Solid-State Stability Profiling of Ramipril to Optimize Its Quality Efficiency and Safety.
Pharmaceutics 2021;
13:pharmaceutics13101600. [PMID:
34683893 PMCID:
PMC8538641 DOI:
10.3390/pharmaceutics13101600]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
High global expenditure on out-of-label-date drugs, along with safety concerns associated with the accumulation of degradation impurities, justify the need for stability profiling. In this article, a comprehensive study on the solid-state stability of ramipril (RAM) was performed via isothermal methods under stress conditions. A validated stability-indicating HPLC protocol was used. The effects of various factors on the rate of RAM degradation were investigated, including: temperature, relative air humidity (RH), excipients (talc, starch, methylcellulose and hydroxypropyl methylcellulose), mode of tablet storage, and immediate packaging. The degradation impurities were also identified by HPLC–MS. It was found that RAM was unstable, and temperature accelerated its degradation. RAM was also vulnerable to RH changes, suggesting that it must be protected from moisture. The reaction followed first-order kinetics. The studied excipients stabilized RAM as a pure substance. The tableting process deteriorated its stability, explaining the need for appropriate immediate packaging. RAM in the form of tablets must be stored in blisters, and it cannot be crushed into two halves. The degradation impurities were ramiprilat and the diketopiperazine derivative.
Collapse