. Mod Pathol 2005; 18:795-805. [PMID: 15578070 DOI: 10.1038/modpathol.3800353] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Association of X chromosome allelic losses with tumor malignancy has been identified in foregut but not in midgut endocrine neoplasms. The aim of this study was to investigate the association of deletions on X chromosome with malignancy in lung neuroendocrine tumors, another family of foregut neoplasms comprising four categories with increased malignancy: typical and atypical carcinoids, large cell neuroendocrine and small cell lung carcinomas. To evaluate loss of heterozygosity, DNA extracted from nine typical carcinoids, 17 atypical carcinoids, six large cell neuroendocrine carcinomas and five small cell lung carcinomas was PCR-amplified for 18 microsatellite markers spanning the whole X chromosome. All tissue samples were formalin-fixed and paraffin-embedded. X chromosome losses were absent in typical carcinoids, whereas they were found in nine out of 17 atypical carcinoids and in five out of six large cell neuroendocrine carcinomas (involving 28 and 70% of informative loci, respectively). On the contrary, deletions on X chromosome were an extremely rare event in small cell lung carcinomas. In atypical carcinoids, the presence of losses was associated with larger tumor size, higher pT status and advanced stage. No death occurred in atypical carcinoid patients without deletions on X chromosome, whereas all atypical carcinoid patients who had died from disease showed allelic losses. In conclusion, X chromosome allelic losses, absent in benign 'typical' carcinoids, progressively increased in frequency from intermediate-grade 'atypical' carcinoids to high-grade large cell neuroendocrine carcinomas. These results extend the association of deletions on X chromosome with malignancy, already demonstrated in other foregut endocrine neoplasms, to lung neuroendocrine tumors. The absence of X chromosome allelic losses in small cell lung carcinomas underlines a striking difference from large cell neuroendocrine carcinomas, possibly linked to different pathogenetic mechanisms of these two highly aggressive neuroendocrine lung tumors.
Collapse
Affiliation(s)
- Tiziana D'Adda
- Department of Pathology and Laboratory Medicine, Section of Pathological Anatomy, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ding SL, Sheu LF, Yu JC, Yang TL, Chen BF, Leu FJ, Shen CY. Abnormality of the DNA double-strand-break checkpoint/repair genes, ATM, BRCA1 and TP53, in breast cancer is related to tumour grade. Br J Cancer 2004; 90:1995-2001. [PMID: 15138484 PMCID: PMC2409464 DOI: 10.1038/sj.bjc.6601804] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of the DNA double-strand-break (DSB) checkpoint/repair genes, ATM, BRCA1 and TP53, in sporadic breast cancer requires clarification, since ATM and BRCA1 mutations are rare in sporadic tumours. In an attempt to explain this phenomenon, we postulated that (i) in addition to genetic deletion, abnormal expression of DSB checkpoint/repair proteins might abolish the function of these genes and (ii) there might be a combined effect of individual defective genes during breast cancer pathogenesis. Using a largely homogenous group of 74 specimens of early-onset (⩽35 years of age) infiltrating ductal carcinomas, we examined associations between pathological grade and genetic deletion and/or abnormal protein expression of ATM, BRCA1 and TP53. The results showed that high-grade tumours displayed a high frequency of loss of heterozygosity (LOH) at, and/or abnormal expression of, ATM, BRCA1 and TP53. Multigenetic analysis showed abnormalities in BRCA1 to be independently associated with high-grade tumours. ATM and TP53 appeared to play an assistant role, abnormalities in these genes significantly increasing the possibility of poor differentiation in tumours with abnormalities in BRCA1. Furthermore, a higher number of abnormalities (LOH or abnormal expression) in these three genes correlated with poor tumour differentiation. Thus, this study suggests that combined changes in several DSB checkpoint/repair genes belonging to a common functional pathway are associated with breast cancer pathogenesis.
Collapse
Affiliation(s)
- S L Ding
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - L F Sheu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - J C Yu
- Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - T L Yang
- Department of Surgery, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - B F Chen
- Department of Pathology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - F J Leu
- Section of Pathology, Cardinal Tien Hospital and Fu-Jen Catholic University, Taipei 231, Taiwan
| | - C Y Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan. E-mail: .
| |
Collapse
|
29
|
Raudsepp T, Lee EJ, Kata SR, Brinkmeyer C, Mickelson JR, Skow LC, Womack JE, Chowdhary BP. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. Proc Natl Acad Sci U S A 2004; 101:2386-91. [PMID: 14983019 PMCID: PMC356960 DOI: 10.1073/pnas.0308513100] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|