1
|
Micheli L, Maggini V, Ciampi C, Gallo E, Bogani P, Fani R, Pistelli L, Ghelardini C, Di Cesare Mannelli L, De Leo M, Firenzuoli F. Echinacea purpurea against neuropathic pain: Alkamides versus polyphenols efficacy. Phytother Res 2022; 37:1911-1923. [PMID: 36578266 DOI: 10.1002/ptr.7709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022]
Abstract
Chemotherapy-induced neuropathy represents the main dose-limiting toxicity of several anticancer drugs, such as oxaliplatin, leading to chronic pain and an impairment of the quality of life. Echinacea purpurea n-hexane extract (EP4 -RE ; rich in alkamides) and butanolic extract (EP4 -RBU ; rich in polyphenols) have been characterized and tested in an in vivo model of oxaliplatin-induced neuropathic pain, addressing the endocannabinoid system with alkamides and counteracting the redox imbalance with polyphenols. Thermal hypersensitivity was evaluated by the Cold Plate test. EP4 -RE showed a dose-dependent anti-hyperalgesic profile. The extract was more effective than its main constituent, dodeca-2 E,4 E,8Z,10 E/Z-tetraenoic acid isobutylamide (18 mg kg-1 , twofold to equimolar EP4 -RE 30 mg kg-1 ), suggesting a synergy with other extract constituents. Administration of cannabinoid type 2 (CB2) receptor-selective antagonist completely blocked the anti-allodynic effect of EP4 -RE , differently from the antagonism of CB1 receptors. EP4 -RBU (30 mg kg-1 ) exhibited anti-neuropathic properties too. The effect was mainly exerted by chicoric acid, which administered alone (123 μg kg-1 , equimolar to EP4 -RBU 30 mg kg-1 ) completely reverted oxaliplatin-induced allodynia. A synergy between different polyphenols in the extract had not been highlighted. Echinacea extracts have therapeutic potential in the treatment of neuropathic pain, through both alkamides CB2-selective activity and polyphenols protective properties.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Valentina Maggini
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Clara Ciampi
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Eugenia Gallo
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| | - Patrizia Bogani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Renato Fani
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy
| | - Carla Ghelardini
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Department of Neurosciences, Psychology, Drug Research and Child Health-Neurofarba-Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Marinella De Leo
- Department of Pharmacy, University of Pisa, Pisa, Italy.,CISUP, Centre for Instrumentation Sharing Pisa University, Pisa, Italy
| | - Fabio Firenzuoli
- Research and Innovation Center in Phytotherapy and Integrated Medicine (CERFIT), Referring Center for Phytotherapy, Tuscany Region, Careggi University Hospital, Florence, Italy
| |
Collapse
|
2
|
The influence of Echinacea purpurea leaf microbiota on chicoric acid level. Sci Rep 2019; 9:10897. [PMID: 31350520 PMCID: PMC6659708 DOI: 10.1038/s41598-019-47329-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
The controversial anti-proliferative effects of Echinacea purpurea (L.) Moench (Asteraceae) might be related to different plant metabolites contained in plant samples, extracts and products. The influence of bacterial endophytes on the synthesis of bioactive compounds in the medicinal plants has been previously demonstrated but there are only few studies addressing anticancer effects and mechanisms of E. purpurea extracts following endophytic colonization. The present study aimed to test and compare the lactate dehydrogenase (LDH) inhibition potential of n-hexane and methanol extracts from in vitro endophyte non-inoculated and inoculated E. purpurea plants. An in vitro model was previously set up to perform the infection of axenic E. purpurea plants with bacterial endophytic strains isolated from E. purpurea aerial part. Only methanol extracts showed LDH5 inhibition, in particular the richest in chicoric acid and most strongly inhibiting extract was obtained from inoculated stem and leaves of E. purpurea (IC50 = 0.9 mg/ml). Chicoric acid showed an IC50 value (66.7 µM) in enzymatic assays better than that of the reference compound galloflavin. Modeling studies were carried out to suggest the putative interaction mode of chicoric acid in the enzyme active site. This in vitro model on plant-bacterial interaction may lead to obtain extracts from plants enriched in bioactive compounds and it is a new approach for the discovery of novel anticancer compounds.
Collapse
|
3
|
Liu Y, Qiu S, Wang L, Zhang N, Shi Y, Zhou H, Liu X, Shao L, Liu X, Chen J, Hou M. Reproductive and developmental toxicity study of caffeic acid in mice. Food Chem Toxicol 2018; 123:106-112. [PMID: 30366071 DOI: 10.1016/j.fct.2018.10.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/30/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022]
Abstract
Caffeic acid is an antioxidant commonly used to promote hematopoiesis and hemostasis. However, little is known about its systemic safety profile in reproduction and development. Here, we focused on the reproductive and developmental toxicity of caffeic acid in F0 female mice and F1 offspring. In the three-segment study, the F0 female mice were continuously exposed to 0, 0.15, 5 or 150 mg/kg/day of caffeic acid by gavage. We found that 5 mg/kg/day and 150 mg/kg/day of caffeic acid affected implantation of embryos when administered before gestation day 6. In addition, 150 mg/kg/day of caffeic acid affected fetal weight gain. No maternal toxicity, fetal teratogenesis or post-natal effects on pup development were observed. The no-observed-adverse-effect-level was 0.15 mg/kg/day for pregnant mice under the conditions of this study.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Shidong Qiu
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - Lingjun Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Na Zhang
- Qilu Medical College of Shandong University, Jinan, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xinguang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Xuena Liu
- Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, China
| | - Jian Chen
- Department of Hematology, Jining No. 1 People's Hospital, Jining, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Shandong University, Jinan, China; Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Bruni R, Brighenti V, Caesar LK, Bertelli D, Cech NB, Pellati F. Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J Pharm Biomed Anal 2018; 160:443-477. [DOI: 10.1016/j.jpba.2018.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/20/2018] [Accepted: 07/21/2018] [Indexed: 12/19/2022]
|
5
|
Rezaei E, Abedi M. Efficient Ultrasound-Assisted Extraction of Cichoric Acid from Echinacea purpurea Root. Pharm Chem J 2017. [DOI: 10.1007/s11094-017-1635-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Masullo M, Montoro P, Mari A, Pizza C, Piacente S. Medicinal plants in the treatment of women's disorders: Analytical strategies to assure quality, safety and efficacy. J Pharm Biomed Anal 2015; 113:189-211. [DOI: 10.1016/j.jpba.2015.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/25/2022]
|
7
|
Agatonovic-Kustrin S, Grace P, Morton D. Evaluation of high-performance thin-layer chromatography for the quantification of phenylpropanoids in commercial Echinaceaproducts. JPC-J PLANAR CHROMAT 2014. [DOI: 10.1556/jpc.27.2014.4.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Castro J, Krishna MVB, Choiniere JR, Marcus RK. Analysis of caffeic acid derivatives in echinacea extracts by liquid chromatography particle beam mass spectrometry (LC–PB/MS) employing electron impact and glow discharge ionization sources. Anal Bioanal Chem 2010; 397:1259-71. [DOI: 10.1007/s00216-010-3612-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 10/19/2022]
|
9
|
Wu C, Chen F, Wang X, Wu Y, Dong M, He G, Galyean RD, He L, Huang G. Identification of antioxidant phenolic compounds in feverfew (Tanacetum parthenium) by HPLC-ESI-MS/MS and NMR. PHYTOCHEMICAL ANALYSIS : PCA 2007; 18:401-10. [PMID: 17624900 DOI: 10.1002/pca.995] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antioxidant polyphenolic acids in the medicinal herb feverfew (Tanacetum parthenium) were isolated through in vitro bioassay-orientated antioxidant tests in response to 1,1-diphenyl-2-picrylhydrazyl (DPPH*) free radical scavenging and Fe(2+)-chelating activities. Purification of the active compounds and their structural elucidation involved a variety of techniques including open-column chromatography, HPLC, GC-MS, LC-MS and NMR. Major compounds with potent DPPH* scavenging activities were characterised as 3,5-, 4,5- and 3,4-di-O-caffeoylquinic acids (DCQAs). This is the first report of DCQAs found in feverfew.
Collapse
Affiliation(s)
- Changqing Wu
- Department of Food Science and Human Nutrition, Clemson University, Clemson, SC 29634, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:416-427. [PMID: 15751104 DOI: 10.1002/jms.804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to keep subscribers up-to-date with the latest developments in their field, John Wiley & Sons are providing a current awareness service in each issue of the journal. The bibliography contains newly published material in the field of mass spectrometry. Each bibliography is divided into 11 sections: 1 Books, Reviews & Symposia; 2 Instrumental Techniques & Methods; 3 Gas Phase Ion Chemistry; 4 Biology/Biochemistry: Amino Acids, Peptides & Proteins; Carbohydrates; Lipids; Nucleic Acids; 5 Pharmacology/Toxicology; 6 Natural Products; 7 Analysis of Organic Compounds; 8 Analysis of Inorganics/Organometallics; 9 Surface Analysis; 10 Environmental Analysis; 11 Elemental Analysis. Within each section, articles are listed in alphabetical order with respect to author (4 Weeks journals - Search completed at 12th. Jan. 2005).
Collapse
|
11
|
Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2005; 16:134-41. [PMID: 15929222 DOI: 10.1002/pca.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
|