1
|
Hiew TN. Dr. Paul W. S. Heng, a guru in pharmaceutical processing research. Int J Pharm 2024; 666:124816. [PMID: 39389476 DOI: 10.1016/j.ijpharm.2024.124816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Affiliation(s)
- Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, United States.
| |
Collapse
|
2
|
Li Z, Peng W, Zhu L, Liu W, Yang L, Chen L, Naeem A, Zhu W, Feng Y, Ming L. Study on Improving the Performance of Traditional Medicine Extracts with High Drug Loading Based on Co-spray Drying Technology. AAPS PharmSciTech 2023; 24:247. [PMID: 38030948 DOI: 10.1208/s12249-023-02703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
The purpose of this study is to develop modified particles with different structures to improve the flowability and compactibility of Liuwei Dihuang (LWDH) powder using co-spray drying technology, and to investigate the preparation mechanism of modified particles and their modified direct compaction (DC) properties. Moreover, tablets with high drug loading contents were also prepared. Particles were designed using polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC E3) as shell materials, and sodium bicarbonate (NaHCO3) and ammonium bicarbonate (NH4HCO3) as pore-forming agents. The porous particles (Ps), core-shell particles (CPs), and porous core-shell particles (PCPs) were prepared by co-spray drying technology. The key DC properties and texture properties of all the particles were measured and compared. The properties of co-spray drying liquid were also determined and analyzed. According to the results, Ps showed the least improvement in DC properties, followed by CPs, and PCPs showed a significant improvement. The modifier, because of its low surface tension, was wrapped in the outer layer to form a shell, and the pore-forming agent was thermally decomposed to produce pores, forming core-shell, porous, and porous core-shell composite structures. The smooth surface of the shell structure enhances fluidity, while the porous structure allows for greater compaction space, thereby improving DC properties during the compaction process.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Wanghai Peng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Lin Zhu
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China
| | - Wenjun Liu
- Jiangzhong Pharmaceutical Co. Ltd, Nanchang, 330049, People's Republic of China
| | - Lingyu Yang
- Jiangzhong Pharmaceutical Co. Ltd, Nanchang, 330049, People's Republic of China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yi Feng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Liangshan Ming
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| |
Collapse
|
3
|
Yu J, Xu B, Zhang K, Shi C, Zhang Z, Fu J, Qiao Y. Using a Material Library to Understand the Impacts of Raw Material Properties on Ribbon Quality in Roll Compaction. Pharmaceutics 2019; 11:pharmaceutics11120662. [PMID: 31817930 PMCID: PMC6956229 DOI: 10.3390/pharmaceutics11120662] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/09/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study is to use a material library to investigate the effect of raw material properties on ribbon tensile strength (TS) and solid fraction (SF) in the roll compaction (RC) process. A total of 81 pharmaceutical materials, including 53 excipients and 28 natural product powders (NPPs), were characterized by 22 material descriptors and were compacted under five different hydraulic pressures. The transversal and longitudinal splitting behaviors of the ribbons were summarized. The TS-porosity and TS-pressure relationships were used to explain the roll compaction behavior of powdered materials. Through defining the target ribbon quality (i.e., 0.6 ≤ SF ≤ 0.8 and TS ≥ 1 MPa), the roll compaction behavior classification system (RCBCS) was built and 81 materials were classified into three categories. A total of 24 excipients and five NPPs were classified as Category I materials, which fulfilled the target ribbon quality and had less occurrence of transversal splitting. Moreover, the multivariate relationships between raw material descriptors, the hydraulic pressure and ribbon quality attributes were obtained by PLS regression. Four density-related material descriptors and the cohesion index were identified as critical material attributes (CMAs). The multi-objective design space summarizing the feasible material properties and operational region for the RC process were visualized. The RCBCS presented in this paper enables a formulator to perform the initial risk assessment of any new materials, and the data modeling method helps to predict the impact of formulation ingredients on strength and porosity of compacts.
Collapse
Affiliation(s)
- Jiaqi Yu
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
| | - Bing Xu
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China; (Z.Z.); (J.F.)
- Correspondence: (B.X.); (Y.Q.); Tel.: +86-010-53912117 (B.X.)
| | - Kunfeng Zhang
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
| | - Chenfeng Shi
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
| | - Zhiqiang Zhang
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China; (Z.Z.); (J.F.)
- Beijing Tcmages Pharmceutical Co. LTD, Beijing 101301, China
| | - Jing Fu
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China; (Z.Z.); (J.F.)
- Beijing Tcmages Pharmceutical Co. LTD, Beijing 101301, China
| | - Yanjiang Qiao
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 100029, China; (J.Y.); (K.Z.); (C.S.)
- Beijing Key Laboratory of Chinese Medicine Manufacturing Process Control and Quality Evaluation, Beijing 100029, China; (Z.Z.); (J.F.)
- Correspondence: (B.X.); (Y.Q.); Tel.: +86-010-53912117 (B.X.)
| |
Collapse
|
5
|
Jeon I, Bikrom, Kumar A, Vandamme T, Betz G. Dry granulation and tableting of St. John’s wort dry extract: effect of roll compaction variables, excipients, and tableting speed on granule and tablet properties. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50015-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|