1
|
Hartono SB, Gu W, Kleitz F, Liu J, He L, Middelberg APJ, Yu C, Lu GQM, Qiao SZ. Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS NANO 2012; 6:2104-2117. [PMID: 22385282 DOI: 10.1021/nn2039643] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Large pore mesoporous silica nanoparticles (LP-MSNs) functionalized with poly-L-lysine (PLL) were designed as a new carrier material for gene delivery applications. The synthesized LP-MSNs are 100-200 nm in diameter and are composed of cage-like pores organized in a cubic mesostructure. The size of the cavities is about 28 nm with an entrance size of 13.4 nm. Successful grafting of PLL onto the silica surface through covalent immobilization was confirmed by X-ray photoelectron spectroscopy, solid-state (13)C magic-angle spinning nuclear magnetic resonance, Fourier transformed infrared, and thermogravimetric analysis. As a result of the particle modification with PLL, a significant increase of the nanoparticle binding capacity for oligo-DNAs was observed compared to the native unmodified silica particles. Consequently, PLL-functionalized nanoparticles exhibited a strong ability to deliver oligo DNA-Cy3 (a model for siRNA) to Hela cells. Furthermore, PLL-functionalized nanoparticles were proven to be superior as gene carriers compared to amino-functionalized nanoparticles and the native nanoparticles. The system was tested to deliver functional siRNA against minibrain-related kinase and polo-like kinase 1 in osteosarcoma cancer cells. Here, the functionalized particles demonstrated great potential for efficient gene transfer into cancer cells as a decrease of the cellular viability of the osteosarcoma cancer cells was induced. Moreover, the PLL-modified silica nanoparticles also exhibit a high biocompatibility, with low cytotoxicity observed up to 100 μg/mL.
Collapse
Affiliation(s)
- Sandy B Hartono
- ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Földes-Papp Z. Viral Chip Technology in Genomic Medicine. GENOMIC AND PERSONALIZED MEDICINE 2009. [PMCID: PMC7149707 DOI: 10.1016/b978-0-12-369420-1.00048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
3
|
Zhang X, Xu W, Tan J, Zeng Y. Stripping custom microRNA microarrays and the lessons learned about probe-slide interactions. Anal Biochem 2008; 386:222-7. [PMID: 19121618 DOI: 10.1016/j.ab.2008.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 12/10/2008] [Indexed: 11/28/2022]
Abstract
Microarrays have been used extensively in gene expression profiling and genotyping studies. To reduce the high cost and enhance the consistency of microarray experiments, it is often desirable to strip and reuse microarray slides. Our genome-wide analysis of microRNA expression involves the hybridization of fluorescently labeled nucleic acids to custom-made, spotted DNA microarrays based on GAPSII-coated slides. We describe here a simple and effective method to regenerate such custom microarrays that uses a very low-salt buffer to remove labeled nucleic acids from microarrays. Slides can be stripped and reused multiple times without significantly compromising data quality. Moreover, our analyses of the performance of regenerated slides identifies parameters that influence the attachment of oligonucleotide probes to GAPSII slides, shedding light on the interactions between DNA and the microarray surface and suggesting ways in which to improve the design of oligonucleotide probes.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Pharmacology, University of Minnesota, 6-120 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
4
|
Levina A, Pyshnaya I, Repkova M, Rar V, Zarytova V. Oligonucleotide probes containing polylysine residues for fabrication of DNA chips on various solid surfaces. Biotechnol J 2007; 2:879-85. [PMID: 17526055 DOI: 10.1002/biot.200700027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Various materials, such as glass, plastic, metals, etc., are utilized for preparing DNA chips. In each particular case special approaches are used for immobilization of different oligonucleotide derivatives on the solid supports. We describe a general technique for DNA chips preparation on various unmodified surfaces using one type of oligonucleotide derivative, polylysine-oligonucleotide conjugates (PL-oligo). A long polyamine spacer in the PL-oligo conjugates provides a durable irreversible non-covalent immobilization onto a variety of solid supports and enough distance between oligonucleotides and the surface. The resulting DNA chips were shown to be useful for the detection of PCR DNA fragments and to be sensitive to single nucleotide discrepancies. They represent a promising instrument for revealing genetic diseases, genotyping viruses and bacteria, and for displaying their drug-resistant strains.
Collapse
Affiliation(s)
- Asya Levina
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | | | | | | |
Collapse
|
5
|
Glazer MI, Fidanza JA, McGall GH, Trulson MO, Forman JE, Frank CW. Kinetics of oligonucleotide hybridization to DNA probe arrays on high-capacity porous silica substrates. Biophys J 2007; 93:1661-76. [PMID: 17496028 PMCID: PMC1948050 DOI: 10.1529/biophysj.106.103275] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have investigated the kinetics of DNA hybridization to oligonucleotide arrays on high-capacity porous silica films that were deposited by two techniques. Films created by spin coating pure colloidal silica suspensions onto a substrate had pores of approximately 23 nm, relatively low porosity (35%), and a surface area of 17 times flat glass (for a 0.3-microm film). In the second method, latex particles were codeposited with the silica by spin coating and then pyrolyzed, which resulted in larger pores (36 nm), higher porosity (65%), and higher surface area (26 times flat glass for a 0.3-microm film). As a result of these favorable properties, the templated silica hybridized more quickly and reached a higher adsorbed target density (11 vs. 8 times flat glass at 22 degrees C) than the pure silica. Adsorption of DNA onto the high-capacity films is controlled by traditional adsorption and desorption coefficients, as well as by morphology factors and transient binding interactions between the target and the probes. To describe these effects, we have developed a model based on the analogy to diffusion of a reactant in a porous catalyst. Adsorption values (k(a), k(d), and K) measured on planar arrays for the same probe/target system provide the parameters for the model and also provide an internally consistent comparison for the stability of the transient complexes. The interpretation of the model takes into account factors not previously considered for hybridization in three-dimensional films, including the potential effects of heterogeneous probe populations, partial probe/target complexes during diffusion, and non-1:1 binding structures. The transient complexes are much less stable than full duplexes (binding constants for full duplexes higher by three orders of magnitude or more), which may be a result of the unique probe density and distribution that is characteristic of the photolithographically patterned arrays. The behavior at 22 degrees C is described well by the predictive equations for morphology, whereas the behavior at 45 degrees C deviates from expectations and suggests that more complex phenomena may be occurring in that temperature regime.
Collapse
Affiliation(s)
- Marc I Glazer
- Stanford Department of Chemical Engineering, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Annenkov VV, Levina AS, Danilovtseva EN, Filina EA, Mikhaleva EA, Zarytova VF. [Functionalized nanocomposite coating of a glass surface for oligonucleotide immobilization]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2006; 32:511-9. [PMID: 17042268 DOI: 10.1134/s1068162006050086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new type of coating for manufacturing DNA chips was constructed of the basis of an organic-inorganic nanocomposite based on the polyvinylbutyral-tetraethoxysilane copolymer. The organosilicon composite was functionalized by introduction of ethanolamine vinyl ether copolymers, which contain amino groups and anchor vinyloxide units capable of reacting with silanol groups of the nanocomposite. The resulting coatings form a film on glass slides with a high surface density of amino groups (up to 700 groups/nm2) suitable for three-dimensional immobilization of oligonucleotides. The use of bifunctional reagents (e.g., phenylene diisothiocyanate) for the attachment of oligonucleotides bearing amino linkers to the amino-containing surface provides an immobilization density of 0.5-1.6 pmol/mm2. Immobilization with a higher density (10-12 pmol/mm2) was achieved for attachment to amino-containing glass slides upon the use of oligonucleotides containing selectively activated terminal phosphate groups. The activation of oligonucleotides was carried out with the triphenylphosphine-dithiodipyridine pair in the presence of dimethylaminopyridine N-oxide. The resulting DNA chips were shown to be useful in principle for DNA detection.
Collapse
|
7
|
Hahnke K, Jacobsen M, Gruetzkau A, Gruen JR, Koch M, Emoto M, Meyer TF, Walduck A, Kaufmann SHE, Mollenkopf HJ. Striptease on glass: validation of an improved stripping procedure for in situ microarrays. J Biotechnol 2006; 128:1-13. [PMID: 17084936 DOI: 10.1016/j.jbiotec.2006.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 08/22/2006] [Accepted: 09/06/2006] [Indexed: 11/15/2022]
Abstract
Microarrays have rapidly become an indispensable tool for gene analysis. Microarray experiments can be cost prohibitive, however, largely due to the price of the arrays themselves. Whilst different methods for stripping filter arrays on membranes have been established, only very few protocols are published for thermal and chemical stripping of microarrays on glass. Most of these protocols for stripping microarrays on glass were developed in combination with specific surface chemistry and different coatings for covalently immobilizing presynthesized DNA in a deposition process. We have developed a method for stripping commercial in situ microarrays using a multi-step procedure. We present a method that uses mild chemical degradation complemented by enzymatic treatment. We took advantage of the differences in biochemical properties of covalently linked DNA oligonucleotides on in situ synthesized microarrays and the antisense cRNA hybridization probes. The success of stripping protocols for microarrays on glass was critically dependent on the type of arrays, the nature of sample used for hybridization, as well as hybridization and washing conditions. The protocol employs alkali hydrolysis of the cRNA, several enzymatic degradation steps using RNAses and Proteinase K, combined with appropriate washing steps. Stripped arrays were rehybridized using the same protocols as for new microarrays. The stripping method was validated with microarrays from different suppliers and rehybridization of stripped in situ arrays yielded comparable results to hybridizations done on unused, new arrays with no significant loss in precision or accuracy. We show that stripping of commercial in situ arrays is feasible and that reuse of stripped arrays gave similar results compared to unused ones. This was true even for biological samples that show only slight differences in their expression profiles. Our analyses indicate that the stripping procedure does not significantly influence data quality derived from post-primary hybridizations. The method is robust, easy to perform, inexpensive, and results after reuse are of comparable accuracy to new arrays.
Collapse
Affiliation(s)
- Karin Hahnke
- Max Planck Institute for Infection Biology, Microarray Core Facility, Schumannstr. 21/22, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Severgnini M, Pattini L, Consolandi C, Rizzi E, Battaglia C, De Bellis G, Cerutti S. Application of the Taguchi Method to the Analysis of the Deposition Step in Microarray Production. IEEE Trans Nanobioscience 2006; 5:164-72. [PMID: 16999241 DOI: 10.1109/tnb.2006.880851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Every microarray experiment is affected by many possible sources of variability that may even corrupt biological evidence on analyzed sequences. We applied a "Taguchi method" strategy, based on the use of orthogonal arrays to optimize the deposition step of oligonucleotide sequences on glass slides. We chose three critical deposition parameters (humidity, surface, and buffer) at two levels each, in order to establish optimum settings. A L8 orthogonal array was used in order to monitor both the main effects and interactions on the deposition of a 25 mer oligonucleotide hybridized to its fluorescent-labeled complementary. Signal-background ratio and deposition homogeneity in terms of mean intensity and spot diameter were considered as significant outputs. An analysis of variance (ANOVA) was applied to raw data and to mean results for each slide and experimental run. Finally we calculated an overall evaluation coefficient to group together important outputs in one number. Environmental humidity and surface-buffer interaction were recognized as the most critical factors, for which a 50% humidity, associated to a chitosan-covered slide and a sodium phosphate + 25% dimethyl sulfoxide (DMSO) buffer gave best performances. Our results also suggested that Taguchi methods can be efficiently applied in optimization of microarray procedures.
Collapse
Affiliation(s)
- Marco Severgnini
- Institute of Biomedical Technologies of the National Research Council, 20090 Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mahajan S, Kumar P, Gupta KC. An efficient and versatile approach for the construction of oligonucleotide microarrays. Bioorg Med Chem Lett 2006; 16:5654-8. [PMID: 16934460 DOI: 10.1016/j.bmcl.2006.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 07/18/2006] [Accepted: 08/02/2006] [Indexed: 11/17/2022]
Abstract
A new immobilization chemistry for covalent attachment of phosphorylated oligonucleotides on epoxy-activated glass surface via opening of oxirane ring is described. The proposed strategy results in excellent immobilization efficiency, spot homogeneity, and morphology. The constructed microarray was successfully demonstrated for discrimination of nucleotide mismatches.
Collapse
Affiliation(s)
- S Mahajan
- Nucleic Acids Research Laboratory, Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi-110,007, India
| | | | | |
Collapse
|
10
|
Tishchenko GA, Brus J, Dybal J, Pekárek M, Sedláková Z, Bleha M, Bastl Z. Surface-deposited acid/base on glass microfibers in formation of (3-aminopropyl)triethoxysilane-[2-(3,4-epoxycyclohexyl)ethyl]heptaisobutyloctasilsesquioxane bioverlay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:3633-9. [PMID: 16584237 DOI: 10.1021/la052580p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Silanization of macroporous glass microfiber filters with (3-aminopropyl)triethoxysilane (APTES) and subsequent binding of [2-(3,4-epoxycyclohexyl)ethyl]heptaisobutyloctasilsesquioxane (E-POSS) to the amine-terminated surface of microfibers was studied. Prior to the silanization, minute quantities of concentrated aqueous solutions of hydrochloric acid or ammonia were adsorbed in the filters while attachment of E-POSS molecules to APTES overlay was not specially catalyzed. Analysis of DRIFT, XPS, and 13C CP/MAS NMR spectra has shown that the formation of APTES overlay is affected differently by the surface-deposited acid or base. It was proved by XPS that microfibers with the adsorbed acid take up higher amounts of covalently attached APTES by 42% and, subsequently, of E-POSS by 65% than microfibers with the adsorbed ammonia. The molecular mechanics model calculations, which were made using silica as a template, have shown that approximately two-layered APTES coating can be built on the model surface if complete hydrolysis of ethoxy groups and vertical condensation of APTES species are assumed.
Collapse
Affiliation(s)
- Galina A Tishchenko
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
DNA arrays are now the tools of choice for high-throughput DNA/RNA analysis. While many technologies exist for mass-producing arrays, there are just a few ways to economically produce small batches of custom oligonucleotide arrays for prototyping experiments and specialized applications. Inkjet printing, adapted from the world of office electronics to the world of molecular biology, is one such method. With programmable oligonucleotide synthesizers, scientists can prototype DNA array assays quickly and inexpensively. A benchtop inkjet arrayer-nicknamed POSAM-can be built by most skilled molecular biology laboratories. Inkjet arrays can fulfill the changing needs of those studying the complex network of relationships in systems biology.
Collapse
|
12
|
del Campo A, Bruce IJ. Substrate Patterning and Activation Strategies for DNA Chip Fabrication. Top Curr Chem (Cham) 2005. [DOI: 10.1007/b137073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
13
|
Hu Z, Troester M, Perou CM. High reproducibility using sodium hydroxide-stripped long oligonucleotide DNA microarrays. Biotechniques 2005; 38:121-4. [PMID: 15679094 DOI: 10.2144/05381mt02] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recently, long oligonucleotide (60- to 70-mer) microarrays for two-color experiments have been developed and are gaining widespread use. In addition, when there is limited availability of mRNA from tissue sources, RNA amplification can and is being used to produce sufficient quantities of cRNA for microarray hybridization. Taking advantage of the selective degradation of RNA under alkaline conditions, we have developed a method to "strip" glass-based oligonucleotide microarrays that use fluorescent RNA in the hybridization, while leaving the DNA oligonucleotide probes intact and usable for a second experiment. Replicate microarray experiments conducted using stripped arrays showed high reproducibility, however, we found that arrays could only be stripped and reused once without compromising data quality. The intraclass correlation (ICC) between a virgin array and a stripped array hybridized with the same sample showed a range of 0.90-0.98, which is comparable to the ICC of two virgin arrays hybridized with the same sample. Using this method, once-stripped oligonucleotide microarrays are usable, reliable, and help to reduce costs.
Collapse
Affiliation(s)
- Zhiyuan Hu
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
14
|
Levina A, Mikhaleva E, Zarytova V. Preparation of DNA chips using polyamine-oligonucleotide conjugates. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 23:931-4. [PMID: 15560084 DOI: 10.1081/ncn-200026043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A convenient and efficient method for three-dimensional immobilizing oligonucleotides on glass was developed using oligonucleotide derivatives bearing a polyamine linker (PA-oligo conjugates). Polyamine (polylysine, poly(lysine, phenylalanine), polyethyleneimine) residues stipulate durable fixation of such conjugates to the glass surface with a high yield (90-95%). A DNA fragment (414-mer) is hybridized specifically to an immobilized oligonucleotide.
Collapse
Affiliation(s)
- Asya Levina
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.
| | | | | |
Collapse
|
15
|
Kumar P, Agrawal SK, Misra A, Gupta KC. A new heterobifunctional reagent for immobilization of biomolecules on glass surface. Bioorg Med Chem Lett 2004; 14:1097-9. [PMID: 14980643 DOI: 10.1016/j.bmcl.2003.12.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 12/26/2003] [Accepted: 12/26/2003] [Indexed: 10/26/2022]
Abstract
Synthesis of a new heterobifunctional reagent, [N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)-triethoxysilylpropyl-3-amine] (NTMTA) is described for the immobilization of a variety of biomolecules on glass surface. Its triethoxysilyl group reacts with glass surface and trifluoroethanesulfonate ester structure reacts selectively with aminoalkyl/mercaptoalkyl function in biomolecules. The immobilization can be achieved by two ways involving two steps. The first route involves the reaction of NTMTA with glass beads followed by attachment of aminoalkyl- or mercaptoalkylated biomolecules. The second one involves the reaction of biomolecules, viz., oligonucleotides, proteins, etc., with NTMTA via their aminoalkyl or mercaptoalkyl functions to form a biomolecule conjugate, which is then reacted with glass beads (unmodified) to complete immobilization process. This has been demonstrated by successful immobilization of 5'-mercaptoalkyl- or aminoalkylated oligonucleotides and some commonly used enzymes on glass beads using NTMTA reagent.
Collapse
Affiliation(s)
- P Kumar
- Nucleic Acids Research Laboratory, Institute of Genomics and Integrative Biology, Mall Road, Delhi University Campus, Delhi-110 007, India
| | | | | | | |
Collapse
|
16
|
Rong S, Wen-li M, Cui-hua L, Yan-bin S, Xiang-ming M, Wen-ling Z. An Oligonucleotide Microarray Bait for Isolation of Target Gene Fragments. BMB Rep 2004; 37:148-52. [PMID: 15469689 DOI: 10.5483/bmbrep.2004.37.2.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new molecular-baiting method was studied by retrieving targeted gene fragments from an oligonucleotide microarray bait after hybridization. To make the microarray bait, 70-mer oligonucleotides that were designed to specifically represent the SSA1 gene of Saccharomyces cerevisiae were printed on the slide. Samples of the Saccharomyces cerevisiae mRNA were extracted and labeled by the RD-PCR (Restriction Display PCR) method using the Cy5-labelled universal primer, then applied for hybridization. The sample fragments that hybridized to the microarray were stripped, and the eluted cDNAs were retrieved and cloned into the pMD 18-T vector for transformation, plasmid preparation, and sequencing. BLAST searching of the GenBank database identified the retrieved fragments as being identical to the SSA1 gene (from 2057-2541bp). A new method is being established that can retrieve the sample fragments using an oligo-microarray-bait.
Collapse
Affiliation(s)
- Shi Rong
- Institute of Molecular Biology, First Military Medical University, Guangzhou 510515, P.R. China
| | | | | | | | | | | |
Collapse
|
17
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2003. [PMCID: PMC2448450 DOI: 10.1002/cfg.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
|
19
|
Li ES, Liu WT. DNA Microarray Technology in Microbial Ecology Studies-Principle, Applications and Current Limitations. Microbes Environ 2003. [DOI: 10.1264/jsme2.18.175] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Emily S.Y. Li
- Department of Civil Engineering, National University of Singapore
| | - Wen-Tso Liu
- Department of Civil Engineering, National University of Singapore
| |
Collapse
|