1
|
Martin V, Francisca Bettencourt A, Santos C, Sousa Gomes P. Reviewing particulate delivery systems loaded with repurposed tetracyclines - From micro to nanoparticles. Int J Pharm 2024; 649:123642. [PMID: 38029863 DOI: 10.1016/j.ijpharm.2023.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Tetracyclines (TCs) are a class of broad-spectrum antibacterial agents recognized for their multifaceted properties, including anti-inflammatory, angiogenic and osteogenic effects. This versatility positions them as suitable candidates for drug repurposing, benefitting from well-characterized safety and pharmacological profiles. In the attempt to explore both their antibacterial and pleiotropic effects locally, innovative therapeutic strategies were set on engineering tetracycline-loaded micro and nanoparticles to tackle a vast number of clinical applications. Moreover, the conjoined drug carrier can function as an active component of the therapeutic approach, reducing off-target effects and accumulation, synergizing to an improvement of the therapeutic efficacy. In this comprehensive review we will critically evaluate recent advances involving the use of tetracyclines loaded onto micro- or nanoparticles, intended for biomedical applications, and discuss emerging approaches and current limitations associated with these drug carriers. Owing to their distinctive physical, chemical, and biological properties, these novel carriers have the potential to become a platform technology in personalized regenerative medicine and other therapeutic applications.
Collapse
Affiliation(s)
- Victor Martin
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal.
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal, Portugal
| | - Pedro Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| |
Collapse
|
2
|
Sun X, Zhang S, Ren J, Udenigwe CC. Sialic acid-based strategies for the prevention and treatment of Helicobacter pylori infection: Emerging trends in food industry. Crit Rev Food Sci Nutr 2020; 62:1713-1724. [DOI: 10.1080/10408398.2020.1846157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiaohong Sun
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Songyuan Zhang
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Jian Ren
- College of Food and Biological Engineering, Qiqihar University, Qiqihar, Heilongjiang, China
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Mittal H, Ray SS, Kaith BS, Bhatia JK, Sukriti, Sharma J, Alhassan SM. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.10.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Zhang C, Zhang H, Li R, Xing Y. Morphology and adsorption properties of chitosan sulfate salt microspheres prepared by a microwave-assisted method. RSC Adv 2017. [DOI: 10.1039/c7ra09867g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chitosan sulfate salt microspheres were synthesized by a convenient microwave-assisted method and used as effective adsorbents for Cr(vi).
Collapse
Affiliation(s)
- Caiyun Zhang
- College of Chemistry, Chemical Engineering and Biotechnology of Donghua University
- Shanghai 201620
- China
| | - Huanhuan Zhang
- Shanghai Institute of Quality Inspection and Technical Research
- Shanghai 200040
- China
| | - Rong Li
- National Engineering Research Center for Dyeing and Finishing
- Shanghai 201620
- China
| | - Yanjun Xing
- College of Chemistry, Chemical Engineering and Biotechnology of Donghua University
- Shanghai 201620
- China
| |
Collapse
|
5
|
Modification of drug delivery to improve antibiotic targeting to the stomach. Ther Deliv 2016; 6:741-62. [PMID: 26149788 DOI: 10.4155/tde.15.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The obstacles to the successful eradication of Helicobacter pylori infections include the presence of antibiotic-resistant bacteria and therapy requiring multiple drugs with complicated dosing schedules. Other obstacles include bacterial residence in an environment where high antibiotic concentrations are difficult to achieve. Biofilm production by the bacteria is an additional challenge to the effective treatment of this infection. Conventional oral formulations used in the treatment of this infection have a short gastric residence time, thus limiting the duration of exposure of drug to the bacteria. This review summarizes the current research in the development of gastroretentive formulations and the prospective future applications of this approach in the targeted delivery of drugs such as antibiotics to the stomach.
Collapse
|
6
|
Verma A, Dubey J, Hegde RR, Rastogi V, Pandit JK. Helicobacter pylori: past, current and future treatment strategies with gastroretentive drug delivery systems. J Drug Target 2016; 24:897-915. [DOI: 10.3109/1061186x.2016.1171326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Xiong MH, Bao Y, Yang XZ, Zhu YH, Wang J. Delivery of antibiotics with polymeric particles. Adv Drug Deliv Rev 2014; 78:63-76. [PMID: 24548540 DOI: 10.1016/j.addr.2014.02.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 01/29/2014] [Accepted: 02/07/2014] [Indexed: 12/29/2022]
Abstract
Despite the wide use of antibiotics, bacterial infection is still one of the leading causes of hospitalization and mortality. The clinical failure of antibiotic therapy is linked with low bioavailability, poor penetration to bacterial infection sites, and the side effects of antibiotics, as well as the antibiotic resistance properties of bacteria. Antibiotics encapsulated in nanoparticles or microparticles made up of a biodegradable polymer have shown great potential in replacing the administration of antibiotics in their "free" form. Polymeric particles provide protection to antibiotics against environmental deactivation and alter antibiotic pharmacokinetics and biodistribution. Polymeric particles can overcome tissue and cellular barriers and deliver antibiotics into very dense tissues and inaccessible target cells. Polymeric particles can be modified to target or respond to particular tissues, cells, and even bacteria, and thereby facilitate the selective concentration or release of the antibiotic at infection sites, respectively. Thus, the delivery of antibiotics with polymeric particles augments the level of the bioactive drug at the site of infection while reducing the dosage and the dosing frequency. The end results are improved therapeutic effects as well as decreased "pill burden" and drug side effects in patients. The main objective of this review is to analyze recent advances and current perspectives in the use of polymeric antibiotic delivery systems in the treatment of bacterial infection.
Collapse
Affiliation(s)
- Meng-Hua Xiong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan Bao
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xian-Zhu Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yan-Hua Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
8
|
Lopes D, Nunes C, Martins MCL, Sarmento B, Reis S. Eradication of Helicobacter pylori: Past, present and future. J Control Release 2014; 189:169-86. [PMID: 24969353 DOI: 10.1016/j.jconrel.2014.06.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is the major cause of chronic gastritis and peptic ulcers. Since the classification as a group 1 carcinogenic by International Agency for Research on Cancer, the importance of the complete H. pylori eradication has obtained a novel meaning. Hence, several studies have been made in order to deepen the knowledge in therapy strategies. However, the current therapy presents unsatisfactory eradication rates due to the lack of therapeutic compliance, antibiotic resistance, the degradation of antibiotics at gastric pH and their insufficient residence time in the stomach. Novel approaches have been made in order to overcome these limitations. The purpose of this review is to provide an overview about the current therapy and its limitations, while highlighting the possibility of using micro- and nanotechnology to develop gastric drug delivery systems, overcoming these difficulties in the future.
Collapse
Affiliation(s)
- Daniela Lopes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Cláudia Nunes
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - M Cristina L Martins
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; IINFACTS - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Instituto Superior de Ciências da Saúde-Norte, Gandra-PRD, Portugal
| | - Salette Reis
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
9
|
Parreira P, Fátima Duarte M, Reis CA, Martins MCL. Helicobacter pylori infection: A brief overview on alternative natural treatments to conventional therapy. Crit Rev Microbiol 2014; 42:94-105. [PMID: 24606042 DOI: 10.3109/1040841x.2014.892055] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori is a human gastric pathogen considered as the etiologic agent of several gastric disorders, that may range from chronic gastritis to more severe outcomes, including gastric cancer. The current therapeutic scheme relies on the combination of several pharmacological substances, namely antibiotics and proton pump inhibitors. However, the cure rates obtained have been declining over the years, mostly due to bacterial resistance to antibiotics. In this context, the use of non-antibiotic substances is of the utmost importance regarding H. pylori eradication. In this review, we present different classes of compounds obtained from natural sources that have shown to present anti-H. pylori potential; we briefly highlight their possible use in the context of developing new therapeutic approaches.
Collapse
Affiliation(s)
- Paula Parreira
- a Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo , Rua Pedro Soares, Beja , Portugal
| | - M Fátima Duarte
- a Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo , Rua Pedro Soares, Beja , Portugal
| | - Celso A Reis
- b Instituto de Patologia e Imunologia Molecular da Universidade do Porto , Porto , Portugal .,c Faculdade de Medicina , Universidade do Porto , Porto , Portugal .,d Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal , and
| | - M Cristina L Martins
- d Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal , and.,e Instituto de Engenharia Biomédica, Universidade do Porto , Porto , Portugal
| |
Collapse
|
10
|
Pan-in P, Tachapruetinun A, Chaichanawongsaroj N, Banlunara W, Suksamrarn S, Wanichwecharungruang S. Combating Helicobacter pylori infections with mucoadhesive nanoparticles loaded with Garcinia mangostana extract. Nanomedicine (Lond) 2014; 9:457-68. [DOI: 10.2217/nnm.13.30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: To combat the resistance of Helicobacter pylori to antibiotics through the use of Garcinia mangostana extract (GME) in the form that can be localized at stomach mucosa. Materials & methods: GME and its major active component, α-mangostin, are encapsulated into the moderately acid stable mucoadhesive nanocarriers, and tested for anti-H. pylori and antiadhesion activities in vitro and their ability to eradicate H. pylori in infected mice. Results: The two in vitro activities are observed and are enhanced when the materials are encapsulated into nanocarriers. Preliminary in vivo tests revealed the ability to combat H. pylori in mice following oral administration of the encapsulated GME, but not the unencapsulated GME. Conclusion: Nanoencapsulated GME is a potential anti-H. pylori agent. Original submitted 10 August 2012; Revised submitted 9 December 2012; Published online 3 June 2013
Collapse
Affiliation(s)
- Porntip Pan-in
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Nuntaree Chaichanawongsaroj
- Innovation Center for Research & Development of Medical Diagnostic Technology Project, Department of Transfusion Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sunit Suksamrarn
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | | |
Collapse
|
11
|
Ahmed S, Sheraz MA, Rehman IU. Studies on tolfenamic acid-chitosan intermolecular interactions: effect of pH, polymer concentration and molecular weight. AAPS PharmSciTech 2013; 14:870-9. [PMID: 23620261 DOI: 10.1208/s12249-013-9974-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/16/2013] [Indexed: 11/30/2022] Open
Abstract
Solid-state properties of tolfenamic acid (TA) and its complexes with chitosan (CT) have been studied. Effect of medium pH, molecular weight of polymer and its different concentrations on these TA-CT complexes were studied in detail. Low and medium molecular weight CT have been used in different ratios at pH ranging from 4 to 6 and freeze-drying technique has been employed to modify the appearance of crystalline TA. Physical properties of the formed complexes have been studied by employing X-ray diffraction, differential scanning calorimetry and scanning electron microscopy; chemical structure has been studied using Fourier transform infrared spectroscopy. The results showed that both forms of the polymer exhibited complete conversion in 1:8 ratio at pH 4, 1:4 at pH 5 and 1:1 at pH 6 indicating a marked effect of pH on drug-polymer complexation. The percent crystallinity calculations indicated low molecular weight CT slightly more effective than the other form. No changes in the complexes have been observed during the 12 week storage under controlled conditions. Both forms of CT at different pH values indicated retardation of recrystallization in TA during cooling of the melt from 1:1 ratios exhibiting formation of strong intermolecular hydrogen bonding between the drug and the polymer.
Collapse
|
12
|
Cota-Arriola O, Cortez-Rocha MO, Burgos-Hernández A, Ezquerra-Brauer JM, Plascencia-Jatomea M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1525-36. [PMID: 23512598 DOI: 10.1002/jsfa.6060] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 10/05/2012] [Accepted: 01/19/2013] [Indexed: 05/14/2023]
Abstract
The control of micro-organisms responsible for pre- and postharvest diseases of agricultural products, mainly viruses and fungi, is a problem that remains unresolved, together with the environmental impact of the excessive use of chemicals to tackle this problem. Current efforts are focused on the search for efficient alternatives for microbial control that will not result in damage to the environment or an imbalance in the existing biota. One alternative is the use of natural antimicrobial compounds such as chitosan, a linear cationic biopolymer, which is biodegradable, biocompatible and non-toxic, has filmogenic properties and is capable of forming matrices for the transport of active substances. The study of chitosan has attracted great interest owing to its ability to form complexes or matrices for the controlled release of active compounds such as micro- and nanoparticles, which, together with the biological properties of chitosan, has allowed a major breakthrough in the pharmaceutical and biomedical industries. Another important field of study is the development of chitosan-based matrices for the controlled release of active compounds in areas such as agriculture and food for the control of viruses, bacteria and fungi, which is one of the least exploited areas and holds much promise for future research.
Collapse
Affiliation(s)
- Octavio Cota-Arriola
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, Hermosillo, Sonora, CP 83000, Mexico
| | | | | | | | | |
Collapse
|
13
|
Dash M, Chiellini F, Ottenbrite R, Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2011.02.001] [Citation(s) in RCA: 1932] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Effect of microencapsulated precipitants of Lactobacillus casei ATCC 393 on Helicobacter pylori eradication. Process Biochem 2011. [DOI: 10.1016/j.procbio.2010.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Paula HCBD, Oliveira EFD, Abreu FOMS, Paula RCMD, Morais SMD, Forte MMC. Esferas (beads) de alginato como agente encapsulante de óleo de croton zehntneri Pax et Hoffm. POLIMEROS 2010. [DOI: 10.1590/s0104-14282010005000019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Esferas de alginato (ALG) reticuladas com cálcio e revestidas com goma do cajueiro (GC) foram preparadas e dopadas com óleo essencial de Croton zehntneri Pax et Hoffm (Cz), visando a seu emprego como larvicida para combate ao vetor da dengue. As esferas foram caracterizadas estruturalmente por espectroscopia de infravermelho, análise térmica, microscopia eletrônica de varredura e em relação aos seus parâmetros de transporte líquido, dopagem, embebição (Q) e cinética de liberação in vitro e in vivo. Os resultados revelaram que as esferas possuem morfologia com uma alta regularidade esférica, com superfície porosa. A matriz ALG:Cz =1:1 apresentou maior dopagem e eficiência de encapsulamento e valores de Q entre 10 e 12. O perfil de liberação do óleo encapsulado apresentou-se mais prolongado nas esferas contendo goma do cajueiro, ALG-GC:Cz =1:1. A taxa de mortalidade de larvas de Stegomyia aegypti para teores de 1,81 a 4,25 mg de óleo nas esferas resultou em valores na faixa de 72 a 100%, após 24 h. A matriz polimérica mostrou-se efetiva para proteção do principio ativo até cerca de 70 dias, com perdas da ordem de 35%. A análise térmica revelou que a incorporação de Cz e GC resulta em uma matriz polimérica termicamente mais estável.
Collapse
|
16
|
Colon-specific devices based on methacrylic functionalized Tween monomer networks: Swelling studies and in vitro drug release. Eur Polym J 2010. [DOI: 10.1016/j.eurpolymj.2009.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Chang CH, Lin YH, Yeh CL, Chen YC, Chiou SF, Hsu YM, Chen YS, Wang CC. Nanoparticles Incorporated in pH-Sensitive Hydrogels as Amoxicillin Delivery for Eradication of Helicobacter pylori. Biomacromolecules 2009; 11:133-42. [DOI: 10.1021/bm900985h] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chiung-Hung Chang
- School of Chinese Medicine and Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China, and Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Yu-Hsin Lin
- School of Chinese Medicine and Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China, and Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Chia-Lin Yeh
- School of Chinese Medicine and Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China, and Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Yi-Chi Chen
- School of Chinese Medicine and Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China, and Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Shu-Fen Chiou
- School of Chinese Medicine and Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China, and Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Yuan-Man Hsu
- School of Chinese Medicine and Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China, and Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Yueh-Sheng Chen
- School of Chinese Medicine and Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China, and Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Chi-Chung Wang
- School of Chinese Medicine and Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, Republic of China, and Graduate Institute of Basic Medicine, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| |
Collapse
|
18
|
Şanlı O, Karaca I, Işıklan N. Preparation, characterization, and salicylic acid release behavior of chitosan/poly(vinyl alcohol) blend microspheres. J Appl Polym Sci 2009. [DOI: 10.1002/app.29319] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Choy YB, Cheng F, Choi H, Kim K(K. Uniform Chitosan Microspheres for Potential Application to Colon-Specific Drug Delivery. Macromol Biosci 2008; 8:1173-81. [DOI: 10.1002/mabi.200800079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Alsarra IA, El-Bagory I, Bayomi MA. Chitosan and Sodium Sulfate as Excipients in the Preparation of Prolonged Release Theophylline Tablets. Drug Dev Ind Pharm 2008; 31:385-95. [PMID: 16093204 DOI: 10.1080/03639040500214563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The major objectives of this study were to monitor the effect of cross-linking of cationic chitosan in acidic media with sulfate anion during granules preparation by wet granulation method prior to tableting using theophylline (TPH) as a model drug. The prepared granules and the compressed tablets were subjected to in vitro evaluation. The properties of the prepared matrix granules and the compressed tablets were dependent on chitosan:sodium sulfate weight ratios, chitosan content, and molecular weight of chitosan. The prepared granules of all batches showed excellent to passable flowability and were suitable for compression into tablets. Most of the granules were hard and expected to withstand handling during the subsequent compression into tablets. Granules with high friabilities were only those prepared with a high amount of sodium sulfate or low amount of chitosan. Compression of granule batches yield nondisintegrating tablets that showed a decrease in tensile strength with the increase of sodium sulfate content at high chitosan:sodium sulfate weight ratio or with decrease of chitosan content. On the other hand, friability of tablets was increased in the presence of an excessive amount of sodium sulfate and low chitosan content as observed with granules. Slow TPH release from the formulated tablets was achieved at 1:0.5 and 1:1 chitosan:sodium sulfate weight ratios where all or most of the cationic chitosan and sulfate anions were used in a cross-linking reaction during wet granulation. Ratios of 1:2 and 1:3 showed fast drug release, which support the hypothesis that excessive unreacted water-soluble sodium sulfate might increase the porosity of the nondesintegrating tablets during dissolution. Slow drug release was also obtained with high molecular weight chitosan, whereas changing the hardness of the tablets did not significantly change the release profile of the drug as long as the tablets are intact during dissolution. Furthermore, slow drug release was observed as the total amount of chitosan was increased in the formulated tablets. A comparative in vivo study between the chosen formulated tablets (1:1 chitosan:sodium sulfate ratio that contains 10% high molecular weight chitosan) and the commercial Quibron tablets indicated prolonged appearance of the drug in dogs' plasma for both formulations with no significant differences (p > 0.05) in rate and extent of drug absorption. The formulated tablets showed 103.16% bioavailability relative to that of the commercial tablets.
Collapse
Affiliation(s)
- Ibrahim A Alsarra
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
21
|
Kagan L, Hoffman A. Systems for region selective drug delivery in the gastrointestinal tract: biopharmaceutical considerations. Expert Opin Drug Deliv 2008; 5:681-92. [DOI: 10.1517/17425247.5.6.681] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Singh B, Chauhan N, Kumar S, Bala R. Psyllium and copolymers of 2-hydroxylethylmethacrylate and acrylamide-based novel devices for the use in colon specific antibiotic drug delivery. Int J Pharm 2008; 352:74-80. [DOI: 10.1016/j.ijpharm.2007.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 10/15/2007] [Accepted: 10/17/2007] [Indexed: 11/17/2022]
|
23
|
Singh B, Sharma N, Chauhan N. Synthesis, characterization and swelling studies of pH responsive psyllium and methacrylamide based hydrogels for the use in colon specific drug delivery. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2007.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Abstract
A controlled drug delivery system with prolonged residence time in the stomach is of particular interest for drugs that i) are locally active in the stomach, ii) have an absorption window in the stomach or in the upper small intestine, iii) are unstable in the intestinal or colonic environment, or iv) exhibit low solubility at high pH values. This article gives an overview of the parameters affecting gastric emptying in humans as well as on the main concepts used to design pharmaceutical dosage forms with prolonged gastric residence times. In particular, bioadhesive, size-increasing and floating drug delivery systems are presented and their major advantages and shortcomings are discussed. Both single- and multiple-unit dosage forms are reviewed and, if available, results from in vivo trials are reported.
Collapse
Affiliation(s)
- Alexander Streubel
- College of Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany.
| | | | | |
Collapse
|
25
|
Bardonnet PL, Faivre V, Pugh WJ, Piffaretti JC, Falson F. Gastroretentive dosage forms: Overview and special case of Helicobacter pylori. J Control Release 2006; 111:1-18. [PMID: 16403588 DOI: 10.1016/j.jconrel.2005.10.031] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2005] [Accepted: 10/31/2005] [Indexed: 01/03/2023]
Abstract
The challenge to develop efficient gastroretentive dosage forms began about 20 years ago, following the discovery of Helicobacter pylori by Warren and Marshall. In order to understand the real difficulty of increasing the gastric residence time of a dosage form, we have first summarized the important physiologic parameters, which act upon the gastric residence time. Afterwards, we have reviewed the different drug delivery systems designed until now, i.e. high-density, intragastric floating, expandable, superporous hydrogel, mucoadhesive and magnetic systems. Finally, we have focused on gastroretentive dosage forms especially designed against H. pylori, including specific targeting systems against this bacterium.
Collapse
Affiliation(s)
- P L Bardonnet
- Laboratoire de Pharmacie Galénique Industrielle, EA 3741, ISPB, Université Claude Bernard, Lyon I, 8 av. Rockefeller, 69373 Lyon, France
| | | | | | | | | |
Collapse
|
26
|
Zheng J, Liu C, Bao D, Zhao Y, Ma X. Preparation and evaluation of floating-bioadhesive microparticles containing clarithromycin for the eradication ofHelicobacter pylori. J Appl Polym Sci 2006. [DOI: 10.1002/app.24319] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. Int J Pharm 2004; 274:1-33. [PMID: 15072779 DOI: 10.1016/j.ijpharm.2003.12.026] [Citation(s) in RCA: 573] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 12/02/2003] [Accepted: 12/12/2003] [Indexed: 11/30/2022]
Abstract
Chitosan is a biodegradable natural polymer with great potential for pharmaceutical applications due to its biocompatibility, high charge density, non-toxicity and mucoadhesion. It has been shown that it not only improves the dissolution of poorly soluble drugs but also exerts a significant effect on fat metabolism in the body. Gel formation can be obtained by interactions of chitosans with low molecular counterions such as polyphosphates, sulphates and crosslinking with glutaraldehyde. This gelling property of chitosan allows a wide range of applications such as coating of pharmaceuticals and food products, gel entrapment of biochemicals, plant embryo, whole cells, microorganism and algae. This review is an insight into the exploitation of the various properties of chitosan to microencapsulate drugs. Various techniques used for preparing chitosan microspheres and evaluation of these microspheres have also been reviewed. This review also includes the factors that affect the entrapment efficiency and release kinetics of drugs from chitosan microspheres.
Collapse
Affiliation(s)
- V R Sinha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | | | | | | | | | | | | |
Collapse
|
28
|
Hejazi R, Amiji M. Stomach-specific anti-H. pylori therapy. Int J Pharm 2004; 272:99-108. [PMID: 15019073 DOI: 10.1016/j.ijpharm.2003.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 12/01/2003] [Accepted: 12/01/2003] [Indexed: 11/25/2022]
Abstract
The main objective of the present study was to examine the effect of chemical crosslinking of chitosan microspheres on the gastric residence and local tetracycline concentrations following oral administration in fasted gerbils. Radioiodinated [125I] glyoxal-crosslinked chitosan microsphere suspension in deionized distilled water was administered for the gastric residence studies. At different time points, the animals were sacrificed and the radioactivity in tissues and fluids was measured. Stomach tetracycline concentrations were determined using tritiated-[3H]-tetracycline-loaded crosslinked chitosan microspheres. The radioactivity, measured with a liquid scintillation analyzer, was used to determine the microgram of drug per gram of tissues or fluids. After 2 h in the fasted stomach, approximately 10% of the non-crosslinked chitosan microspheres remained. On the other hand, 17% of the crosslinked chitosan microspheres remained in the fasted stomach after the same time period. The microspheres were predominantly found in the colon after 6 h of administration. There was no detectable radioactivity in the plasma, urine, small intestine, liver, and kidneys. Tetracycline concentration profile in the stomach from the crosslinked microsphere formulation was higher than that of the aqueous solution and the non-crosslinked microsphere formulation. While the area-under-the-curve (AUC(0.5-->10 h)) for tetracycline solution and non-crosslinked chitosan microspheres was 447.3 and 358.2 microg h/g of tissue, respectively, the AUC(0.5-->10 h) for the crosslinked chitosan microspheres was 868.9 microg h/g of tissue. The drug was predominantly found in the colon and urine after 6 h of administration. Results of this study show that chitosan microspheres prepared by chemical crosslinking provide a longer residence time in the fasted gerbil stomach than either tetracycline solution or microspheres prepared by ionic precipitation.
Collapse
Affiliation(s)
- Radi Hejazi
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | | |
Collapse
|
29
|
Murata Y, Hirai D, Kofuji K, Miyamoto E, Kawashima S. Properties of an Alginate Gel Bead Containing a Chitosan-Drug Salt. Biol Pharm Bull 2004; 27:440-2. [PMID: 14993820 DOI: 10.1248/bpb.27.440] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A calcium-induced alginate gel bead (Alg-CS) containing chitosan (CS) and 2-(4-chlorophenoxy)-2-methylpropionic acid (CMP) was prepared. We then investigated (a) CMP release from Alg-CS, and (b) uptake of bile acid into the Alg-CS, within the gastrointestinal tract. Dried Alg-CS gradually swelled in taurocholate solution, while releasing CMP and taking up bile acid. The amount of bile acid taken up into the Alg-CS increased incrementally according to the degree of deacetylation of CS. Furthermore, the molecular weight of CS also affected the properties of the Alg-CS. An approximately linear relationship was observed between CMP release and bile acid uptake of Alg-CS.
Collapse
Affiliation(s)
- Yoshifumi Murata
- Faculty of Pharmaceutical Science, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|