1
|
Liu Q, Zhao X, Shao X, Cheng P, Cui J, Han S. ROR2 promotes cell cycle progression and cell proliferation through the PI3K/AKT signaling pathway in gastric cancer. Mol Carcinog 2024. [PMID: 39150155 DOI: 10.1002/mc.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Proliferation is a critical characteristic of the progression of gastric cancer (GC). Receptor tyrosine kinase-like orphan receptor 2 (ROR2), the orphan receptor tyrosine kinase-like receptor, exhibits effects on tumor growth due to its abnormal expression in cancer. The goal of our study was to assess the potential regulatory role exerted by the ROR2 on GC cells. Through previous bioinformatics analysis, we discovered an association between ROR2 and the G2/M phase of the GC cell cycle. However, little is known about the link between ROR2 and the G2/M phase cell cycle in GC. Here, the findings of our study indicate that ROR2, after transcribed expression by Twist1, activates the PI3K/AKT/mTOR/S6K signal transduction pathway, thus leading to the acceleration of the G2/M phase and subsequent promotion of cell proliferation in GC. Furthermore, the functional link among ROR2, Twist1, and G2/M phase of cell cycle was also confirmed in mouse xenograft tissues and human tissues. ROR2 expression was correlated with Twist expression and lower survival in vivo. Notably, our suggestion is that focusing on ROR2 as a potential therapeutic approach could show potential for the management of GC.
Collapse
Affiliation(s)
- Qi Liu
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Shandong University, Jinan, China
| | - Xin Zhao
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaowen Shao
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ping Cheng
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jingyi Cui
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuyi Han
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Shandong University, Jinan, China
- Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
2
|
Li L, Huang W, Ren X, Wang Z, Ding K, Zhao L, Zhang J. Unlocking the potential: advancements and future horizons in ROR1-targeted cancer therapies. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2685-9. [PMID: 39145866 DOI: 10.1007/s11427-024-2685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
While receptor tyrosine kinase-like orphan receptor 1 (ROR1) is typically expressed at low levels or absent in normal tissues, its expression is notably elevated in various malignant tumors and conditions, including chronic lymphocytic leukemia (CLL), breast cancer, ovarian cancer, melanoma, and lung adenocarcinoma. This distinctive feature positions ROR1 as an attractive target for tumor-specific treatments. Currently, several targeted drugs directed at ROR1 are undergoing clinical development, including monoclonal antibodies, antibody-drug conjugates (ADCs), and chimeric antigen receptor T-cell therapy (CAR-T). Additionally, there are four small molecule inhibitors designed to bind to ROR1, presenting promising avenues for the development of PROTAC degraders targeting ROR1. This review offers updated insights into ROR1's structural and functional characteristics, embryonic development implications, cell survival signaling pathways, and evolutionary targeting strategies, all of which have the potential to advance the treatment of malignant tumors.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Linxiang Zhao
- State Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jinwei Zhang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
4
|
Wang J, Li Z, Zhao Q. Receptor tyrosine kinase-like orphan receptor serves as a potential target in cancer immunotherapy. J Leukoc Biol 2024:qiae141. [PMID: 38973261 DOI: 10.1093/jleuko/qiae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Receptor tyrosine kinase-like orphan receptor (ROR), consisting of ROR1 and ROR2, is a conserved family of receptor tyrosine kinase superfamily that plays crucial roles during embryonic development with limited expression in adult normal tissues. However, it is overexpressed in a range of hematological malignancies and solid tumors and functions in cellular processes including cell survival, polarity, and migration, serving as a potential target in cancer immunotherapy. This review summarizes the expression and structure of ROR in developmental morphogenesis and its function in cancers associated with Wnt5a signaling and highlights the cancer immunotherapy strategies targeting ROR.
Collapse
Affiliation(s)
- Jiaqi Wang
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Zhoufang Li
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
5
|
Chu Y, Nayyar G, Tian M, Lee DA, Ozkaynak MF, Ayala-Cuesta J, Klose K, Foley K, Mendelowitz AS, Luo W, Liao Y, Ayello J, Behbehani GK, Riddell S, Cripe T, Cairo MS. Efficiently targeting neuroblastoma with the combination of anti-ROR1 CAR NK cells and N-803 in vitro and in vivo in NB xenografts. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200820. [PMID: 38933492 PMCID: PMC11201149 DOI: 10.1016/j.omton.2024.200820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
The prognosis for children with recurrent and/or refractory neuroblastoma (NB) is dismal. The receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is highly expressed on the surface of NB cells, provides a potential target for novel immunotherapeutics. Anti-ROR1 chimeric antigen receptor engineered ex vivo expanded peripheral blood natural killer (anti-ROR1 CAR exPBNK) cells represent this approach. N-803 is an IL-15 superagonist with enhanced biological activity. In this study, we investigated the in vitro and in vivo anti-tumor effects of anti-ROR1 CAR exPBNK cells with or without N-803 against ROR1+ NB models. Compared to mock exPBNK cells, anti-ROR1 CAR exPBNK cells had significantly enhanced cytotoxicity against ROR1+ NB cells, and N-803 further increased cytotoxicity. High-dimensional analysis revealed that N-803 enhanced Stat5 phosphorylation and Ki67 levels in both exPBNK and anti-ROR1 CAR exPBNK cells with or without NB cells. In vivo, anti-ROR1 CAR exPBNK plus N-803 significantly (p < 0.05) enhanced survival in human ROR1+ NB xenografted NSG mice compared to anti-ROR1 CAR exPBNK alone. Our results provide the rationale for further development of anti-ROR1 CAR exPBNK cells plus N-803 as a novel combination immunotherapeutic for patients with recurrent and/or refractory ROR1+ NB.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Meijuan Tian
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Dean A. Lee
- Department of Pediatric Hem/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mehmet F. Ozkaynak
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | - Kayleigh Klose
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Keira Foley
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | | | - Wen Luo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Yanling Liao
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Janet Ayello
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
| | - Gregory K. Behbehani
- Department of Internal Medicine, Division of Hematology, the Ohio State University; Columbus, OH 43210, USA
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Tim Cripe
- Department of Pediatric Hem/Onc/BMT, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Mitchell S. Cairo
- Department of Pediatrics, New York Medical College, Valhalla, NY 10595, USA
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
- Department of Microbiology, Immunology and Pathology, New York Medical College, Valhalla, NY 10595, USA
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
6
|
Ghaderi A, Okhovat MA, Lehto J, De Petris L, Manouchehri Doulabi E, Kokhaei P, Zhong W, Rassidakis GZ, Drakos E, Moshfegh A, Schultz J, Olin T, Österborg A, Mellstedt H, Hojjat-Farsangi M. A Small Molecule Targeting the Intracellular Tyrosine Kinase Domain of ROR1 (KAN0441571C) Induced Significant Apoptosis of Non-Small Cell Lung Cancer (NSCLC) Cells. Pharmaceutics 2023; 15:pharmaceutics15041148. [PMID: 37111634 PMCID: PMC10145660 DOI: 10.3390/pharmaceutics15041148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
The ROR1 receptor tyrosine kinase is expressed in embryonic tissues but is absent in normal adult tissues. ROR1 is of importance in oncogenesis and is overexpressed in several cancers, such as NSCLC. In this study, we evaluated ROR1 expression in NSCLC patients (N = 287) and the cytotoxic effects of a small molecule ROR1 inhibitor (KAN0441571C) in NSCLC cell lines. ROR1 expression in tumor cells was more frequent in non-squamous (87%) than in squamous (57%) carcinomas patients, while 21% of neuroendocrine tumors expressed ROR1 (p = 0.0001). A significantly higher proportion of p53 negative patients in the ROR1+ group than in the p53 positive non-squamous NSCLC patients (p = 0.03) was noted. KAN0441571C dephosphorylated ROR1 and induced apoptosis (Annexin V/PI) in a time- and dose-dependent manner in five ROR1+ NSCLC cell lines and was superior compared to erlotinib (EGFR inhibitor). Apoptosis was confirmed by the downregulation of MCL-1 and BCL-2, as well as PARP and caspase 3 cleavage. The non-canonical Wnt pathway was involved. The combination of KAN0441571C and erlotinib showed a synergistic apoptotic effect. KAN0441571C also inhibited proliferative (cell cycle analyses, colony formation assay) and migratory (scratch wound healing assay) functions. Targeting NSCLC cells by a combination of ROR1 and EGFR inhibitors may represent a novel promising approach for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad-Ali Okhovat
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Jemina Lehto
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Thoracic Oncology Center, Karolinska Comprehensive Cancer Center, 171 76 Solna, Sweden
| | - Ehsan Manouchehri Doulabi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Parviz Kokhaei
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Immunology, Arak University of Medical Sciences, Arak 3848170001, Iran
| | - Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Elias Drakos
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Pathology, Medical School, University of Crete, 700 13 Heraklion, Greece
| | - Ali Moshfegh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Thomas Olin
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, 171 64 Solna, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna, Karolinska Institutet, 171 64 Stockholm, Sweden
| |
Collapse
|
7
|
Ghaderi A, Zhong W, Okhovat MA, Aschan J, Svensson A, Sander B, Schultz J, Olin T, Österborg A, Hojjat-Farsangi M, Mellstedt H. A ROR1 Small Molecule Inhibitor (KAN0441571C) Induced Significant Apoptosis of Mantle Cell Lymphoma (MCL) Cells. Pharmaceutics 2022; 14:pharmaceutics14102238. [PMID: 36297673 PMCID: PMC9607197 DOI: 10.3390/pharmaceutics14102238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
The receptor tyrosine kinase orphan receptor 1 (ROR1) is absent in most normal adult tissues but overexpressed in various malignancies and is of importance for tumor cell survival, proliferation, and metastasis. In this study, we evaluated the apoptotic effects of a novel small molecule inhibitor of ROR1 (KAN0441571C) as well as venetoclax (BCL-2 inhibitor), bendamustine, idelalisib (PI3Kδ inhibitor), everolimus (mTOR inhibitor), and ibrutinib (BTK inhibitor) alone or in combination in human MCL primary cells and cell lines. ROR1 expression was evaluated by flow cytometry and Western blot (WB). Cytotoxicity was analyzed by MTT and apoptosis by Annexin V/PI staining as well as signaling and apoptotic proteins (WB). ROR1 was expressed both in patient-derived MCL cells and human MCL cell lines. KAN0441571C alone induced significant time- and dose-dependent apoptosis of MCL cells. Apoptosis was accompanied by decreased expression of MCL-1 and BCL-2 and cleavage of PARP and caspase 3. ROR1 was dephosphorylated as well as ROR1-associated signaling pathway molecules, including the non-canonical WNT signaling pathway (PI3Kδ/AKT/mTOR). The combination of KAN0441571C and ibrutinib, venetoclax, idelalisib, everolimus, or bendamustine had a synergistic apoptotic effect and significantly prevented phosphorylation of ROR1-associated signaling molecules as compared to KAN0441571C alone. Our results suggest that targeting ROR1 by a small molecule inhibitor, KAN0441571C, should be further evaluated particularly in combination with other targeting drugs as a new therapeutic approach for MCL.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Wen Zhong
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Mohammad Ali Okhovat
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Johanna Aschan
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Ann Svensson
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Thomas Olin
- Kancera AB, Nanna Svartz Väg 4, 171 65 Solna, Sweden
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
- Correspondence: ; Tel.: +46-735-234-706
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 171 64 Stockholm, Sweden
| |
Collapse
|
8
|
Babin L, Darchen A, Robert E, Aid Z, Borry R, Soudais C, Piganeau M, De Cian A, Giovannangeli C, Bawa O, Rigaud C, Scoazec JY, Couronné L, Veleanu L, Cieslak A, Asnafi V, Sibon D, Lamant L, Meggetto F, Mercher T, Brunet E. De novo generation of the NPM-ALK fusion recapitulates the pleiotropic phenotypes of ALK+ ALCL pathogenesis and reveals the ROR2 receptor as target for tumor cells. Mol Cancer 2022; 21:65. [PMID: 35246138 PMCID: PMC8895835 DOI: 10.1186/s12943-022-01520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/12/2022] Open
Abstract
Background Anaplastic large cell lymphoma positive for ALK (ALK+ ALCL) is a rare type of non-Hodgkin lymphoma. This lymphoma is caused by chromosomal translocations involving the anaplastic lymphoma kinase gene (ALK). In this study, we aimed to identify mechanisms of transformation and therapeutic targets by generating a model of ALK+ ALCL lymphomagenesis ab initio with the specific NPM-ALK fusion. Methods We performed CRISPR/Cas9-mediated genome editing of the NPM-ALK chromosomal translocation in primary human activated T lymphocytes. Results Both CD4+ and CD8+ NPM-ALK-edited T lymphocytes showed rapid and reproducible competitive advantage in culture and led to in vivo disease development with nodal and extra-nodal features. Murine tumors displayed the phenotypic diversity observed in ALK+ ALCL patients, including CD4+ and CD8+ lymphomas. Assessment of transcriptome data from models and patients revealed global activation of the WNT signaling pathway, including both canonical and non-canonical pathways, during ALK+ ALCL lymphomagenesis. Specifically, we found that the WNT signaling cell surface receptor ROR2 represented a robust and genuine marker of all ALK+ ALCL patient tumor samples. Conclusions In this study, ab initio modeling of the ALK+ ALCL chromosomal translocation in mature T lymphocytes enabled the identification of new therapeutic targets. As ROR2 targeting approaches for other cancers are under development (including lung and ovarian tumors), our findings suggest that ALK+ ALCL cases with resistance to current therapies may also benefit from ROR2 targeting strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01520-0.
Collapse
Affiliation(s)
- Loélia Babin
- Laboratory of the « Genome Dynamics in the Immune System », Équipe Labellisée La Ligue Contre Le Cancer, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Alice Darchen
- Laboratory of the « Genome Dynamics in the Immune System », Équipe Labellisée La Ligue Contre Le Cancer, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Elie Robert
- Programme PEDIAC, Equipe labellisée Ligue Contre le Cancer, OPALE Carnot Institute, Université Paris Saclay, INSERM Unité U1170, Gustave Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94805, Villejuif, France
| | - Zakia Aid
- Programme PEDIAC, Equipe labellisée Ligue Contre le Cancer, OPALE Carnot Institute, Université Paris Saclay, INSERM Unité U1170, Gustave Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94805, Villejuif, France
| | - Rosalie Borry
- Laboratory of the « Genome Dynamics in the Immune System », Équipe Labellisée La Ligue Contre Le Cancer, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Claire Soudais
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Université de Paris, INSERM UMR1163, Institut Imagine, Paris, France
| | - Marion Piganeau
- INSERM U1154, CNRS UMR 7196, Sorbonne Universités, Museum National d'Histoire Naturelle, 43 rue Cuvier, F-75231, Paris, France
| | - Anne De Cian
- INSERM U1154, CNRS UMR 7196, Sorbonne Universités, Museum National d'Histoire Naturelle, 43 rue Cuvier, F-75231, Paris, France
| | - Carine Giovannangeli
- INSERM U1154, CNRS UMR 7196, Sorbonne Universités, Museum National d'Histoire Naturelle, 43 rue Cuvier, F-75231, Paris, France
| | - Olivia Bawa
- PETRA platform, AMMICa, University Paris Saclay, CNRS-UMS 3655 Inserm US23, Gustave Roussy, 94805, Villejuif, France
| | - Charlotte Rigaud
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94805, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology, AMMICa CNRS UMS3655 Inserm US23 Université Paris Saclay, Gustave Roussy, 94805, Villejuif, France
| | - Lucile Couronné
- Laboratory of Onco Hematology, Hôpital Necker - Enfants Malades, Assistance Publique Hôpitaux de Paris (APHP); Laboratory of Normal and pathological lymphoid differentiation, University of Paris, INSERM U1151, INEM Institute, Paris, France
| | - Layla Veleanu
- Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM U1151, and Laboratory of Onco-Hematology, AP-HP Hôpital Necker Enfants-Malades, Paris, France
| | - Agata Cieslak
- Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM U1151, and Laboratory of Onco-Hematology, AP-HP Hôpital Necker Enfants-Malades, Paris, France
| | - Vahid Asnafi
- Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM U1151, and Laboratory of Onco-Hematology, AP-HP Hôpital Necker Enfants-Malades, Paris, France
| | - David Sibon
- Université de Paris, Institut Necker-Enfants Malades (INEM), INSERM U1151, and Laboratory of Onco-Hematology, AP-HP Hôpital Necker Enfants-Malades, Paris, France
| | - Laurence Lamant
- Université Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer-TOUCAN, Équipe Labellisée La Ligue Contre Le Cancer, CNRS UMR5071, Inserm, UMR1037, CRCT, F-31000, Toulouse, France
| | - Fabienne Meggetto
- Université Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer-TOUCAN, Équipe Labellisée La Ligue Contre Le Cancer, CNRS UMR5071, Inserm, UMR1037, CRCT, F-31000, Toulouse, France
| | - Thomas Mercher
- Programme PEDIAC, Equipe labellisée Ligue Contre le Cancer, OPALE Carnot Institute, Université Paris Saclay, INSERM Unité U1170, Gustave Roussy Cancer Campus, 114, rue Édouard-Vaillant, 94805, Villejuif, France.
| | - Erika Brunet
- Laboratory of the « Genome Dynamics in the Immune System », Équipe Labellisée La Ligue Contre Le Cancer, Université de Paris, Université Paris Saclay, INSERM UMR 1163, Institut Imagine, Paris, France.
| |
Collapse
|
9
|
Castro MV, Lopez-Bergami P. Cellular and molecular mechanisms implicated in the dual role of ROR2 in cancer. Crit Rev Oncol Hematol 2022; 170:103595. [PMID: 35032666 DOI: 10.1016/j.critrevonc.2022.103595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are Wnt receptors that are critical for β-catenin-independent Wnt pathways and have been linked to processes driving tumor progression, such as cell proliferation, survival, invasion, and therapy resistance. Both receptors have garnered interest as potential therapeutic targets since they are largely absent in adult tissue, are overexpressed in several cancers, and, as members of the receptor tyrosine kinase family, are easier to target than all other components of the pathway. Unlike ROR1 which always promotes tumorigenesis, ROR2 has a very complex role in cancer acting either to promote or inhibit tumor progression in different tumor types. In the present article, we summarize the findings on ROR2 expression in cancer patients and its impact on clinical outcome. Further, we review the biological processes and signaling pathways regulated by ROR2 that explain its dual role in cancer. Finally, we describe the ongoing strategies to target ROR2 in cancer.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina.
| |
Collapse
|
10
|
Receptor tyrosine kinase ROR1 ameliorates Aβ 1-42 induced cytoskeletal instability and is regulated by the miR146a-NEAT1 nexus in Alzheimer's disease. Sci Rep 2021; 11:19254. [PMID: 34584188 PMCID: PMC8479066 DOI: 10.1038/s41598-021-98882-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) involves severe cytoskeletal degradation and microtubule disruption. Here, we studied the altered dynamics of ROR1, a Receptor Tyrosine Kinase (RTK), and how it could counter these abnormalities. We found that in an Aβ1–42 treated cell model of AD, ROR1 was significantly decreased. Over expressed ROR1 led to the abrogation of cytoskeletal protein degradation, even in the presence of Aβ1–42, preserved the actin network, altered actin dynamics and promoted neuritogenesis. Bioinformatically predicted miRNAs hsa-miR-146a and 34a were strongly up regulated in the cell model and their over expression repressed ROR1. LncRNA NEAT1, an interactor of these miRNAs, was elevated in mice AD brain and cell model concordantly. RNA Immunoprecipitation confirmed a physical interaction between the miRNAs and NEAT1. Intuitively, a transient knock down of NEAT1 increased their levels. To our knowledge, this is the first instance which implicates ROR1 in AD and proposes its role in preserving the cytoskeleton. The signalling modalities are uniquely analyzed from the regulatory perspectives with miR-146a and miR-34a repressing ROR1 and in turn getting regulated by NEAT1.
Collapse
|
11
|
Son JH, Lee JU, Chin S, Go ES, Park JS, Shin HK, Chang HS, Park JS, Park CS. Upregulation of receptor tyrosine kinase-like orphan receptor 2 in idiopathic pulmonary fibrosis. Korean J Intern Med 2021; 36:914-923. [PMID: 32951408 PMCID: PMC8273837 DOI: 10.3904/kjim.2019.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 12/18/2019] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND/AIMS Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a major regulator of Wnt signaling, which is involved in fibroblast dysfunction. Because its role has not been evaluated in idiopathic pulmonary fibrosis (IPF), we examined the clinical implications of ROR2 expression. METHODS ROR2 mRNA expression was measured using reverse transcription polymerase chain reaction in lung tissue-derived fibroblasts from IPF patients (n = 14) and from controls (n = 10). ROR2 protein was measured using enzyme-linked immunosorbent assay in primary fibroblasts from IPF patients (n = 14) and controls (n = 10), and in bronchoalveolar lavage (BAL) fluids obtained from normal controls (NC; n = 30). IPF patients (n = 84), and other patients with interstitial lung diseases, including nonspecific interstitial pneumonia (NSIP; n = 10), hypersensitivity pneumonitis (HP; n = 10), and sarcoidosis (n = 10). RESULTS ROR2 mRNA and protein levels were significantly higher in IPF fibroblasts than in controls (p = 0.003, p = 0.0017, respectively). ROR2 protein levels in BAL fluids from patients with IPF were significantly higher than in those from NC (p < 0.001), and from patients with NSIP (p = 0.006), HP (p = 0.004), or sarcoidosis (p = 0.004). Receiver operating characteristic curves showed a clear difference between IPF and NC in ROR2 protein level (area under the curve, 0.890; confidence interval, 0.829 to 0.950; p < 0.001). ROR2 protein levels were significantly higher in GAP stage III than in GAP stages I and II (p = 0.016). CONCLUSION ROR2 may be related to the development of IPF, and its protein level may be a useful and severity-dependent candidate marker for IPF.
Collapse
Affiliation(s)
- Ji-Hye Son
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan, Korea
| | - Jong-Uk Lee
- Genome Research Center and Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Susie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Eun-Suk Go
- Department of Pathology, Soonchunhyang University College of Medicine, Asan, Korea
| | - Jai-Seong Park
- Department of Radiology, Soonchunhyang University College of Medicine, Asan, Korea
| | - Hwa-Kyun Shin
- Department of Thoracic Surgery, Soonchunhyang University College of Medicine, Asan, Korea
| | - Hun Soo Chang
- Department of Interdisciplinary Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan, Korea
| | - Jong-Sook Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Correspondence to Jong-Sook Park, M.D. Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon 14584, Korea Tel: +82-32-621-5105 Fax: +82-32-621-5023 E-mail:
| | - Choon-Sik Park
- Genome Research Center and Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| |
Collapse
|
12
|
Hojjat-Farsangi M, Moshfegh A, Schultz J, Norin M, Olin T, Österborg A, Mellstedt H. Targeting the Receptor Tyrosine Kinase ROR1 by Small Molecules. Handb Exp Pharmacol 2021; 269:75-99. [PMID: 34490515 DOI: 10.1007/164_2021_535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Receptor tyrosine kinases (RTKs) are frequently dysregulated in malignancies and important for the malignant characteristics of tumor cells. RTKs are attractive structures for drug targeting of cancer. The RTK ROR1 is of significance during embryogenesis but downregulated in post-partum tissues. However, ROR1 is overexpressed in several hematological and solid tumors and important for tumor cell proliferation, survival, migration, and metastasis. WNT5a is a main ligand for ROR1. Several clinical trials are ongoing using anti-ROR1 antibody based drugs directed against the external domain (monoclonal antibodies, BiTE, CAR-T). We have produced small molecules (KAN834/1571c) fitting to the ATP pocket of the intracellular tyrosine kinase (TK) domain of ROR1 (TK inhibitor, TKI). These inhibitors of ROR1 prevented ROR1 phosphorylation and inactivated the WNT/β-catenin independent as well as WNT/β-catenin dependent pathways. ROR1-TKI induced apoptosis of ROR1 positive fresh patient derived tumor cells and appropriate cell lines and a dose and time dependent tumor reduction in animal models. In combination with other clinically relevant targeting drugs as venetoclax a synergistic apoptotic effect was seen. Two other small molecules (ARI-1 and strictinin) bound also to ROR1 and inhibited tumor growth. Development of small molecule ROR1 inhibitors is warranted to include this novel therapeutic approach for cancer therapy.
Collapse
Affiliation(s)
| | - Ali Moshfegh
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Martin Norin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Thomas Olin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Anders Österborg
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Ghaderi A, Daneshmanesh AH, Moshfegh A, Kokhaei P, Vågberg J, Schultz J, Olin T, Harrysson S, Smedby KE, Drakos E, Rassidakis GZ, Österborg A, Mellstedt H, Hojjat-Farsangi M. ROR1 Is Expressed in Diffuse Large B-Cell Lymphoma (DLBCL) and a Small Molecule Inhibitor of ROR1 (KAN0441571C) Induced Apoptosis of Lymphoma Cells. Biomedicines 2020; 8:biomedicines8060170. [PMID: 32586008 PMCID: PMC7344684 DOI: 10.3390/biomedicines8060170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
The receptor tyrosine kinase ROR1 is absent in most normal adult tissues, but overexpressed in several malignancies. In this study, we explored clinical and functional inhibitory aspects of ROR1 in diffuse large B-cell lymphoma (DLBCL). ROR1 expression in tumor cells was more often observed in primary refractory DLBCL, Richter’s syndrome and transformed follicular lymphoma than in relapsed and non-relapsed DLBCL patients (p < 0.001). A survival effect of ROR1 expression was preliminarily observed in relapsed/refractory patients independent of gender and stage but not of age, cell of origin and international prognostic index. A second generation small molecule ROR1 inhibitor (KAN0441571C) induced apoptosis of ROR1+ DLBCL cell lines, similar to venetoclax (BCL-2 inhibitor) but superior to ibrutinib (BTK inhibitor). The combination of KAN0441571C and venetoclax at EC50 concentrations induced almost complete killing of DLBCL cell lines. Apoptosis was accompanied by the downregulation of BCL-2 and MCL-1 and confirmed by the cleavage of PARP and caspases 3, 8, 9. PI3Kδ/AKT/mTOR (non-canonical Wnt pathway) as well as β-catenin and CK1δ (canonical pathway) were inactivated. In zebra fishes transplanted with a ROR1+ DLBCL cell line, KAN0441571C induced a significant tumor reduction. New drugs with mechanisms of action other than those available for DLBCL are warranted. ROR1 inhibitors might represent a novel promising approach.
Collapse
Affiliation(s)
- Amineh Ghaderi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
| | - Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
| | - Ali Moshfegh
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Kancera AB, Karolinska Institute Science Park, 171 48 Solna, Sweden; (J.V.); (J.S.); (T.O.)
| | - Parviz Kokhaei
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Department of Immunology, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Jan Vågberg
- Kancera AB, Karolinska Institute Science Park, 171 48 Solna, Sweden; (J.V.); (J.S.); (T.O.)
| | - Johan Schultz
- Kancera AB, Karolinska Institute Science Park, 171 48 Solna, Sweden; (J.V.); (J.S.); (T.O.)
| | - Thomas Olin
- Kancera AB, Karolinska Institute Science Park, 171 48 Solna, Sweden; (J.V.); (J.S.); (T.O.)
| | - Sara Harrysson
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.H.); (K.E.S.)
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, 171 76 Stockholm, Sweden; (S.H.); (K.E.S.)
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Elias Drakos
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Department of Pathology, Medical School, University of Crete, 71110 Heraklion Crete, Greece
| | - Georgios Z. Rassidakis
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
| | - Anders Österborg
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Department of Hematology, Karolinska University Hospital Solna, 171 77 Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
- Correspondence: ; Tel.: +46-70-658-9809
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, 17164 Stockholm, Sweden; (A.G.); (A.H.D.); (A.M.); (P.K.); (E.D.); (G.Z.R.); (A.Ö.); (M.H.-F.)
| |
Collapse
|
14
|
Li R, Liu T, Shi J, Luan W, Wei X, Yu J, Mao H, Liu P. ROR2 induces cell apoptosis via activating IRE1α/JNK/CHOP pathway in high-grade serous ovarian carcinoma in vitro and in vivo. J Transl Med 2019; 17:428. [PMID: 31878941 PMCID: PMC6933631 DOI: 10.1186/s12967-019-02178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the most lethal cancer in female genital tumors. New disease markers and novel therapeutic strategies are urgent to identify considering the current status of treatment. Receptor tyrosine kinases family plays critical roles in embryo development and disease progression. However, ambivalent research conclusions of ROR2 make its role in tumor confused and the underlying mechanism is far from being understood. In this study, we sought to clarify the effects of ROR2 on high-grade serous ovarian carcinoma (HGSOC) cells and reveal the mechanism. Methods Immunohistochemistry assay and western-blot assay were used to detect proteins expression. ROR2 overexpression adenovirus and Lentivirus were used to create ROR2 overexpression model in vitro and in vivo, respectively. MTT assay, colony formation assay and transwell assay were used to measure the proliferation, invasion and migration ability of cancer cells. Flow cytometry assay was used to detect cell apoptosis rate. Whole transcriptome analysis was used to explore the differentially expressed genes between ROR2 overexpression group and negative control group. SiRNA targeted IRE1α was used to knockdown IRE1α. Kira6 was used to inhibit phosphorylation of IRE1α. Results Expression of ROR2 was significantly lower in HGSOC tissues compared to normal fallopian tube epithelium or ovarian surface epithelium tissues. In HGSOC cohort, patients with advanced stages or positive lymph nodes were prone to express lower ROR2. Overexpression of ROR2 could repress the proliferation of HGSOC cells and induce cell apoptosis. RNA sequencing analysis indicated that ROR2 overexpression could induce unfold protein response. The results were also confirmed by upregulation of BIP and phosphorylated IRE1α. Furthermore, pro-death factors like CHOP, phosphorylated JNK and phosphorylated c-Jun were also upregulated. IRE1α knockdown or Kira6 treatment could reverse the apoptosis induced by ROR2 overexpression. Finally, tumor xenograft experiment showed ROR2 overexpression could significantly repress the growth rate and volume of transplanted tumors. Conclusions Taken together, ROR2 downregulation was associated with HGSOC development and progression. ROR2 overexpression could repress cell proliferation and induce cell apoptosis in HGSOC cells. And the underlying mechanism might be the activation of IRE1α/JNK/CHOP pathway induced by ROR2.
Collapse
Affiliation(s)
- Rui Li
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Tianfeng Liu
- Department of Gynecology and Obstetrics, Linyi People's Hospital, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Juanjuan Shi
- Department of Gynecology and Obstetrics, Affiliated Tengzhou Center People's Hospital of Jining Medical University, 181 Xing Tan Road, Tengzhou, 277599, Shandong, People's Republic of China
| | - Wenqing Luan
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jiangtao Yu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Hongluan Mao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Peishu Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Zhang X, Swalve HH, Pijl R, Rosner F, Wensch-Dorendorf M, Brenig B. Interdigital Hyperplasia in Holstein Cattle Is Associated With a Missense Mutation in the Signal Peptide Region of the Tyrosine-Protein Kinase Transmembrane Receptor Gene. Front Genet 2019; 10:1157. [PMID: 31798639 PMCID: PMC6863962 DOI: 10.3389/fgene.2019.01157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/22/2019] [Indexed: 01/31/2023] Open
Abstract
Bovine interdigital hyperplasia (IH) is a typical disease of the foot with varying prevalence depending on age, breed, and environmental factors resulting in different degrees of lameness. In studies based on assessments of claw health status at time of hoof trimming and applying genetic-statistical models to analyze this data, IH consistently exhibits high estimates of heritability in the range of 0.30–0.40. Although some studies have identified chromosomal regions that could possibly harbor causative genes, a clear identification of molecular causes for IH is lacking. While analyzing the large database of claw health status as documented at time of hoof trimming, we identified one herd with extreme prevalence of IH of > 50% of affected Holstein dairy cows. This herd subsequently was chosen as the object of a detailed study. A total of n = 91 cows was assessed and revealed a prevalence of 59.3% and 38.5% for IH cases, documented as “one-sided” or “two-sided”, respectively. Cows were genotyped using the BovineSNP50 BeadChip. A genome wide association study revealed two significantly associated chromosomal positions (-log10P = 5.57) on bovine chromosome 8 (BTA8) located in intron 5 and downstream of the receptor tyrosine kinase-like orphan receptor 2 (ROR2) gene. As ROR2 plays a key role in ossification of the distal limbs and is associated with brachydactylies in humans, it was a reasonable candidate for IH. A comparative sequencing of the ROR2 gene between cases and controls revealed two missense variants in exon 1 (NC_037335.1:g.85,905,534T > A, ARS-UCD1.2) and exon 9 (NC_037335.1:g.86,140,379A > G, ARS-UCD1.2), respectively. Genotyping of both variants in the cohort of 91 cattle showed that the exon 1 variant (rs377953295) remained significantly associated with IH (p < 0.0001) as a risk factor of the disease. This variant resulted in an amino acid exchange (ENSBTAP00000053765.2:p.Trp9Arg) in the N-terminal region of the ROR2 signal peptide which is necessary for proper topology of the polypeptide during translocation. Quantification of ROR2 mRNA and ROR2 protein showed that the variant resulted in a significant suppression of ROR2 expression in homozygous affected compared to wild type and carrier cows.
Collapse
Affiliation(s)
- Xuying Zhang
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| | - Hermann H Swalve
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - René Pijl
- Independent Researcher, Jever, Germany
| | - Frank Rosner
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Monika Wensch-Dorendorf
- Animal Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle/Saale, Germany
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Choi MY, Widhopf GF, Ghia EM, Kidwell RL, Hasan MK, Yu J, Rassenti LZ, Chen L, Chen Y, Pittman E, Pu M, Messer K, Prussak CE, Castro JE, Jamieson C, Kipps TJ. Phase I Trial: Cirmtuzumab Inhibits ROR1 Signaling and Stemness Signatures in Patients with Chronic Lymphocytic Leukemia. Cell Stem Cell 2019; 22:951-959.e3. [PMID: 29859176 DOI: 10.1016/j.stem.2018.05.018] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/29/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022]
Abstract
Cirmtuzumab is a humanized monoclonal antibody (mAb) that targets ROR1, an oncoembryonic orphan receptor for Wnt5a found on cancer stem cells (CSCs). Aberrant expression of ROR1 is seen in many malignancies and has been linked to Rho-GTPase activation and cancer stem cell self-renewal. For patients with chronic lymphocytic leukemia (CLL), self-renewing, neoplastic B cells express ROR1 in 95% of cases. High-level leukemia cell expression of ROR1 is associated with an unfavorable prognosis. We conducted a phase 1 study involving 26 patients with progressive, relapsed, or refractory CLL. Patients received four biweekly infusions, with doses ranging from 0.015 to 20 mg/kg. Cirmtuzumab had a long plasma half-life and did not have dose-limiting toxicity. Inhibition of ROR1 signaling was observed, including decreased activation of RhoA and HS1. Transcriptome analyses showed that therapy inhibited CLL stemness gene expression signatures in vivo. Cirmtuzumab is safe and effective at inhibiting tumor cell ROR1 signaling in patients with CLL.
Collapse
Affiliation(s)
- Michael Y Choi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; CIRM Alpha Stem Cell Clinic at University of California, San Diego, and Sanford Stem Cell Clinical Center, La Jolla, CA 92037-0695, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - George F Widhopf
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emanuela M Ghia
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reilly L Kidwell
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; CIRM Alpha Stem Cell Clinic at University of California, San Diego, and Sanford Stem Cell Clinical Center, La Jolla, CA 92037-0695, USA
| | - Md Kamrul Hasan
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jian Yu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Laura Z Rassenti
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liguang Chen
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yun Chen
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Pittman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093-0901, USA
| | - Minya Pu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093-0901, USA
| | - Karen Messer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093-0901, USA
| | - Charles E Prussak
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Januario E Castro
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Catriona Jamieson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; CIRM Alpha Stem Cell Clinic at University of California, San Diego, and Sanford Stem Cell Clinical Center, La Jolla, CA 92037-0695, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92037-0695, USA.
| | - Thomas J Kipps
- Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; CIRM Alpha Stem Cell Clinic at University of California, San Diego, and Sanford Stem Cell Clinical Center, La Jolla, CA 92037-0695, USA; Division of Hematology Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
17
|
Cao M, Chan RWS, Cheng FHC, Li J, Li T, Pang RTK, Lee CL, Li RHW, Ng EHY, Chiu PCN, Yeung WSB. Myometrial Cells Stimulate Self-Renewal of Endometrial Mesenchymal Stem-Like Cells Through WNT5A/β-Catenin Signaling. Stem Cells 2019; 37:1455-1466. [PMID: 31414525 DOI: 10.1002/stem.3070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
Abstract
Human endometrium undergoes cycles of proliferation and differentiation throughout the reproductive years of women. The endometrial stem/progenitor cells contribute to this regenerative process. They lie in the basalis layer of the endometrium next to the myometrium. We hypothesized that human myometrial cells provide niche signals regulating the activities of endometrial mesenchymal stem-like cells (eMSCs). In vitro coculture of myometrial cells enhanced the colony-forming and self-renewal ability of eMSCs. The cocultured eMSCs retained their multipotent characteristic and exhibited a greater total cell output when compared with medium alone culture. The expression of active β-catenin in eMSCs increased significantly after coculture with myometrial cells, suggesting activation of WNT/β-catenin signaling. Secretory factors in spent medium from myometrial cell culture produced the same stimulatory effects on eMSCs. The involvement of WNT/β-catenin signaling in self-renewal of eMSCs was confirmed with the use of WNT activator (Wnt3A conditioned medium) and WNT inhibitors (XAV939 and inhibitor of Wnt Production-2 [IWP-2]). The myometrial cells expressed more WNT5A than other WNT ligands. Recombinant WNT5A stimulated whereas anti-WNT5A antibody suppressed the colony formation, self-renewal, and T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcriptional activities of eMSCs. Moreover, eMSCs expressed FZD4 and LRP5. WNT5A is known to activate the canonical WNT signaling in the presence of these receptor components. WNT antagonist, DKK1, binds to LRP5/6. Consistently, DKK1 treatment nullified the stimulatory effect of myometrial cell coculture. In conclusion, our findings show that the myometrial cells are niche components of eMSCs, modulating the self-renewal activity of eMSCs by WNT5A-dependent activation of WNT/β-catenin signaling. Stem Cells 2019;37:1455-1466.
Collapse
Affiliation(s)
- Mingzhu Cao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Rachel W S Chan
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Fiona H C Cheng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Jiangxue Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Tianqi Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ronald T K Pang
- Shenzhen Key Laboratory Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Key Laboratory Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Raymond H W Li
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Key Laboratory Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Key Laboratory Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Key Laboratory Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, People's Republic of China
| | - William S B Yeung
- Shenzhen Key Laboratory Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
18
|
Coopes A, Henry CE, Llamosas E, Ford CE. An update of Wnt signalling in endometrial cancer and its potential as a therapeutic target. Endocr Relat Cancer 2018; 25:ERC-18-0112. [PMID: 30093601 DOI: 10.1530/erc-18-0112] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
Abstract
Endometrial cancer is the most common gynaecological malignancy in developed nations, and its prevalence is rising as women defer or decide not to have children and as obesity rises, both key risk factors. Despite this, treatment options remain limited, particularly for advanced or refractory disease. New genomic analyses have revealed distinct mutational profiles with therapeutic and prognostic potential. Wnt signalling, which is pivotal in embryogenesis, healing and homeostasis, is of importance in the endometrium and has been linked to carcinogenesis. This review aims to update and discuss the current evidence for the role of β-catenin dependent and independent Wnt signalling, including the ROR receptors in the endometrium and its potential as a therapeutic target, in light of recent trials of Wnt-targeted therapy in multiple tumour types.
Collapse
Affiliation(s)
- Amy Coopes
- A Coopes, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Claire E Henry
- C Henry, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Estelle Llamosas
- E Llamosas, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| | - Caroline Elizabeth Ford
- C Ford, School of Women's and Children's Health, University of New South Wales Adult Cancer Program, Sydney, Australia
| |
Collapse
|
19
|
Mattes B, Dang Y, Greicius G, Kaufmann LT, Prunsche B, Rosenbauer J, Stegmaier J, Mikut R, Özbek S, Nienhaus GU, Schug A, Virshup DM, Scholpp S. Wnt/PCP controls spreading of Wnt/β-catenin signals by cytonemes in vertebrates. eLife 2018; 7:36953. [PMID: 30060804 PMCID: PMC6086664 DOI: 10.7554/elife.36953] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/16/2018] [Indexed: 12/31/2022] Open
Abstract
Signaling filopodia, termed cytonemes, are dynamic actin-based membrane structures that regulate the exchange of signaling molecules and their receptors within tissues. However, how cytoneme formation is regulated remains unclear. Here, we show that Wnt/planar cell polarity (PCP) autocrine signaling controls the emergence of cytonemes, and that cytonemes subsequently control paracrine Wnt/β-catenin signal activation. Upon binding of the Wnt family member Wnt8a, the receptor tyrosine kinase Ror2 becomes activated. Ror2/PCP signaling leads to the induction of cytonemes, which mediate the transport of Wnt8a to neighboring cells. In the Wnt-receiving cells, Wnt8a on cytonemes triggers Wnt/β-catenin-dependent gene transcription and proliferation. We show that cytoneme-based Wnt transport operates in diverse processes, including zebrafish development, murine intestinal crypt and human cancer organoids, demonstrating that Wnt transport by cytonemes and its control via the Ror2 pathway is highly conserved in vertebrates. Communication helps the cells that make up tissues and organs to work together as a team. One way that cells share information with each other as tissues grow and develop is by exchanging signaling proteins. These interact with receptors on the surface of other cells; this causes the cell to change how it behaves. The Wnt family of signaling proteins orchestrate organ development. Wnt proteins influence which types of cells develop, how fast they divide, and how and when they move. Relatively few cells, or small groups of cells, in developing tissues produce Wnt proteins, while larger groups nearby respond to the signals. We do not fully understand how Wnt proteins travel between cells, but recent work revealed an unexpected mechanism – cells seem to hand-deliver their messages. Finger-like structures called cytonemes grow out of the cell membrane and carry Wnt proteins to their destination. If the cytonemes do not form properly the target cells do not behave correctly, which can lead to severe tissue malformation. Mattes et al. have now investigated how cytonemes form using a combination of state-of-the-art genetic and high-resolution imaging techniques. In initial experiments involving zebrafish cells that were grown in the laboratory, Mattes et al. found that the Wnt proteins kick start their own transport; before they travel to their destination, they act on the cells that made them. A Wnt protein called Wnt8a activates the receptor Ror2 on the surface of the signal-producing cell. Ror2 then triggers signals inside the cell that begin the assembly of the cytonemes. The more Ror2 is activated, the more cytonemes the cell makes, and the more Wnt signals it can send out. This mechanism operates in various tissues: Ror2 also controls the cytoneme transport process in living zebrafish embryos, the mouse intestine and human stomach tumors. This knowledge will help researchers to develop new ways to control Wnt signaling, which could help to produce new treatments for diseases ranging from cancers (for example in the stomach and bowel) to degenerative diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yonglong Dang
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gediminas Greicius
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Benedikt Prunsche
- Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jakob Rosenbauer
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Jülich, Germany
| | - Johannes Stegmaier
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Suat Özbek
- Centre of Organismal Studies, University of Heidelberg, Karlsruhe, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Alexander Schug
- John von Neumann Institute for Computing, Jülich Supercomputing Centre, Jülich, Germany.,Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
20
|
Hemmati A, Hassannia H, Milani S, Hadavi R, Ghaemimanesh F, Rabbani H. Detecting Receptor Tyrosine Kinase ROR1 Using a Developed Anti-ROR1 Polyclonal Antibody. Monoclon Antib Immunodiagn Immunother 2018; 37:38-44. [PMID: 29474159 DOI: 10.1089/mab.2017.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Receptor tyrosine kinase ROR1 has been introduced as an interesting prognostic cancer marker in histopathology. The aim of this study was to produce a polyclonal antibody (PAb) against recombinant human ROR1 protein to be used as a tool for investigation of ROR1 expression in human cancer tissue blocks. The extracellular part of human ROR1 recombinant protein was expressed using pET-28b(+) plasmid in Escherichia coli Bl21(DE3) host. The recombinant ROR1, as a candidate immunogen, was purified and injected to a New Zealand rabbit. Followed by raising the titration of antibody, polyclonal anti-ROR1 antibody was purified through affinity chromatography column. After determining the purity of PAb anti-ROR1, its specific reactivity was assessed through various assessments. Flow cytometry analysis showed that PAb anti-ROR1 specifically recognizes ROR1 molecule in a number of positive and negative cell lines. Results obtained from detection of ROR1 in paraffin-embedded breast adenocarcinoma tissue blocks (n = 11) also demonstrated that PAb anti-ROR1 can effectively be used in immunohistochemistry. In conclusion, the developed anti-ROR1 PAb can be used as a tool for determining the prognostic value of ROR1 in histopathology of cancer tissues.
Collapse
Affiliation(s)
- Azam Hemmati
- Antibody-Antigen Engineering Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Hadi Hassannia
- Antibody-Antigen Engineering Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Saeideh Milani
- Antibody-Antigen Engineering Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Reza Hadavi
- Antibody-Antigen Engineering Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Fatemeh Ghaemimanesh
- Antibody-Antigen Engineering Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| | - Hodjattallah Rabbani
- Antibody-Antigen Engineering Department, Monoclonal Antibody Research Center, Avicenna Research Institute , ACECR, Tehran, Iran
| |
Collapse
|
21
|
Karvonen H, Summala K, Niininen W, Barker HR, Ungureanu D. Interaction between ROR1 and MuSK activation complex in myogenic cells. FEBS Lett 2018; 592:434-445. [DOI: 10.1002/1873-3468.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Hanna Karvonen
- BioMediTech Institute; University of Tampere; Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Finland
| | - Katja Summala
- Department of Biological and Environmental Science; University of Jyväskylä; Finland
| | - Wilhelmiina Niininen
- BioMediTech Institute; University of Tampere; Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Finland
| | - Harlan R. Barker
- Faculty of Medicine and Life Sciences; University of Tampere; Finland
| | - Daniela Ungureanu
- BioMediTech Institute; University of Tampere; Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Finland
| |
Collapse
|
22
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
23
|
Dickinson SC, Sutton CA, Brady K, Salerno A, Katopodi T, Williams RL, West CC, Evseenko D, Wu L, Pang S, Ferro de Godoy R, Goodship AE, Péault B, Blom AW, Kafienah W, Hollander AP. The Wnt5a Receptor, Receptor Tyrosine Kinase-Like Orphan Receptor 2, Is a Predictive Cell Surface Marker of Human Mesenchymal Stem Cells with an Enhanced Capacity for Chondrogenic Differentiation. Stem Cells 2017; 35:2280-2291. [PMID: 28833807 PMCID: PMC5707440 DOI: 10.1002/stem.2691] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/07/2017] [Accepted: 07/23/2017] [Indexed: 12/24/2022]
Abstract
Multipotent mesenchymal stem cells (MSCs) have enormous potential in tissue engineering and regenerative medicine. However, until now, their development for clinical use has been severely limited as they are a mixed population of cells with varying capacities for lineage differentiation and tissue formation. Here, we identify receptor tyrosine kinase‐like orphan receptor 2 (ROR2) as a cell surface marker expressed by those MSCs with an enhanced capacity for cartilage formation. We generated clonal human MSC populations with varying capacities for chondrogenesis. ROR2 was identified through screening for upregulated genes in the most chondrogenic clones. When isolated from uncloned populations, ROR2+ve MSCs were significantly more chondrogenic than either ROR2–ve or unfractionated MSCs. In a sheep cartilage‐repair model, they produced significantly more defect filling with no loss of cartilage quality compared with controls. ROR2+ve MSCs/perivascular cells were present in developing human cartilage, adult bone marrow, and adipose tissue. Their frequency in bone marrow was significantly lower in patients with osteoarthritis (OA) than in controls. However, after isolation of these cells and their initial expansion in vitro, there was greater ROR2 expression in the population derived from OA patients compared with controls. Furthermore, osteoarthritis‐derived MSCs were better able to form cartilage than MSCs from control patients in a tissue engineering assay. We conclude that MSCs expressing high levels of ROR2 provide a defined population capable of predictably enhanced cartilage production. Stem Cells2017;35:2280–2291
Collapse
Affiliation(s)
- Sally C Dickinson
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Catherine A Sutton
- School of Cellular and Molecular Medicine, Faculty of Medical and Veterinary Sciences, University of Bristol, United Kingdom
| | - Kyla Brady
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Anna Salerno
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Theoni Katopodi
- Institute of Integrative Biology, University of Liverpool, United Kingdom
| | - Rhys L Williams
- School of Cellular and Molecular Medicine, Faculty of Medical and Veterinary Sciences, University of Bristol, United Kingdom
| | - Christopher C West
- The University of Edinburgh, MRC Center for Regenerative Medicine, Scotland, United Kingdom
| | - Denis Evseenko
- Department of Orthopaedic Surgery, University of Southern California (USC), Los Angeles, California, USA.,Department of Stem Cell Research and Regenerative Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Ling Wu
- Department of Orthopaedic Surgery, University of Southern California (USC), Los Angeles, California, USA.,Department of Stem Cell Research and Regenerative Medicine, University of Southern California (USC), Los Angeles, California, USA
| | - Suzanna Pang
- School of Cellular and Molecular Medicine, Faculty of Medical and Veterinary Sciences, University of Bristol, United Kingdom
| | - Roberta Ferro de Godoy
- Royal National Orthopaedic Hospital, Institute of Orthopaedics and Musculoskeletal Science, University College London, Brockley Hill, Stanmore, United Kingdom
| | - Allen E Goodship
- Royal National Orthopaedic Hospital, Institute of Orthopaedics and Musculoskeletal Science, University College London, Brockley Hill, Stanmore, United Kingdom
| | - Bruno Péault
- The University of Edinburgh, MRC Center for Regenerative Medicine, Scotland, United Kingdom.,The University of Edinburgh, Center for Cardiovascular Science, Scotland, United Kingdom.,David Geffen School of Medicine and Department of Orthopaedic Surgery, Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | - Ashley W Blom
- School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, United Kingdom
| | - Wael Kafienah
- School of Cellular and Molecular Medicine, Faculty of Medical and Veterinary Sciences, University of Bristol, United Kingdom
| | | |
Collapse
|
24
|
Zhang W, Yan Y, Gu M, Wang X, Zhu H, Zhang S, Wang W. High expression levels of Wnt5a and Ror2 in laryngeal squamous cell carcinoma are associated with poor prognosis. Oncol Lett 2017; 14:2232-2238. [PMID: 28781662 PMCID: PMC5530173 DOI: 10.3892/ol.2017.6386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/30/2017] [Indexed: 12/16/2022] Open
Abstract
The present study investigated the prognostic significance of Wnt family member 5a (Wnt5a) and receptor tyrosine kinase-like orphan receptor 2 (Ror2) expression in laryngeal squamous cell carcinoma (LSCC). The protein expression levels of Wnt5a and Ror2 were analyzed in specimens from 137 patients with LSCC, using immunohistochemical staining of tissue microarrays and pairs of LSCC and adjacent tissue samples, and examined the associations between the two markers and various clinicopathological parameters. The Wnt5a and Ror2 expression levels were significantly higher in LSCC tissues than in normal tissue samples (Wnt5a, P=0.015; Ror2, P=0.039), and were significantly associated with high tumor stage (P<0.001), lymph node metastasis (Wnt5a, P=0.029; Ror2, P=0.018), and with each other (P=0.002). Patients with LSCC with high Wnt5a or Ror2 expression had poorer prognosis compared with those with low Wnt5a (P=0.022) or Ror2 (P=0.038) expression. Thus, Wnt5a and Ror2 may affect LSCC development, and are potential biomarkers in LSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yongbing Yan
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Miao Gu
- Department of Otorhinolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xudong Wang
- Department of Surgical Comprehensive Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Huijun Zhu
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Shu Zhang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Wang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
25
|
Targeting ROR1 identifies new treatment strategies in hematological cancers. Biochem Soc Trans 2017; 45:457-464. [DOI: 10.1042/bst20160272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 12/27/2022]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a member of the ROR receptor family consisting of two closely related type I transmembrane proteins ROR1 and ROR2. Owing to mutations in their canonical motifs required for proper kinase activity, RORs are classified as pseudokinases lacking detectable catalytic activity. ROR1 stands out for its selective and high expression in numerous blood and solid malignancies compared with a minimal expression in healthy adult tissues, suggesting high potential for this molecule as a drug target for cancer therapy. Current understanding attributes a survival role for ROR1 in cancer cells; however, its oncogenic function is cancer-type-specific and involves various signaling pathways. High interest in ROR1-targeted therapies resulted in the development of ROR1 monoclonal antibodies such as cirmtuzumab, currently in a phase I clinical trial for chronic lymphocytic leukemia. Despite these advances in translational studies, the molecular mechanism employed by ROR1 in different cancers is not yet fully understood; therefore, more insights into the oncogenic role of ROR1 signaling are crucial in order to optimize the use of targeted drugs. Recent studies provided evidence that targeting ROR1 simultaneously with inhibition of B-cell receptor (BCR) signaling is more effective in killing ROR1-positive leukemia cells, suggesting a synergistic correlation between co-targeting ROR1 and BCR pathways. Although this synergy has been previously reported for B-cell acute lymphoblastic leukemia, the molecular mechanism appears rather different. These results provide more insights into ROR1–BCR combinatorial treatment strategies in hematological malignancies, which could benefit in tailoring more effective targeted therapies in other ROR1-positive cancers.
Collapse
|
26
|
Yang CM, Ji S, Li Y, Fu LY, Jiang T, Meng FD. Ror2, a Developmentally Regulated Kinase, Is Associated With Tumor Growth, Apoptosis, Migration, and Invasion in Renal Cell Carcinoma. Oncol Res 2017; 25:195-205. [PMID: 28277191 PMCID: PMC7840799 DOI: 10.3727/096504016x14732772150424] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Renal cell carcinoma (RCC) represents one of the most resistant tumors to radiation and chemotherapy. Current therapies for RCC patients are inefficient due to the lack of diagnostic and therapeutic markers. The expression of novel tumor-associated kinases has the potential to dramatically shape tumor cell behavior. Identifying tumor-associated kinases can lend insight into patterns of tumor growth and characteristics. In the present study, we investigated the receptor tyrosine kinase-like orphan receptor 2 (Ror2), a new tumor-associated kinase, in RCC primary tumors and cell lines. Knockdown of Ror2 expression in RCC cells with specific shRNA significantly reduced cell proliferation and induced apoptosis. Using in vitro migration and Matrigel invasion assays, we found that cell migration and invasive ability were also significantly inhibited. In RCC, Ror2 expression correlated with expression of genes involved at the cell cycle and migration, including PCNA, CDK1, TWIST, and MMP-2. Furthermore, in vivo xenograft studies in nude mice revealed that administration of a Ror2 shRNA plasmid significantly inhibited tumor growth. These findings suggest a novel pathway of tumor-promoting activity by Ror2 within renal carcinomas, with significant implications for unraveling the tumorigenesis of RCC.
Collapse
Affiliation(s)
- Chun-Ming Yang
- Department of Urology, The First Affiliated Hospital, China Medical University, Shenyang, P.R. China
| | | | | | | | | | | |
Collapse
|
27
|
Aghebati-Maleki L, Shabani M, Baradaran B, Motallebnezhad M, Majidi J, Yousefi M. Receptor tyrosine kinase-like orphan receptor 1 (ROR-1): An emerging target for diagnosis and therapy of chronic lymphocytic leukemia. Biomed Pharmacother 2017; 88:814-822. [PMID: 28160756 DOI: 10.1016/j.biopha.2017.01.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/04/2017] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by reposition of malignant B cells in the blood, bone marrow, spleen and lymph nodes. It remains the most common leukemia in the Western world. Within the recent years, major breakthroughs have been made to prolong the survival and improve the health of patients. Despite these advances, CLL is still recognized as a disease without definitive cure. New treatment approaches, based on unique targets and novel drugs, are highly desired for CLL therapy. The Identification and subsequent targeting of molecules that are overexpressed uniquely in malignant cells not normal ones play critical roles in the success of anticancer therapeutic strategies. In this regard, ROR family proteins are known as a subgroup of protein kinases which have gained huge popularity in the scientific community for the diagnosis and treatment of different cancer types. ROR1 as an antigen exclusively expressed on the surface of tumor cells can be a target for immunotherapy. ROR-1 targeting using different approaches such as siRNA, tyrosine kinase inhibitors, cell therapy and antibody induces tumor growth suppression in cancer cells. In the current review, we aim to present an overview of the efforts and scientific achievements in targeting ROR family, particularly ROR-1, for the diagnosis and treatment of chronic lymphocytic leukemia (CLL).
Collapse
Affiliation(s)
- Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Motallebnezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
28
|
A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol 2017; 19:106-119. [PMID: 28114269 PMCID: PMC5336186 DOI: 10.1038/ncb3464] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/15/2016] [Indexed: 12/14/2022]
Abstract
Bone metastases remain as a serious health concern because of limited therapeutic options. Here, we report that crosstalk between ROR1-HER3 and the Hippo-YAP pathway promotes breast cancer bone metastasis in a long noncoding RNA-dependent fashion. Mechanistically, the orphan receptor tyrosine kinase ROR1 phosphorylates HER3 at a previously unidentified site Tyr1307, upon neuregulin stimulation, independently of other ErbB family members. p-HER3 Tyr1307 recruits the LLGL2-MAYA-NSUN6 RNA-protein complex to methylate Hippo/MST1 at Lys59. This methylation leads to MST1 inactivation and activation of YAP target genes in tumor cells, which elicits osteoclast differentiation and bone metastasis. Furthermore, increased ROR1, p-HER3 Tyr1307 and MAYA levels correlate with tumor metastasis and unfavorable outcomes. Our data provide insights into the mechanistic regulation and linkage of the ROR1-HER3 and Hippo-YAP pathway in cancer-specific context, and also imply valuable therapeutic targets for bone metastasis and possible therapy-resistant tumors.
Collapse
|
29
|
Pre-clinical Specificity and Safety of UC-961, a First-In-Class Monoclonal Antibody Targeting ROR1. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 15 Suppl:S167-9. [PMID: 26297272 DOI: 10.1016/j.clml.2015.02.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 02/03/2015] [Indexed: 01/18/2023]
Abstract
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is an oncoembryonic antigen. Because of its expression on the cell surface of leukemia cells from patients with chronic lymphocytic leukemia (CLL), but not on normal B-cells or other postpartum tissues, ROR1 is an attractive candidate for targeted therapies. UC-961 is a first-in-class humanized monoclonal antibody that binds the extracellular domain of ROR1. In this article we outline some of the preclinical studies leading to an investigational new drug designation, enabling clinical studies in patients with CLL.
Collapse
|
30
|
Hojjat-Farsangi M, Jeddi-Tehrani M, Daneshmanesh AH, Mozaffari F, Moshfegh A, Hansson L, Razavi SM, Sharifian RA, Rabbani H, Österborg A, Mellstedt H, Shokri F. Spontaneous Immunity Against the Receptor Tyrosine Kinase ROR1 in Patients with Chronic Lymphocytic Leukemia. PLoS One 2015; 10:e0142310. [PMID: 26562161 PMCID: PMC4642968 DOI: 10.1371/journal.pone.0142310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/19/2015] [Indexed: 12/03/2022] Open
Abstract
Background ROR1 is a receptor tyrosine kinase expressed in chronic lymphocytic leukemia (CLL) and several other malignancies but absent in most adult normal tissues. ROR1 is considered an onco-fetal antigen. In the present study we analysed spontaneous humoral and cellular immunity against ROR1 in CLL patients. Materials and Methods Antibodies against ROR1 were analysed in 23 patients and 20 healthy donors by ELISA and Western blot. Purified serum IgG from patients was tested for cytotoxicity against CLL cells using the MTT viability assay. A cellular immune response against ROR1 derived HLA-A2 restricted 9 aa and 16 aa long peptides were analysed using peptide loaded dendritic cells co-cultured with autologous T cells from CLL patients (n = 9) and healthy donors (n = 6). IFN-γ, IL-5 and IL-17A-secreting T cells were assessed by ELISPOT and a proliferative response using a H3-thymidine incorporation assay. Results The majority of CLL patients had antibodies against ROR1. Significantly higher titers of anti-ROR1 antibodies were noted in patients with non-progressive as compared to progressive disease. The extracellular membrane-close ROR1 KNG domain seemed to be an immunodominant epitope. Ten patients with high titers of anti-ROR1 binding antibodies were tested for cytotoxicity. Five of those had cytotoxic anti-ROR1 antibodies against CLL cells. ROR1-specific IFN-γ and IL-17A producing T cells could be detected in CLL patients, preferentially in non-progressive as compared to patients with progressive disease (p<0.05). Conclusion ROR1 seemed to spontaneously induce a humoral as well as a T cell response in CLL patients. The data support the notion that ROR1 might be a specific neo-antigen and may serve as a target for immunotherapy.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies/blood
- Antibodies/immunology
- Antibody-Dependent Cell Cytotoxicity/immunology
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Female
- HLA-A2 Antigen/immunology
- Humans
- Immunity/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-5/immunology
- Interleukin-5/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Middle Aged
- Molecular Sequence Data
- Peptides/immunology
- Prognosis
- Receptor Tyrosine Kinase-like Orphan Receptors/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Fariba Mozaffari
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Ali Moshfegh
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Lotta Hansson
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Hematology-Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Seyed Mohsen Razavi
- Clinic of Hematology and Oncology, Firozgar Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ramazan Ali Sharifian
- Clinic of Hematology and Oncology, Vali-Asr Hospital, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Anders Österborg
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Hematology-Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- * E-mail:
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Abstract
Ror2 is a signaling receptor for Wnt ligands that is known to play important roles in limb development, but having no essential roles known in adult tissues. Recent evidence has implicated Ror2 in mediating both canonical and non-canonical signaling pathways. Ror2 was initially found to be highly expressed in osteosarcoma and renal cell carcinomas, and has recently been found in an increasingly long list of cancers currently including melanoma, colon cancer, melanoma, squamous cell carcinoma of the head and neck, and breast cancer. In the majority of these cancer types, Ror2 expression is associated with more aggressive disease states, consistent with a role mediating Wnt signaling regardless of the canonical or noncanonical signal. Because of the pattern of tissue distribution, the association with high-risk diseases, and the cell surface localization of this receptor, Ror2 has been identified as a potential high value target for therapeutic development. However, the recent discovery that Ror2 may function through non-kinase activities challenges this strategy and opens up opportunities to target this important molecule through alternative means.
Collapse
Affiliation(s)
- Zufan Debebe
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - W Kimryn Rathmell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Medicine, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Urology, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Genetics, Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
32
|
Shabani M, Naseri J, Shokri F. Receptor tyrosine kinase-like orphan receptor 1: a novel target for cancer immunotherapy. Expert Opin Ther Targets 2015; 19:941-55. [DOI: 10.1517/14728222.2015.1025753] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Chakravadhanula M, Hampton CN, Chodavadia P, Ozols V, Zhou L, Catchpoole D, Xu J, Erdreich-Epstein A, Bhardwaj RD. Wnt pathway in atypical teratoid rhabdoid tumors. Neuro Oncol 2014; 17:526-35. [PMID: 25246426 DOI: 10.1093/neuonc/nou229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (ATRT) is an aggressive pediatric brain tumor with limited therapeutic options. The hypothesis for this study was that the Wnt pathway triggered by the Wnt5B ligand plays an important role in ATRT biology. To address this hypothesis, the role of WNT5B and other Wnt pathway genes was analyzed in ATRT tissues and ATRT primary cell lines. METHODS Transcriptome-sequencing analyses were performed using nanoString platforms, immunohistochemistry, Western blotting, quantitative reverse transcriptase PCR, immunoprecipitation, short interference RNA studies, cell viability studies, and drug dose response (DDR) assays. RESULTS Our transcriptome-sequencing results of Wnt pathway genes from ATRT tissues and cell lines indicated that the WNT5B gene is significantly upregulated in ATRT samples compared with nontumor brain samples. These results also indicated a differential expression of both canonical and noncanonical Wnt genes. Imunoprecipitation studies indicated that Wnt5B binds to Frizzled1 and Ryk receptors. Inhibition of WNT5B by short interference RNA decreased the expression of FRIZZLED1 and RYK. Cell viability studies a indicated significant decrease in cell viability by inhibiting Frizzled1 receptor. DDR assays showed promising results with some inhibitors. CONCLUSIONS These promising therapeutic options will be studied further before starting a translational clinical trial. The success of these options will improve care for these patients.
Collapse
Affiliation(s)
- Madhavi Chakravadhanula
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| | - Chris N Hampton
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| | - Parth Chodavadia
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| | - Victor Ozols
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| | - Li Zhou
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| | - Daniel Catchpoole
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| | - Jingying Xu
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| | - Anat Erdreich-Epstein
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| | - Ratan D Bhardwaj
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona (M.C., C.N.H., V.O., R.D.B.); Children's Hospital at Westmead, Sydney, Australia (L.Z., D.C.); Duke University, Durham, North Carolina (P.C.); Children's Hospital Los Angeles, Los Angeles, California (A.E.-E.); Children's Hospital Los Angeles and the University of Southern California, Los Angeles, California (J.X., A.E.-E.)
| |
Collapse
|
34
|
Hojjat-Farsangi M, Moshfegh A, Daneshmanesh AH, Khan AS, Mikaelsson E, Osterborg A, Mellstedt H. The receptor tyrosine kinase ROR1--an oncofetal antigen for targeted cancer therapy. Semin Cancer Biol 2014; 29:21-31. [PMID: 25068995 DOI: 10.1016/j.semcancer.2014.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/17/2014] [Indexed: 11/26/2022]
Abstract
Targeted cancer therapies have emerged as new treatment options for various cancer types. Among targets, receptor tyrosine kinases (RTKs) are among the most promising. ROR1 is a transmembrane RTK of importance during the normal embryogenesis for the central nervous system, heart, lung and skeletal systems, but is not expressed in normal adult tissues. However, ROR1 is overexpressed in several human malignancies and may act as a survival factor for tumor cells. Its unique expression by malignant cells may provide a target for novel therapeutics including monoclonal antibodies (mAbs) and small molecule inhibitors of tyrosine kinases (TKI) for the treatment of cancer. Promising preclinical results have been reported in e.g. chronic lymphocytic leukemia, pancreatic carcinoma, lung and breast cancer. ROR1 might also be an interesting oncofetal antigen for active immunotherapy. In this review, we provide an overview of the ROR1 structure and functions in cancer and highlight emerging therapeutic options of interest for targeting ROR1 in tumor therapy.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Ali Moshfegh
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Abdul Salam Khan
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Eva Mikaelsson
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Anders Osterborg
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden; Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden; Department of Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
35
|
Cao L, McCaig CD, Scott RH, Zhao S, Milne G, Clevers H, Zhao M, Pu J. Polarizing intestinal epithelial cells electrically through Ror2. J Cell Sci 2014; 127:3233-9. [PMID: 24928904 PMCID: PMC4117229 DOI: 10.1242/jcs.146357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The apicobasal polarity of enterocytes determines where the brush border membrane (apical membrane) will form, but how this apical membrane faces the lumen is not well understood. The electrical signal across the epithelium could serve as a coordinating cue, orienting and polarizing enterocytes. Here, we show that applying a physiological electric field to intestinal epithelial cells, to mimic the natural electric field created by the transepithelial potential difference, polarized phosphorylation of the actin-binding protein ezrin, increased expression of intestinal alkaline phosphatase (ALPI, a differentiation marker) and remodeled the actin cytoskeleton selectively on the cathode side. In addition, an applied electric field also activated ERK1/2 and LKB1 (also known as STK11), key molecules in apical membrane formation. Disruption of the tyrosine protein kinase transmembrane receptor Ror2 suppressed activation of ERK1/2 and LKB1 significantly, and subsequently inhibited apical membrane formation in enterocytes. Our findings indicate that the endogenous electric field created by the transepithelial potential difference might act as an essential coordinating signal for apical membrane formation at a tissue level, through activation of LKB1 mediated by Ror2–ERK signaling.
Collapse
Affiliation(s)
- Lin Cao
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK Department of Dermatology, Department of Ophthalmology, Institute of Regenerative Cures, University of California, Davis, CA 95616, USA
| | - Colin D McCaig
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Roderick H Scott
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Siwei Zhao
- Department of Bioengineering, University of California, Davis, CA 95616, USA
| | - Gillian Milne
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Hans Clevers
- Hubrecht Institute for Developmental Biology and Stem Cell Research & University Medical Centre Utrecht, 3584 CT Utrecht, The Netherlands
| | - Min Zhao
- Department of Dermatology, Department of Ophthalmology, Institute of Regenerative Cures, University of California, Davis, CA 95616, USA
| | - Jin Pu
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
36
|
Ghosh AK, Kay NE. Critical signal transduction pathways in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 792:215-39. [PMID: 24014299 DOI: 10.1007/978-1-4614-8051-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell-surface transmembrane receptors that contain regulated kinase activity within their cytoplasmic domain and play a critical role in signal transduction in both normal and malignant cells. Besides B cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL), multiple RTKs have been reported to be constitutively active in CLL B cells, resulting in enhanced survival and resistance to apoptosis of the leukemic cells induced by chemotherapeutic agents. In addition to increased plasma levels of various types of cytokines/growth factors in CLL, we and others have detected that CLL B cells spontaneously produce multiple cytokines in vitro which may constitute an autocrine loop of RTK activation on the leukemic B cells. Moreover, aberrant expression and activation of non-RTKs, for example, Src/Syk kinases, induce resistance of the leukemic B cells to therapy. Based on current available knowledge, we detailed the impact of aberrant activities of various RTKs/non-RTKs on CLL B cell survival and the potential of using these signaling components as future therapeutic targets in CLL therapy.
Collapse
Affiliation(s)
- Asish K Ghosh
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | |
Collapse
|
37
|
Cui B, Zhang S, Chen L, Yu J, Widhopf GF, Fecteau JF, Rassenti LZ, Kipps TJ. Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res 2013; 73:3649-60. [PMID: 23771907 DOI: 10.1158/0008-5472.can-12-3832] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metastasis is responsible for 90% of cancer-related deaths. Strategies are needed that can inhibit the capacity of cancer cells to migrate across the anatomic barriers and colonize distant organs. Here, we show an association between metastasis and expression of a type I receptor tyrosine kinase-like orphan receptor, ROR1, which is expressed during embryogenesis and by various cancers, but not by normal postpartum tissues. We found that expression of ROR1 associates with the epithelial-mesenchymal transition (EMT), which occurs during embryogenesis and cancer metastasis. Breast adenocarcinomas expressing high levels of ROR1 were more likely to have gene expression signatures associated with EMT and had higher rates of relapse and metastasis than breast adenocarcinomas expressing low levels of ROR1. Suppressing expression of ROR1 in metastasis-prone breast cancer cell lines, MDA-MB-231, HS-578T, or BT549, attenuated expression of proteins associated with EMT (e.g., vimentin, SNAIL-1/2, and ZEB1), enhanced expression of E-cadherin, epithelial cytokeratins (e.g., CK-19), and tight junction proteins (e.g., ZO-1), and impaired their migration/invasion capacity in vitro and the metastatic potential of MDA-MB-231 cells in immunodeficient mice. Conversely, transfection of MCF-7 cells to express ROR1 reduced expression of E-cadherin and CK-19, but enhanced the expression of SNAIL-1/2 and vimentin. Treatment of MDA-MB-231 with a monoclonal antibody specific for ROR1 induced downmodulation of vimentin and inhibited cancer cell migration and invasion in vitro and tumor metastasis in vivo. Collectively, this study indicates that ROR1 may regulate EMT and metastasis and that antibodies targeting ROR1 can inhibit cancer progression and metastasis.
Collapse
Affiliation(s)
- Bing Cui
- UC San Diego Moores Cancer Center, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wnt signaling through the Ror receptor in the nervous system. Mol Neurobiol 2013; 49:303-15. [PMID: 23990374 DOI: 10.1007/s12035-013-8520-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/18/2013] [Indexed: 01/04/2023]
Abstract
The receptor tyrosine kinase-like orphan receptor (Ror) proteins are conserved tyrosine kinase receptors that play roles in a variety of cellular processes that pattern tissues and organs during vertebrate and invertebrate development. Ror signaling is required for skeleton and neuronal development and modulates cell migration, cell polarity, and convergent extension. Ror has also been implicated in two human skeletal disorders, brachydactyly type B and Robinow syndrome. Rors are widely expressed during metazoan development including domains in the nervous system. Here, we review recent progress in understanding the roles of the Ror receptors in neuronal migration, axonal pruning, axon guidance, and synaptic plasticity. The processes by which Ror signaling execute these diverse roles are still largely unknown, but they likely converge on cytoskeletal remodeling. In multiple species, Rors have been shown to act as Wnt receptors signaling via novel non-canonical Wnt pathways mediated in some tissues by the adapter protein disheveled and the non-receptor tyrosine kinase Src. Rors can either activate or repress Wnt target expression depending on the cellular context and can also modulate signal transduction by sequestering Wnt ligands away from their signaling receptors. Future challenges include the identification of signaling components of the Ror pathways and bettering our understanding of the roles of these pleiotropic receptors in patterning the nervous system.
Collapse
|
39
|
Hojjat-Farsangi M, Ghaemimanesh F, Daneshmanesh AH, Bayat AA, Mahmoudian J, Jeddi-Tehrani M, Rabbani H, Mellstedt H. Inhibition of the receptor tyrosine kinase ROR1 by anti-ROR1 monoclonal antibodies and siRNA induced apoptosis of melanoma cells. PLoS One 2013; 8:e61167. [PMID: 23593420 PMCID: PMC3620154 DOI: 10.1371/journal.pone.0061167] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 03/07/2013] [Indexed: 12/17/2022] Open
Abstract
The receptor tyrosine kinase (RTK) ROR1 is overexpressed and of importance for the survival of various malignancies, including lung adenocarcinoma, breast cancer and chronic lymphocytic leukemia (CLL). There is limited information however on ROR1 in melanoma. In the present study we analysed in seven melanoma cell lines ROR1 expression and phosphorylation as well as the effects of anti-ROR1 monoclonal antibodies (mAbs) and ROR1 suppressing siRNA on cell survival. ROR1 was overexpressed at the protein level to a varying degree and phosphorylated at tyrosine and serine residues. Three of our four self-produced anti-ROR1 mAbs (clones 3H9, 5F1 and 1A8) induced a significant direct apoptosis of the ESTDAB049, ESTDAB112, DFW and A375 cell lines as well as cell death in complement dependent cytotoxicity (CDC) and antibody dependent cellular cytotoxicity (ADCC). The ESTDAB081 and 094 cell lines respectively were resistant to direct apoptosis of the four anti-ROR1 mAbs alone but not in CDC or ADCC. ROR1 siRNA transfection induced downregulation of ROR1 expression both at mRNA and protein levels proceeded by apoptosis of the melanoma cells (ESTDAB049, ESTDAB112, DFW and A375) including ESTDAB081, which was resistant to the direct apoptotic effect of the mAbs. The results indicate that ROR1 may play a role in the survival of melanoma cells. The surface expression of ROR1 on melanoma cells may support the notion that ROR1 might be a suitable target for mAb therapy.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- * E-mail:
| | - Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Ali-Ahmad Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hodjatallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hakan Mellstedt
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
40
|
The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 2013; 138:66-83. [PMID: 23328704 DOI: 10.1016/j.pharmthera.2013.01.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/22/2022]
Abstract
Wingless/integrase-1 (WNT) signaling is a key pathway regulating various aspects of embryonic development; however it also underlies several pathological conditions in man, including various cancers and fibroproliferative diseases in several organs. Investigating the molecular processes involved in (canonical) WNT signaling will open new avenues for generating new therapeutics to specifically target diseases in which WNT signaling is aberrantly regulated. Here we describe the complexity of WNT signal transduction starting from the processes involved in WNT ligand biogenesis and secretion by WNT producing cells followed by a comprehensive overview of the molecular signaling events ultimately resulting in enhanced transcription of specific genes in WNT receiving cells. Finally, the possible targets for therapeutic intervention and the available pharmacological inhibitors for this complex signaling pathway are discussed.
Collapse
|
41
|
Vogel KJ, Brown MR, Strand MR. Phylogenetic investigation of Peptide hormone and growth factor receptors in five dipteran genomes. Front Endocrinol (Lausanne) 2013; 4:193. [PMID: 24379806 PMCID: PMC3863949 DOI: 10.3389/fendo.2013.00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022] Open
Abstract
Peptide hormones and growth factors bind to membrane receptors and regulate a myriad of processes in insects and other metazoans. The evolutionary relationships among characterized and uncharacterized ("orphan") receptors can provide insights into receptor-ligand biology and narrow target choices in deorphanization studies. However, the large number and low sequence conservation of these receptors make evolutionary analysis difficult. Here, we characterized the G-protein-coupled receptors (GPCRs), receptor guanylyl cyclases (RGCs), and protein kinase receptors (PKRs) of mosquitoes and select other flies by interrogating the genomes of Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster, and D. mojavensis. Sequences were grouped by receptor type, clustered using the program CLANS, aligned using HMMR, and phylogenetic trees built using PhyML. Our results indicated that PKRs had relatively few orphan clades whereas GPCRs and RGCs had several. In addition, more than half of the Class B secretin-like GPCRs and RGCs remained uncharacterized. Additional studies revealed that Class B GPCRs exhibited more gain and loss events than other receptor types. Finally, using the neuropeptide F family of insect receptors and the neuropeptide Y family of vertebrate receptors, we also show that functional sites considered critical for ligand binding are conserved among distinct family members and between distantly related taxa. Overall, our results provide the first comprehensive analysis of peptide hormone and growth factor receptors for a major insect group.
Collapse
Affiliation(s)
- Kevin J. Vogel
- Department of Entomology, The University of Georgia, Athens, GA, USA
- *Correspondence: Kevin J. Vogel, Department of Entomology, The University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA e-mail:
| | - Mark R. Brown
- Department of Entomology, The University of Georgia, Athens, GA, USA
| | - Michael R. Strand
- Department of Entomology, The University of Georgia, Athens, GA, USA
| |
Collapse
|
42
|
Rebagay G, Yan S, Liu C, Cheung NK. ROR1 and ROR2 in Human Malignancies: Potentials for Targeted Therapy. Front Oncol 2012; 2:34. [PMID: 22655270 PMCID: PMC3356025 DOI: 10.3389/fonc.2012.00034] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 03/22/2012] [Indexed: 11/13/2022] Open
Abstract
Targeted therapies require cellular protein expression that meets specific requirements that will maximize effectiveness, minimize off-target toxicities, and provide an opportunity for a therapeutic effect. The receptor tyrosine kinase-like orphan receptors (ROR) are possible targets for therapy that may meet such requirements. RORs are transmembrane proteins that are part of the receptor tyrosine kinase (RTK) family. The RORs have been shown to play a role in tumor-like behavior, such as cell migration and cell invasiveness and are normally not expressed in normal adult tissue. As part of the large effort in target discovery, ROR proteins have recently been found to be expressed in human cancers. Their unique expression profiles may provide a novel class of therapeutic targets for small molecules against the kinase or for antibody-based therapies against these receptors. Being restricted on tumor cells and not on most normal tissues, RORs are excellent targets for the treatment of minimal residual disease, the final hurdle in the curative approach to many cancers, including solid tumors such as neuroblastoma. In this review, we summarize the biology of RORs as they relate to human cancer, and highlight the therapeutic approaches directed toward them.
Collapse
Affiliation(s)
- Guilly Rebagay
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center New York, NY, USA
| | | | | | | |
Collapse
|
43
|
Monoclonal antibodies against ROR1 induce apoptosis of chronic lymphocytic leukemia (CLL) cells. Leukemia 2012; 26:1348-55. [PMID: 22289919 DOI: 10.1038/leu.2011.362] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
ROR1 is a receptor tyrosine kinase (RTK) recently identified to be overexpressed at the gene and protein levels in chronic lymphocytic leukemia (CLL). Monoclonal antibodies (MAbs) against RTKs have been successfully applied for therapy of solid tumors. We generated five MAbs against the Ig (n = 1), cysteine-rich (CRD) (n = 2) and kringle (KNG) (n = 2) domains, respectively, of the extracellular part of ROR1. All CLL patients (n = 20) expressed ROR1 on the surface of the leukemic cells. A significantly higher frequency of ROR1 expression was found in patients with progressive versus non-progressive disease, and in those with unmutated versus mutated IgVH genes. All five MAbs alone induced apoptosis in the absence of complement or added effector cells (Annexin-V and MTT, as well as cleavage of poly-(ADP ribose)-polymerase, caspase-8 and caspase-9) of CLL cells but not of normal B cells. Most effective were MAbs against CRD and KNG, significantly superior to rituximab (P < 0.005). Cross-linking of anti-ROR1 MAbs using the F(ab')(2) fragments of anti-Fc antibodies significantly augmented apoptosis. Two of the MAbs induced complement-dependent cytotoxicity (CDC) similar to that of rituximab and one anti-ROR1 MAb (KNG) (IgG1) showed killing activity by antibody-dependent cellular cytotoxicity. The identified ROR1 epitopes may provide a basis for generating human ROR1 MAbs for therapy.
Collapse
|
44
|
Topczewski J, Dale RM, Sisson BE. Planar cell polarity signaling in craniofacial development. Organogenesis 2011; 7:255-9. [PMID: 22134372 DOI: 10.4161/org.7.4.18797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Out of the several signaling pathways controlling craniofacial development, the role of planar cell polarity (PCP) signaling is relatively poorly understood. This pathway, originally identified as a mechanism to maintain cell polarity within the epithelial cells of the Drosophila wing, has been linked to the proper development of a wide variety of tissues in vertebrates and invertebrates. While many of the pathway members are conserved, it appears that some of the members of the pathway act in a tissue-specific manner. Here, we discuss the role of this pathway in vertebrate craniofacial development, highlighting cranial neural crest migration, skull and palate formation and the role of non-traditional modulators of PCP signaling within this developmental process.
Collapse
Affiliation(s)
- Jacek Topczewski
- Northwestern University, Feinberg School of Medicine, Department of Pediatrics, Children’s Memorial Research Center, Chicago, IL, USA.
| | | | | |
Collapse
|
45
|
Uhrmacher S, Schmidt C, Erdfelder F, Poll-Wolbeck SJ, Gehrke I, Hallek M, Kreuzer KA. Use of the receptor tyrosine kinase-like orphan receptor 1 (ROR1) as a diagnostic tool in chronic lymphocytic leukemia (CLL). Leuk Res 2011; 35:1360-6. [PMID: 21531460 DOI: 10.1016/j.leukres.2011.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/24/2011] [Accepted: 04/07/2011] [Indexed: 12/21/2022]
Abstract
Flow cytometry is commonly used to establish the diagnosis of chronic lymphocytic leukemia (CLL). A defined combination of antibodies discriminates between normal B cells and CLL cells (coexpression of CD5, CD19, and CD23). The receptor tyrosine-like orphan receptor one (ROR1) is an embryonic glycoprotein involved in several developmental processes. It was shown to be highly and specifically expressed on circulating B lymphoma cells, but not on normal B cells. Here, we examined the potential of ROR1 as a diagnostic marker in initial and follow-up diagnostics of patients with CLL. 105 untreated and 72 treated patients, as well as healthy volunteers were examined using flow cytometry assays. Furthermore, we examined 10 patients with various B cell non-Hodgkin lymphomas (B-NHL). ROR1 was detected using a directly labeled antibody. We detected uniformly high ROR1 expression levels in all CLL samples. In marked contrast, only low or absent ROR1 expression levels were found on B cells from healthy donors. ROR1 expression in CLL patients was not influenced by various treatments. Taken together, ROR1 may be used as a diagnostic marker for CLL. As it is the only antigen which can exclusively be detected on neoplastic B cells it may greatly increase both, specificity as well as sensitivity, in lymphoma diagnostics.
Collapse
Affiliation(s)
- Sabrina Uhrmacher
- Department I of Internal Medicine, Center for Integrated Oncology Köln Bonn, University at Cologne, Kerpener Strasse 62, 50937 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Yamada M, Udagawa J, Matsumoto A, Hashimoto R, Hatta T, Nishita M, Minami Y, Otani H. Ror2 is required for midgut elongation during mouse development. Dev Dyn 2010; 239:941-53. [PMID: 20063415 DOI: 10.1002/dvdy.22212] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The receptor tyrosine kinase Ror2 acts as a receptor for Wnt5a to mediate noncanonical Wnt signaling, and it plays essential roles in morphogenesis. Ror2-/- embryos exhibit phenotypes similar to, albeit generally milder than, those of Wnt5a-/- embryos. During mouse embryogenesis, Ror2 is expressed in various organs and regions, although little is known about its expression pattern and roles in the developing gut, while Wnt5a is expressed in the developing gut, where its absence causes abnormal phenotypes. Here, we demonstrated that Ror2 was strongly and differentially expressed in the rostral and middle midgut endoderm from embryonic day (E) 10.5 through embryonic day (E) 12.5. At E11.5, Ror2-/- embryos exhibited a shorter middle midgut with a larger diameter and more accumulation of epithelial cells in the middle midgut than control embryos, while the total cell numbers remained unaltered. These findings suggest that Ror2 plays important roles in midgut elongation by means of an epithelial convergent extension mechanism.
Collapse
Affiliation(s)
- Makiko Yamada
- Department of Developmental Biology, Faculty of Medicine, Shimane University, Izumo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lyashenko N, Weissenböck M, Sharir A, Erben RG, Minami Y, Hartmann C. Mice lacking the orphan receptor ror1 have distinct skeletal abnormalities and are growth retarded. Dev Dyn 2010; 239:2266-77. [PMID: 20593419 DOI: 10.1002/dvdy.22362] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ror1 is a member of the Ror-family receptor tyrosine kinases. Ror1 is broadly expressed in various tissues and organs during mouse embryonic development. However, so far little is known about its function. The closely related family member Ror2 was shown to play a crucial role in skeletogenesis and has been shown to act as a co-receptor for Wnt5a mediating non-canonical Wnt-signaling. Previously, it has been shown that during embryonic development Ror1 acts in part redundantly with Ror2 in the skeletal and cardiovascular systems. In this study, we report that loss of the orphan receptor Ror1 results in a variety of phenotypic defects within the skeletal and urogenital systems and that Ror1 mutant mice display a postnatal growth retardation phenotype.
Collapse
|
48
|
Yavropoulou MP, Papapoulos SE. Targeting the Wnt signaling pathway for the development of novel therapies for osteoporosis. Expert Rev Endocrinol Metab 2010; 5:711-722. [PMID: 30764023 DOI: 10.1586/eem.10.48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A number of anti-osteoporotic drugs, predominantly inhibitors of bone resorption, are currently used in the management of patients with osteoporosis to reduce the risk of fractures. While the management of the disease has improved significantly, there are still unmet needs, mainly due to a lack of agents able to replace bone that has already been lost. Human and animal genetics have identified the pivotal role of the Wnt signaling pathway in the regulation of bone formation by the osteoblasts and have made it a very attractive target for the development of novel treatments for osteoporosis. In this article, we review evidence that supports the targeting of components of the Wnt signaling pathway for the design of bone-forming treatments for osteoporosis.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Socrates E Papapoulos
- a Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- b
| |
Collapse
|
49
|
Choudhury A, Derkow K, Daneshmanesh AH, Mikaelsson E, Kiaii S, Kokhaei P, Osterborg A, Mellstedt H. Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br J Haematol 2010; 151:327-35. [PMID: 20813009 DOI: 10.1111/j.1365-2141.2010.08362.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously demonstrated that ROR1 and FMOD (fibromodulin) are two genes upregulated in chronic lymphocytic leukaemia (CLL) cells compared to normal blood B cells. In this study, siRNAs were used to specifically silence ROR1 and FMOD expression in CLL cells, healthy B cells and human fibroblast cell lines. siRNA treatment induced a specific reduction (75-95%) in FMOD and ROR1 mRNA. Western blot analysis with specific antibodies for FMOD and ROR1 demonstrated that the proteins were significantly downregulated 48 h after siRNA treatment. Silencing of FMOD and ROR1 resulted in statistically significant (P ≤ 0·05-0·001) apoptosis of CLL cells but not of B cells from normal donors. Human fibroblast cell lines treated with FMOD and ROR1 siRNA did not undergo apoptosis. This is the first report demonstrating that ROR1 and FMOD may be involved in the survival of CLL cells. ROR1 in particular is further explored as potential target for therapy in CLL.
Collapse
|
50
|
Minami Y, Oishi I, Endo M, Nishita M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: their implications in developmental morphogenesis and human diseases. Dev Dyn 2010; 239:1-15. [PMID: 19530173 DOI: 10.1002/dvdy.21991] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Ror-family receptor tyrosine kinases (RTKs) play crucial roles in the development of various organs and tissues. In mammals, Ror2, a member of the Ror-family RTKs, has been shown to act as a receptor or coreceptor for Wnt5a to mediate noncanonical Wnt signaling. Ror2- and Wnt5a-deficient mice exhibit similar abnormalities during developmental morphogenesis, reflecting their defects in convergent extension movements and planar cell polarity, characteristic features mediated by noncanonical Wnt signaling. Furthermore, mutations within the human Ror2 gene are responsible for the genetic skeletal disorders dominant brachydactyly type B and recessive Robinow syndrome. Accumulating evidence demonstrate that Ror2 mediates noncanonical Wnt5a signaling by inhibiting the beta-catenin-TCF pathway and activating the Wnt/JNK pathway that results in polarized cell migration. In this article, we review recent progress in understanding the roles of noncanonical Wnt5a/Ror2 signaling in developmental morphogenesis and in human diseases, including heritable skeletal disorders and tumor invasion.
Collapse
Affiliation(s)
- Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan.
| | | | | | | |
Collapse
|