1
|
Yazdian-Robati R, Amiri E, Kamali H, Khosravi A, Taghdisi SM, Jaafari MR, Mashreghi M, Moosavian SA. CD44-specific short peptide A6 boosts cellular uptake and anticancer efficacy of PEGylated liposomal doxorubicin in vitro and in vivo. Cancer Nanotechnol 2023; 14:84. [DOI: 10.1186/s12645-023-00236-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/15/2023] [Indexed: 10/14/2024] Open
Abstract
AbstractAlthough liposomes have improved patient safety and the pharmacokinetic profile of free drugs, their therapeutic efficacy has only shown marginal improvement. The incorporation of active-targeted ligands to enhance cellular uptake has shown promise in preclinical studies. However, no active-targeted liposomes have successfully translated into clinical use thus far. This study aimed to evaluate the targeting ability and antitumor efficiency of A6, a specific short peptide (KPSSPPEE) when incorporated into PEGylated liposomal doxorubicin (PLD). The results revealed significantly enhanced cellular uptake. The cytotoxicity of the formulations was determined by 3 h and 6 h incubation of formulations with cells, followed by 48 h incubation to evaluate the targeted ability of the formulations and the results indicated the higher cytotoxicity of A6-PLD (IC50 of 7.52 µg/mL after 6 h incubation) in the CD44 overexpressing C26 cell line compared to non-targeted PLD (IC50 of 15.02 µg/mL after 6 h incubation). However, CD44-negative NIH-3T3 cells exhibited similar uptake and in vitro cytotoxicity for both A6-PLD (IC50 of 38.05 µg/mL) and PLD (IC50 of 34.87 µg/mL). In animal studies, A6-PLD demonstrated significantly higher tumor localization of doxorubicin (Dox) (~ 8 and 15 µg Dox/g tumor for 24 and 48 after injection) compared to PLD (~ 6 and 8 µg Dox/g tumor for 24 and 48 after injection), resulting in effective inhibition of tumor growth. The median survival time (MST) for Dextrose 5% was 10, PLD was 14 and A6-PLD was 22 days. In conclusion, A6-PLD, a simple and effective targeted liposome formulation, exhibits high potential for clinical translation. Its improved targetability and antitumor efficacy make it a promising candidate for future clinical applications.
Collapse
|
2
|
Carvalheiro M, Ferreira-Silva M, Holovanchuk D, Marinho HS, Moreira JN, Soares H, Corvo ML, Cruz MEM. Antagonist G-targeted liposomes for improved delivery of anticancer drugs in small cell lung carcinoma. Int J Pharm 2022; 612:121380. [PMID: 34915142 DOI: 10.1016/j.ijpharm.2021.121380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
Ligand-mediated targeted liposomes have the potential to increase therapeutic efficacy of anticancer drugs. This work aimed to evaluate the ability of antagonist G, a peptide targeting agent capable of blocking the action of multiple neuropeptides, to selectivity improve targeting and internalization of liposomal formulations (long circulating liposomes, LCL, and stabilized antisense lipid particles containing ionizable amino lipid, SALP) to H69 and H82 small cell lung carcinoma (SCLC) cell lines. Antagonist G-targeted LCL and SALP were prepared by two different methods (either by direct covalent linkage at activated PEG grafted onto the liposomal surface or by post-insertion of DSPE-PEG-antagonist-G-conjugates into pre-formed liposomes). Association of the liposomal formulations with target SCLC cells was studied by fluorescence microscopy using fluorescence-labelled liposomes and confirmed quantitatively with [3H]-CHE-labelled liposomes. An antisense oligodeoxynucleotide against the overexpressed oncogene c-myc(as(c-myc)) was efficiently loaded into SALP formulations, the encapsulation efficiency decreased due to the inclusion of the targeting ligand. Also, liposome size was affected by as(c-myc) physical chemical properties. The amount of antagonist G linked to the surface of the liposomal formulations was dependent on the coupling method and lipid composition used. Covalent attachment of antagonist G increased liposomes cellular association and internalization via receptor-mediated and clathrin-dependent endocytosis, as assessed in SCLC cell lines. Biodistribution studies in healthy mice revealed a preferential lung accumulation of antagonist G-targeted SALP as compared to the non-targeted counterpart. Lung levels of the former were up to 3-fold higher 24 h after administration, highlighting their potential to be used as delivery vectors for SCLC treatment.
Collapse
Affiliation(s)
- Manuela Carvalheiro
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Departamento de Farmácia, Farmacologia e Tecnologias em Saúde, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Margarida Ferreira-Silva
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Denys Holovanchuk
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - H Susana Marinho
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; UC - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Helena Soares
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal
| | - M Luisa Corvo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; Departamento de Farmácia, Farmacologia e Tecnologias em Saúde, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Maria Eugénia M Cruz
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
3
|
Singh A, Myklebust NN, Furevik SMV, Haugse R, Herfindal L. Immunoliposomes in Acute Myeloid Leukaemia Therapy: An Overview of Possible Targets and Obstacles. Curr Med Chem 2019; 26:5278-5292. [PMID: 31099318 DOI: 10.2174/0929867326666190517114450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/30/2022]
Abstract
Acute Myeloid Leukaemia (AML) is the neoplastic transformation of Hematopoietic Stem Cells (HSC) and relapsed disease is a major challenge in the treatment. Despite technological advances in the field of medicine and our heightened knowledge regarding the pathogenesis of AML, the initial therapy of "7+3" Cytarabine and Daunorubicin has remained mainly unchanged since 1973. AML is a disease of the elderly, and increased morbidity in this patient group does not allow the full use of the treatment and drug-resistant relapse is common. Nanocarriers are drug-delivery systems that can be used to transport drugs to the bone marrow and target Leukemic Stem Cells (LSC), conferring less side-effects compared to the free-drug alternative. Nanocarriers also can be used to favour the transport of drugs that otherwise would not have been used clinically due to toxicity and poor efficacy. Liposomes are a type of nanocarrier that can be used as a dedicated drug delivery system, which can also have active ligands on the surface in order to interact with antigens on the target cells or tissues. In addition to using small molecules, it is possible to attach antibodies to the liposome surface, generating so-called immunoliposomes. By using immunoliposomes as a drug-delivery system, it is possible to minimize the toxic side effects caused by the chemotherapeutic drug on healthy organs, and at the same time direct the drugs towards the remaining AML blasts and stem cells. This article aims to explore the possibilities of using immunoliposomes as a drug carrier in AML therapy. Emphasis will be on possible target molecules on the AML cells, leukaemic stem cells, as well as bone marrow constituents relevant to AML therapy. Further, some conditions and precautions that must be met for immunoliposomes to be used in AML therapy will be discussed.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Sarah Marie Vie Furevik
- Hospital pharmacies enterprise, Western Norway, Bergen, Norway.,Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ragnhild Haugse
- Hospital pharmacies enterprise, Western Norway, Bergen, Norway.,Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Zahmatkeshan M, Gheybi F, Rezayat SM, Jaafari MR. Improved drug delivery and therapeutic efficacy of PEgylated liposomal doxorubicin by targeting anti-HER2 peptide in murine breast tumor model. Eur J Pharm Sci 2016; 86:125-35. [PMID: 26972276 DOI: 10.1016/j.ejps.2016.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/14/2022]
Abstract
Targeted cancer therapy is a powerful therapeutic strategy to management of cancer. HER2 as an anticancer target has long been studied. Its overexpression plays an important role in the pathogenesis and progressiveness of breast and other cancers. To establish efficient and reliable drug delivery to HER2-overexpressing cells, the authors of this study have developed anti-HER2 (ErbB2) peptide-liposomal formulations of doxorubicin (DOX) by an engineered breast tumor-targeting peptide ligand, AHNP, Anti-HER2/neu peptide, (FCDGFYACYADV) with three glycine amino acids as spacer before its original sequencing. Towards this goal, PEGylated liposome doxorubicin (PLD) bearing different ligand densities of AHNP was prepared and characterized for their size, zeta potential and peptide conjugation. The AHNP functionalization and density effects on breast tumor cell uptake, selective cytotoxicity, prevention of tumor growth and the tissue biodistribution of encapsulated DOX were studied in mice bearing TUBO breast cancer tumor model. The findings demonstrated that increasing the ligand density of AHNP increases cytotoxicity and cell-uptake in SKBR3 and TUBO cells which overexpress HER2 but not in MDA-MB-231with low HER2 expression profile. The anticancer activity was also superior for targeted liposomal DOX with more AHNP densities. Overall, the results showed that optimum AHNP density functionalization of PLD can significantly improve selectivity and the therapeutic index of liposomal DOX in the treatment of HER2 positive breast cancer and merits further investigation.
Collapse
Affiliation(s)
- Masoumeh Zahmatkeshan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Fatemeh Gheybi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| |
Collapse
|
5
|
Arabi L, Badiee A, Mosaffa F, Jaafari MR. Targeting CD44 expressing cancer cells with anti-CD44 monoclonal antibody improves cellular uptake and antitumor efficacy of liposomal doxorubicin. J Control Release 2015; 220:275-286. [PMID: 26518722 DOI: 10.1016/j.jconrel.2015.10.044] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/03/2015] [Accepted: 10/24/2015] [Indexed: 12/19/2022]
Abstract
Although liposomes improve the safety and pharmacokinetic properties of free drugs, they have not sufficiently enhanced the therapeutic efficacy compared to them. To address this problem, targeted therapy of tumor cells holds great promise to further enhance therapeutic index and decreases off-target effects compared with non-targeted liposomes. In the context of antibody-mediated targeted cancer therapy, we evaluated the anti-tumor activity and therapeutic efficacy of Doxil, and that of Doxil modified with a monoclonal antibody (mAb) against CD44, which is one of the most well-known surface markers associated with Cancer Stem Cells (CSCs). Flow cytometry analyses and confocal laser scanning microscopy results showed significant enhanced cellular uptake of CD44-targeted Doxil (CD44-Doxil) in CD44-positive C-26 cells compared to Doxil. However, CD44-negative NIH-3T3 cells showed a similar uptake and in vitro cytotoxicity with both CD44-Doxil and non-targeted Doxil. In BALB/c mice bearing C-26 murine carcinoma, CD44-Doxil groups exhibited significantly higher doxorubicin concentration (than Doxil) inside the tumor cells, while their circulation time and distribution profile remained comparable. CD44-Doxil at doses of either 10 or 15 mg/kg resulted in superior tumor growth inhibition and higher inclination to tumor, indicating the potential of anti-CD44 mAb targeting in therapeutic efficacy improvement. This study provides proof-of-principle for actively tumor-targeting concept and merits further investigations.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/administration & dosage
- Antibiotics, Antineoplastic/chemistry
- Antibiotics, Antineoplastic/pharmacokinetics
- Antibiotics, Antineoplastic/pharmacology
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal/pharmacology
- Carcinoma/drug therapy
- Carcinoma/immunology
- Carcinoma/metabolism
- Carcinoma/pathology
- Cell Line, Tumor
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/pathology
- Dose-Response Relationship, Drug
- Doxorubicin/administration & dosage
- Doxorubicin/analogs & derivatives
- Doxorubicin/chemistry
- Doxorubicin/pharmacokinetics
- Doxorubicin/pharmacology
- Drug Compounding
- Female
- Hyaluronan Receptors/immunology
- Hyaluronan Receptors/metabolism
- Immunoconjugates/administration & dosage
- Immunoconjugates/chemistry
- Immunoconjugates/pharmacokinetics
- Immunoconjugates/pharmacology
- Mice
- Mice, Inbred BALB C
- NIH 3T3 Cells
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Polyethylene Glycols/administration & dosage
- Polyethylene Glycols/chemistry
- Polyethylene Glycols/pharmacokinetics
- Polyethylene Glycols/pharmacology
- Tissue Distribution
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Leila Arabi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran; Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91775-1365, Iran.
| |
Collapse
|
6
|
Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev 2014; 79-80:107-18. [PMID: 24819216 DOI: 10.1016/j.addr.2014.05.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 04/22/2014] [Accepted: 05/01/2014] [Indexed: 12/13/2022]
Abstract
Nanoparticle-based therapeutics are poised to become a leading delivery strategy for cancer treatment because they potentially offer higher selectivity, reduced toxicity, longer clearance times, and increased efficacy compared to conventional systemic therapeutic approaches. This article reviews existing nanoparticle technologies and methods that are used to target drugs to treat cancer by altering signal transduction or modulating the tumor microenvironment. We also consider the implications of recent advances in the nanotherapeutics field for the future of cancer therapy.
Collapse
|
7
|
Mittal NK, Bhattacharjee H, Mandal B, Balabathula P, Thoma LA, Wood GC. Targeted liposomal drug delivery systems for the treatment of B cell malignancies. J Drug Target 2014; 22:372-86. [PMID: 24433007 DOI: 10.3109/1061186x.2013.878942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanoparticulate systems have demonstrated significant potential for overcoming the limitations of non-specific adverse effects related to chemotherapy. The treatment of blood malignancies employing targeted particulate drug delivery systems presents unique challenges and considerable research has been focused towards the development of targeted liposomal formulations for B cell malignancies. These formulations are aimed at achieving selectivity towards the malignant cells by targeting several cell surface markers which are over-expressed in that specific malignancy. CD19, CD20, CD22 and CD74 are few of such markers of which CD19, CD22 and CD74 are internalizing and CD20 is non-internalizing. Systems which have been developed to target both types of these cell surface markers are discussed. Specifically, the efficacy and development of targeted liposomes is considered. A number of studies have demonstrated the advantages of targeted liposomal systems encapsulating doxorubicin or vincristine. However, liposomal encapsulation of newer anti-neoplastic agents such as AD 198 which are superior to doxorubicin should be considered.
Collapse
Affiliation(s)
- Nivesh K Mittal
- Department of Pharmaceutical Sciences, Plough Center for Sterile Drug Delivery Systems, College of Pharmacy, University of Tennessee Health Science Center , Memphis, TN , USA
| | | | | | | | | | | |
Collapse
|
8
|
Tam YYC, Chen S, Cullis PR. Advances in Lipid Nanoparticles for siRNA Delivery. Pharmaceutics 2013; 5:498-507. [PMID: 24300520 PMCID: PMC3836621 DOI: 10.3390/pharmaceutics5030498] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 01/21/2023] Open
Abstract
Technological advances in both siRNA (small interfering RNA) and whole genome sequencing have demonstrated great potential in translating genetic information into siRNA-based drugs to halt the synthesis of most disease-causing proteins. Despite its powerful promises as a drug, siRNA requires a sophisticated delivery vehicle because of its rapid degradation in the circulation, inefficient accumulation in target tissues and inability to cross cell membranes to access the cytoplasm where it functions. Lipid nanoparticle (LNP) containing ionizable amino lipids is the leading delivery technology for siRNA, with five products in clinical trials and more in the pipeline. Here, we focus on the technological advances behind these potent systems for siRNA-mediated gene silencing.
Collapse
Affiliation(s)
- Yuen Yi C Tam
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, B.C. V6T 1Z3, Canada.
| | | | | |
Collapse
|
9
|
Baskar S, Muthusamy N. Antibody-based therapeutics for the treatment of human B cell malignancies. Curr Allergy Asthma Rep 2013; 13:33-43. [PMID: 23229130 PMCID: PMC3674564 DOI: 10.1007/s11882-012-0327-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The dynamic expression of various phenotypic markers during B cell development not only defines the particular stage in ontogeny but also provides the necessary growth, differentiation, maturation and survival signals. When a B cell at any given stage becomes cancerous, these cell surface molecules, intracellular signaling molecules, and the over-expressed gene products become favorite targets for potential therapeutic intervention. Various adaptive and adoptive immunotherapeutic approaches induce T cell and antibody responses against cancer cells, and successful remission leading to minimal residual disease has been obtained. Nonetheless, subsequent relapse and development of resistant clones prompted further development and several novel strategies are evolving. Engineered monoclonal antibodies with high affinity and specificity to target antigens have been developed and used either alone or in combination with chemotherapeutic drugs. They are also used as vehicles to deliver cytotoxic drugs, toxins, or radionuclides that are either directly conjugated or encapsulated in liposomal vesicles. Likewise, genetically engineered T cells bearing chimeric antigen receptors are used to redirect cytotoxicity to antigen-positive target cells. This review describes recent advancements in some of these adoptive immunotherapeutic strategies targeting B cell malignancies.
Collapse
Affiliation(s)
- Sivasubramanian Baskar
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10/CRC; Room 3E-3248, Bethesda, MD 20892, USA
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine; Molecular Virology, Immunology and Medical Genetics and Veterinary BioSciences, The OSU Comprehensive Cancer Center, The Ohio State University, 455E, OSUCCC, 410, West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Hare JI, Moase EH, Allen TM. Targeting combinations of liposomal drugs to both tumor vasculature cells and tumor cells for the treatment of HER2-positive breast cancer. J Drug Target 2012; 21:87-96. [DOI: 10.3109/1061186x.2012.729215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Sant VP, Nagarsenker MS. Synthesis of monomethoxypolyethyleneglycol-cholesteryl ester and effect of its incorporation in liposomes. AAPS PharmSciTech 2011; 12:1056-63. [PMID: 21853369 DOI: 10.1208/s12249-011-9674-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 08/10/2011] [Indexed: 11/30/2022] Open
Abstract
The objective of the present study was to synthesize monomethoxypolyethyleneglycol-5000 cholesteryl ester [PEG-CH] as a cost-effective substitute for polyethyleneglycol-phosphatidylethanolamine and to evaluate the influence of its incorporation in liposomal bilayers for surface modification. PEG-CH was synthesized and characterized by infrared (IR), proton nuclear magnetic resonance spectroscopy ((1)H NMR), and differential scanning calorimetry (DSC) studies. Influence of incorporation of PEG-CH in liposomes was evaluated on various parameters such as zeta potential, DSC, and encapsulation efficiency of a hydrophilic drug pentoxyfylline. Conventional and PEG-CH containing pentoxyfylline liposomes were formulated and their stability was evaluated at 4°C for 3 months. PEG-CH could be successfully synthesized with good yields and the structure was confirmed by IR, DSC, and (1)H NMR. The incorporation of PEG-CH in liposomes resulted in reduction of the zeta potential and broadening of the DSC endotherm. Furthermore, incorporation of PEG-CH in liposomes decreased the encapsulation efficiency of pentoxifylline in liposomes when compared to conventional liposomes. Conventional and PEG-CH containing pentoxyfylline liposomes did not show any signs of pentoxyfylline degradation when stored at 4°C for 3 months.
Collapse
|
12
|
Hofmann AM, Wurm F, Frey H. Rapid Access to Polyfunctional Lipids with Complex Architecture via Oxyanionic Ring-Opening Polymerization. Macromolecules 2011. [DOI: 10.1021/ma200367c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Anna Maria Hofmann
- Institut für Organische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Frederik Wurm
- Institut des Matériaux, Laboratoire des Polymères Batiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 12, 1015 Lausanne, Switzerland
| | - Holger Frey
- Institut für Organische Chemie, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55099 Mainz, Germany
| |
Collapse
|
13
|
Lesieur S, Gazeau F, Luciani N, Ménager C, Wilhelm C. Multifunctional nanovectors based on magnetic nanoparticles coupled with biological vesicles or synthetic liposomes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm10487j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Gunaseelan S, Gunaseelan K, Deshmukh M, Zhang X, Sinko PJ. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 2010; 62:518-31. [PMID: 19941919 PMCID: PMC2841563 DOI: 10.1016/j.addr.2009.11.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 09/14/2009] [Indexed: 02/06/2023]
Abstract
A variety of nanocarriers such as bioconjugates, dendrimers, liposomes, and nanoparticles have been widely evaluated as potential targeted drug delivery systems. Passive targeting of nanoscale carriers is based on a size-flow-filtration phenomenon that is usually limited to tumors, the reticular endothelial system, and possibly lymph nodes (LNs). In fact, targeting the delivery of drugs to pivotal physiological sites such as the lymph nodes has emerged as a promising strategy in treating HIV disease. Ligands for specific cell surface receptors can be displayed on nanocarriers in order to achieve active targeting. The approach has been extensively used preclinically in cancer where certain receptors are over-expressed at various stages of the disease. Unfortunately, markers of HIV infection are lacking and latently infected cells do not show any signs of infection on their surface. However, the disease naturally targets only a few cell types. The HIV receptor CD4, coreceptors (CCR5 and CXCR4), and some receptors relatively specific for macrophages provide potentially valuable surface targets for drug delivery to all susceptible cells in patients infected by HIV. This review focuses on nanoscale targeting with an emphasis on surface modifications of drug delivery nanocarriers for active targeting. A number of related issues, including HIV biology, targets, pharmacokinetics, and intracellular fate as well as literature-cited examples of emerging surface-modified targeted carrier systems are discussed.
Collapse
Affiliation(s)
- Simi Gunaseelan
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
15
|
Godin B, Driessen WHP, Proneth B, Lee SY, Srinivasan S, Rumbaut R, Arap W, Pasqualini R, Ferrari M, Decuzzi P. An integrated approach for the rational design of nanovectors for biomedical imaging and therapy. ADVANCES IN GENETICS 2010; 69:31-64. [PMID: 20807601 DOI: 10.1016/s0065-2660(10)69009-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of nanoparticles for the early detection, cure, and imaging of diseases has been proved already to have a colossal potential in different biomedical fields, such as oncology and cardiology. A broad spectrum of nanoparticles are currently under development, exhibiting differences in (i) size, ranging from few tens of nanometers to few microns; (ii) shape, from the classical spherical beads to discoidal, hemispherical, cylindrical, and conical; (iii) surface functionalization, with a wide range of electrostatic charges and biomolecule conjugations. Clearly, the library of nanoparticles generated by combining all possible sizes, shapes, and surface physicochemical properties is enormous. With such a complex scenario, an integrated approach is here proposed and described for the rational design of nanoparticle systems (nanovectors) for the intravascular delivery of therapeutic and imaging contrast agents. The proposed integrated approach combines multiscale/multiphysics mathematical models with in vitro assays and in vivo intravital microscopy (IVM) experiments and aims at identifying the optimal combination of size, shape, and surface properties that maximize the nanovectors localization within the diseased microvasculature.
Collapse
Affiliation(s)
- Biana Godin
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Barry SE. Challenges in the development of magnetic particles for therapeutic applications. Int J Hyperthermia 2009; 24:451-66. [PMID: 18608583 DOI: 10.1080/02656730802093679] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Certain iron-based particle formulations have useful magnetic properties that, when combined with low toxicity and desirable pharmacokinetics, encourage their development for therapeutic applications. This mini-review begins with background information on magnetic particle use as MRI contrast agents and the influence of material size on pharmacokinetics and tissue penetration. Therapeutic investigations, including (1) the loading of bioactive materials, (2) the use of stationary, high-gradient (HG) magnetic fields to concentrate magnetic particles in tissues or to separate material bound to the particles from the body, and (3) the application of high power alternating magnetic fields (AMF) to generate heat in magnetic particles for hyperthermic therapeutic applications are then surveyed. Attention is directed mainly to cancer treatment, as selective distribution to tumors is well-suited to particulate approaches and has been a focus of most development efforts. While magnetic particles have been explored for several decades, their use in therapeutic products remains minimal; a discussion of future directions and potential ways to better leverage magnetic properties and to integrate their use into therapeutic regimens is discussed.
Collapse
Affiliation(s)
- Stephen E Barry
- Alnis BioSciences, Inc., Research Triangle Park, NC 27709, USA.
| |
Collapse
|
17
|
Didier P, Ulrich G, Mély Y, Ziessel R. Improved push-pull-push E-Bodipy fluorophores for two-photon cell-imaging. Org Biomol Chem 2009; 7:3639-42. [DOI: 10.1039/b911587k] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Sharma G, Anabousi S, Ehrhardt C, Ravi Kumar MNV. Liposomes as targeted drug delivery systems in the treatment of breast cancer. J Drug Target 2008; 14:301-10. [PMID: 16882550 DOI: 10.1080/10611860600809112] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Solid tumors such as breast cancer have historically provided many challenges to anti-cancer therapy. Therapeutic hurdles to drug penetration in solid tumors include heterogeneous vascular supply and high interstitial pressures within tumor tissue, particularly in necrotic zones, lower pH and presence of leaky vasculature leading to reduced therapeutic response. Liposome based drug delivery systems offer the potential to enhance the therapeutic index of anti-cancer agents, either by increasing the drug concentration in tumor cells and/or by decreasing the exposure in normal tissues exploiting enhanced permeability and retention effect phenomenon and by utilizing targeting strategies. This review discusses recent trends in liposome-based drug delivery system both for diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- G Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062 Punjab, India
| | | | | | | |
Collapse
|
19
|
Targeting to tumor necrotic regions with biotinylated antibody and streptavidin modified liposomes. J Control Release 2008; 125:228-35. [DOI: 10.1016/j.jconrel.2007.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/20/2007] [Accepted: 10/20/2007] [Indexed: 11/21/2022]
|
20
|
Backer MV, Levashova Z, Levenson R, Blankenberg FG, Backer JM. Cysteine-containing fusion tag for site-specific conjugation of therapeutic and imaging agents to targeting proteins. Methods Mol Biol 2008; 494:275-294. [PMID: 18726580 DOI: 10.1007/978-1-59745-419-3_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Targeted delivery of therapeutic and imaging agents requires conjugation of a corresponding payload to a targeting peptide or protein. The ideal procedure should yield a uniform preparation of functionally active conjugates and be translatable for development of clinical products. We describe here our experience with site-specific protein modification via a novel cysteine-containing fusion tag (Cys-tag), which is a 15-amino-acid (aa) N-terminal fragment of human ribonuclease I with the R4C substitution. Several Cys-tagged proteins and peptides with different numbers of native cysteines were expressed and refolded into functionally active conformation, indicating that the tag does not interfere with the formation of internal disulfide bonds. We also describe standardized procedures for site-specific conjugation of very different payloads, such as functionalized lipids and liposomes, radionuclide chelators and radionuclides, fluorescent dyes, drug-derivatized dendrimers, scaffold proteins, biotin, and polyethyleneglycol to Cys-tagged peptides and proteins, as well as present examples of functional activity of targeted conjugates in vitro and in vivo. We expect that Cys-tag would provide new opportunities for development of targeted therapeutic and imaging agents for research and clinical use.
Collapse
|
21
|
|
22
|
Zhao XB, Muthusamy N, Byrd JC, Lee RJ. Cholesterol as a bilayer anchor for PEGylation and targeting ligand in folate-receptor-targeted liposomes. J Pharm Sci 2007; 96:2424-35. [PMID: 17588260 DOI: 10.1002/jps.20885] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phospholipids have been extensively evaluated as an anchor for both PEGylation and receptor-targeting in liposomal formulations. However, cholesterol, another important component in biomembranes, has not been fully investigated as an alternative anchor. In this study, the potential role of cholesterol for anchoring PEG and folate was investigated. Cholesterol derivatives were synthesized for PEGylation (mPEG-cholesterol) and folate receptor (FR) targeting (folate-PEG-cholesterol) and incorporated into the bilayer of FR-targeted liposomal doxorubicin. The colloidal stability of these cholesterol derivative-containing liposomes was superior to non-PEGylated liposomes, indicating that steric barrier provided by mPEG-cholesterol can efficiently inhibit aggregation of liposomes. FR-targeting activity of these liposomes was demonstrated by in vitro cell-binding studies on FR-overexpressing KB cells. In addition, in vivo circulation of cholesterol-anchored liposomes was prolonged compared to non-PEGylated liposomes. These studies suggest that cholesterol is a viable bilayer anchor for synthesis of PEGylated and FR-targeted liposomes.
Collapse
Affiliation(s)
- Xiaobin B Zhao
- Division of Pharmaceutics, NCI OSU Comprehensive Cancer Center, NSF Nanoscales Science and Engineering Center (NSEC), College of Pharmacy, The Ohio State University, 542 LM Parks Hall, 500 W. 12th Ave, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
23
|
Fahmy TM, Fong PM, Park J, Constable T, Saltzman WM. Nanosystems for simultaneous imaging and drug delivery to T cells. AAPS J 2007; 9:E171-80. [PMID: 17614359 PMCID: PMC2751406 DOI: 10.1208/aapsj0902019] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 05/11/2007] [Indexed: 01/22/2023] Open
Abstract
The T-cell response defines the pathogenesis of many common chronic disease states, including diabetes, rheumatoid arthritis, and transplant rejection. Therefore, a diagnostic strategy that visualizes this response can potentially lead to early therapeutic intervention, avoiding catastrophic organ failure or prolonged sickness. In addition, the means to deliver a drug dose to those cells in situ with the same specificity used to image those cells would provide for a powerful therapeutic alternative for many disease states involving T cells. In this report, we review emerging nanosystems that can be used for simultaneous tracking and drug delivery to those cells. Because of their versatility, these systems--which combine specific receptor targeting with an imaging agent and drug delivery--are suited to both basic science and applications, from developing therapeutic strategies for autoimmune and alloimmune diseases, to noninvasive tracking of pathogenic T-cell migration.
Collapse
Affiliation(s)
- Tarek M Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | | | | | | | | |
Collapse
|
24
|
Xiong XB, Mahmud A, Uludağ H, Lavasanifar A. Conjugation of Arginine-Glycine-Aspartic Acid Peptides to Poly(ethylene oxide)-b-poly(ε-caprolactone) Micelles for Enhanced Intracellular Drug Delivery to Metastatic Tumor Cells. Biomacromolecules 2007; 8:874-84. [PMID: 17315946 DOI: 10.1021/bm060967g] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An arginine-glycine-aspartic acid (RGD) containing model peptide was conjugated to the surface of poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) micelles as a ligand that can recognize adhesion molecules overexpressed on the surface of metastatic cancer cells, that is, integrins, and that can enhance the micellar delivery of encapsulated hydrophobic drug into a tumor cell. Toward this goal, PEO-b-PCL copolymers bearing acetal groups on the PEO end were synthesized, characterized, and assembled to polymeric micelles. The acetal group on the surface of the PEO-b-PCL micelles was converted to reactive aldehyde under acidic condition at room temperature. An RGD-containing linear peptide, GRGDS, was conjugated on the surface of the aldehyde-decorated PEO-b-PCL micelles by incubation at room temperature. A hydrophobic fluorescent probe, that is, DiI, was physically loaded in prepared polymeric micelles to imitate hydrophobic drugs loaded in micellar carrier. The cellular uptake of DiI loaded GRGDS-modified micelles by melanoma B16-F10 cells was investigated at 4 and 37 degrees C by fluorescent spectroscopy and confocal microscopy techniques and was compared to the uptake of DiI loaded valine-PEO-b-PCL micelles (as the irrelevant ligand decorated micelles) and free DiI. GRGDS conjugation to polymeric micelles significantly facilitated the cellular uptake of encapsulated hydrophobic DiI most probably by intergrin-mediated cell attachment and endocytosis. The results indicate that acetal-terminated PEO-b-PCL micelles are amenable for introducing targeting moieties on the surface of polymeric micelles and that RGD-peptide conjugated PEO-b-PCL micelles are promising ligand-targeted carriers for enhanced drug delivery to metastatic tumor cells.
Collapse
Affiliation(s)
- Xiao-Bing Xiong
- Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | | | | | | |
Collapse
|
25
|
Salomir R, Palussière J, Fossheim SL, Rogstad A, Wiggen UN, Grenier N, Moonen CTW. Local delivery of magnetic resonance (MR) contrast agent in kidney using thermosensitive liposomes and MR imaging-guided local hyperthermia: A feasibility study in vivo. J Magn Reson Imaging 2005; 22:534-40. [PMID: 16161081 DOI: 10.1002/jmri.20416] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE To investigate the feasibility of local delivery of a magnetic resonance (MR) contrast agent in vivo using paramagnetic thermosensitive liposomes and infrared (IR) laser-induced local hyperthermia under real-time MR thermometry on rabbit kidney. MATERIALS AND METHODS Respiratory gated, radio frequency (RF)-spoiled gradient-echo sequences were used for precise MR temperature mapping (SD = 1 degrees C). In vivo heating experiments confirmed local release of MR contrast agent from liposomes. RESULTS T1 decreased from 800 msec to about 500 msec, as measured after tissue cooling, in those locations where the renal parenchyma was heated above the phase transition temperature of the liposome membrane. CONCLUSION The release of MR contrast agent has been demonstrated in rabbit kidney in vivo. This may be used as a reporter for simultaneous release of therapeutic agents.
Collapse
Affiliation(s)
- Rares Salomir
- Molecular and Functional Imaging, Technological Research Unit, CNRS/University of Bordeaux 2, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Schnyder A, Huwyler J. Drug transport to brain with targeted liposomes. Neurotherapeutics 2005. [DOI: 10.1007/bf03206646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
27
|
Abstract
Antibody-conjugated liposomes or immunoliposomes are particulate drug carriers that can be used to direct encapsulated drug molecules to diseased tissues or organs. The present review discusses examples of successful applications of this technology to achieve drug transport across the blood-brain barrier. In addition, information will be provided on practical aspects such as phospholipid compositions of liposomes, antibody coupling technologies, large-scale production of liposomes, and obstacles related to drug loading of the carrier. Prospects of future uses of immunoliposome-based drug delivery systems such as gene therapy of the brain and clinical trials are discussed.
Collapse
Affiliation(s)
- Anita Schnyder
- Department of Research and Division of Clinical Pharmacology, University Hospital Basel, CH-4031 Basel, Switzerland
| | | |
Collapse
|
28
|
Napoli A, Valentini M, Tirelli N, Müller M, Hubbell JA. Oxidation-responsive polymeric vesicles. NATURE MATERIALS 2004; 3:183-9. [PMID: 14991021 DOI: 10.1038/nmat1081] [Citation(s) in RCA: 645] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 01/23/2004] [Indexed: 05/17/2023]
Abstract
Vesicles formed in water by synthetic macro-amphiphiles have attracted much attention as nanocontainers having properties that extend the physical and chemical limits of liposomes. We sought to develop ABA block copolymeric amphiphiles that self-assemble into unilamellar vesicles that can be further oxidatively destabilized. We selected poly(ethylene glycol) (PEG) as the hydrophilic A blocks, owing to its resistance to protein adsorption and low toxicity. As hydrophobic B blocks, we selected poly(propylene sulphide) (PPS), owing to its extreme hydrophobicity, its low glass-transition temperature, and most importantly its oxidative conversion from a hydrophobe to a hydrophile, poly(propylene sulphoxide) and ultimately poly(propylene sulphone). This is the first example of the use of oxidative conversions to destabilize such carriers. This new class of oxidation-responsive polymeric vesicles may find applications as nanocontainers in drug delivery, biosensing and biodetection.
Collapse
Affiliation(s)
- Alessandro Napoli
- Institute for Biomedical Engineering and Department of Materials, Swiss Federal Institute of Technology (ETH) and University of Zurich, Moussonstrasse 18, CH-8044 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Lundberg BB, Griffiths G, Hansen HJ. Cellular association and cytotoxicity of anti-CD74-targeted lipid drug-carriers in B lymphoma cells. J Control Release 2004; 94:155-61. [PMID: 14684279 DOI: 10.1016/j.jconrel.2003.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ability to selectively target anti-cancer drugs via specific ligands against antigens expressed on malignant cells could greatly improve the therapeutic indices of the drugs. In this paper an anti-CD74 antibody (Ab), LL1, was covalently attached to the surface of sterically stabilized lipid drug-carriers (emulsions and liposomes) by use of a PEG-based heterobifunctional coupling agent. Target cells internalize LL1 very fast and that was found to be true for the LL1-lipid drug-carrier complexes as well. During a 24 h in vitro incubation with the target Raji B-lymphoma cells about 30% of the added complexes were associated with the cells. The corresponding value for drug-carrier without targeting ligand was near 0.6%. Displacement experiments showed that free LL1 competed well with LL1-complexes indicating preserved immunoreactivity. Non-target cells showed only unspecific association of LL1-complexes. A dioleoylated derivative of the anti-cancer drug 3',5'-O-dioleoyl-FUdR (FUdR) (FUdR-dO) loaded into LL1-lipid drug-carriers showed good cytotoxic activity. In vitro 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity tests against neoplastic B-cells gave IC30 values of 0.45, 1.25, 5.30 and 7.30 microM for the prodrug FUdR-dO in LL1-emulsions, LL1-liposomes, emulsions and liposomes, respectively. The value for the parent drug FUdR was calculated to 4.35 microM. In the light of the extensive and specific delivery of LL1-lipid drug-carriers to B-cells and the selective cytotoxicity of the incorporated drug, we infer that the complexes may be useful in the selective elimination of circulating malignant B-cells in vivo.
Collapse
Affiliation(s)
- Bo B Lundberg
- Department of Biochemistry and Pharmacy, Abo Akademi University, BioCity, PO Box 66, FIN-20521, Abo, Finland.
| | | | | |
Collapse
|
30
|
Abstract
Antibody or ligand-mediated targeting of liposomal anticancer drugs to antigens expressed selectively or over-expressed on tumor cells is increasingly being recognized as an effective strategy for increasing the therapeutic indices of anticancer drugs. This review summarizes some recent advances in the field of ligand-targeted liposomes (LTLs) for the delivery of anticancer drugs. New approaches used in the design and optimization of LTLs is discussed and the advantages and potential problems associated with their therapeutic applications are described. New technologies are widening the spectrum of ligands available for targeting and are allowing choices to be made regarding affinity, internalization and size. The time is rapidly approaching where we will see translation of anticancer drugs entrapped in LTLs to the clinic.
Collapse
Affiliation(s)
- P Sapra
- Department of Pharmacology, University of Alberta, Edmonton AB, Canada, T6G 2H7
| | | |
Collapse
|
31
|
|
32
|
Abstract
Cytotoxic chemotherapy or radiotherapy of cancer is limited by serious, sometimes life-threatening, side effects that arise from toxicities to sensitive normal cells because the therapies are not selective for malignant cells. So how can selectivity be improved? One strategy is to couple the therapeutics to antibodies or other ligands that recognize tumour-associated antigens. This increases the exposure of the malignant cells, and reduces the exposure of normal cells, to the ligand-targeted therapeutics.
Collapse
Affiliation(s)
- Theresa M Allen
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|