1
|
Klussmeier A, Aurich S, Niederstadt L, Wiedenmann B, Grötzinger C. Secretin Receptor as a Target in Gastrointestinal Cancer: Expression Analysis and Ligand Development. Biomedicines 2022; 10:biomedicines10030536. [PMID: 35327338 PMCID: PMC8944975 DOI: 10.3390/biomedicines10030536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Secretin was originally discovered as a gastrointestinal peptide that stimulates fluid secretion from the pancreas and liver and delays gastric emptying. In disease, a secretin receptor (SCTR) was found to occur as a splice variant in gastrinoma and pancreatic adenocarcinoma. Overexpression of SCTR has been described for gastrinomas, carcinoid tumors of the lung and cholangiocarcinoma. SCTR therefore is considered a candidate target for molecular tumor imaging as well as for peptide receptor radioligand therapy (PRRT) in a number of oncological indications. The aim of this study was to characterize SCTR expression in esophageal and pancreatic cancer, demonstrating for the first time high SCTR overexpression in these tumor types. In total, 65 of 70 pancreatic ductal adenocarcinoma tissues stained strongly positive for SCTR in immunohistochemistry, as did most of the 151 esophageal cancer samples, with minor influence of grading in both entities. In addition, the aim of this study was to further delineate residues in human secretin that are critical for binding to and activation of human SCTR. For a potential development of short and metabolically stable analogs for clinical use, it was intended to probe the peptide for its capacity to incorporate deletions and substitutions without losing its affinity to SCTR. In a systematic approach, a library of 146 secretin variants containing single amino acid substitutions as well as truncations on either end was tested in β-arrestin2-GFP translocation and fluorescent ligand internalization assays employing high-content analysis, in cAMP assays which run in agonist and antagonist mode, and in radioligand binding. The main structural determinants of SCTR binding and activation were localized to the N-terminus, with His1, Asp3 being among the most sensitive positions, followed by Phe6, Thr7 and Leu10. Aminoterminal truncation caused a rapid decline in receptor activity and most of these variants proved to be partial agonists showing antagonistic properties. In this study, the most potent novel antagonist showed an IC50 of 309 ± 74 nM in the β-arrestin2-GFP translocation assay on human SCTR while remaining a weak partial agonist. Future studies will have to demonstrate the utility of further enhanced secretin analogues as tracers for in vivo imaging and therapy.
Collapse
Affiliation(s)
- Anja Klussmeier
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
- Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Aurich
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Lars Niederstadt
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Bertram Wiedenmann
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
| | - Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (A.K.); (S.A.); (L.N.); (B.W.)
- Partner Site Berlin, German Cancer Consortium (DKTK), 13353 Berlin, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
2
|
Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals. Molecules 2020; 25:molecules25102314. [PMID: 32423178 PMCID: PMC7287708 DOI: 10.3390/molecules25102314] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022] Open
Abstract
The high affinity and specificity of peptides towards biological targets, in addition to their favorable pharmacological properties, has encouraged the development of many peptide-based pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals. However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge that must be overcome, as it can result in an impractically short in vivo biological half-life and a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently, many biologically and pharmacologically interesting peptide-based drugs may never see application. A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore of a native peptide while also containing unnatural modifications that act to maintain or improve the pharmacological properties. This review explores strategies that have been developed to increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Brendan J. Evans
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew T. King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
| | - Lidia Matesic
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia;
| | - Joanne F. Jamie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
- Correspondence: ; Tel.: +61-2-9850-8283
| |
Collapse
|
3
|
Abstract
Chemistry is the science of chemical reactions, the study of chemical properties, composition, and structure of a molecule. When the molecule under observation is of a biological origin (proteins, carbohydrates, lipids, or nucleic acids), the study of its chemical properties, reactions, and structure is known as biochemistry. Similarly, if the molecule or a biochemical under observation is radioactive, the science becomes radiochemistry or radio biochemistry. So, chemistry is the science which fuses these two diverse fields of applied sciences. Fusion of these two sciences on chemistry platform has enabled the development of various new radioactive formulations which are called as radiopharmaceuticals and are being used the world over for clinical as well as experimental purposes. For the successful development of radiopharmaceuticals, we require in-depth understanding of both biochemistry as well as radiochemistry. So, the present review article summarizes basic relevant details and experimental advances in both these sciences with regard to development of radiopharmaceuticals.
Collapse
|
4
|
Davis MB, Li T. Genomic analysis of the ecdysone steroid signal at metamorphosis onset using ecdysoneless and EcRnullDrosophila melanogaster mutants. Genes Genomics 2013; 35:21-46. [PMID: 23482860 PMCID: PMC3585846 DOI: 10.1007/s13258-013-0061-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 07/23/2012] [Indexed: 12/13/2022]
Abstract
Steroid hormone gene regulation is often depicted as a linear transduction of the signal, from molecule release to the gene level, by activation of a receptor protein after being bound by its steroid ligand. Such an action would require that the hormone be present and bound to the receptor in order to have target gene response. Here, we present data that presents a novel perspective of hormone gene regulation, where the hormone molecule and its receptor have exclusive target gene regulation function, in addition to the traditional direct target genes. Our study is the first genome-wide analysis of conditional mutants simultaneously modeling the steroid and steroid receptor gene expression regulation. We have integrated classical genetic mutant experiments with functional genomics techniques in the Drosophila melanogaster model organism, where we interrogate the 20-hydroxyecdysone signaling response at the onset of metamorphosis. Our novel catalog of ecdysone target genes illustrates the separable transcriptional responses among the hormone, the pre-hormone receptor and the post-hormone receptor. We successfully detected traditional ecdysone target genes as common targets and also identified novel sets of target genes which where exclusive to each mutant condition. Around 12 % of the genome responds to the ecdysone hormone signal at the onset of metamorphosis and over half of these are independent of the receptor. In addition, a significant portion of receptor regulated genes are differentially regulated by the receptor, depending on its ligand state. Gene ontology enrichment analyses confirm known ecdysone regulated biological functions and also validate implicated pathways that have been indirectly associated with ecdysone signaling.
Collapse
Affiliation(s)
- Melissa B Davis
- Department of Genetics, Coverdell Biomedical Research Center, University of Georgia, 500 DW Brooks Dr S 270C, Athens, GA 30602 USA
| | | |
Collapse
|
5
|
MSH radiopeptides for targeting melanoma metastases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 681:133-42. [PMID: 21222266 DOI: 10.1007/978-1-4419-6354-3_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiolabeled peptides have become important tools for preclinical cancer research and in nuclear oncology they serve as diagnostic and more recently also as therapeutic agents. Whereas the development of receptor-mediated targeting for therapy has been confined to some radiolabeled antibodies and somatostatin/SRIF analogs, recent research into radiolabeled α-Melanocyte-stimulating hormone (α-MSH) and its receptor MC1R (over-)expressed by melanoma tumor cells has demonstrated that small metastatic melanoma lesions in experimental animals are specifically targeted by MSH radiopeptides. Thus MSH radiopharmaceuticals will eventually open a new avenue for the treatment of melanoma metastases in man, provided that the targeting efficiency can be further enhanced and nonspecific incorporation into nontarget organs, e.g., the kidneys, minimized. Some novel MSH lead compounds containing a glyco moiety, added negatively charged groups or a cyclic structure show very promising in vivo targeting characteristics.
Collapse
|
6
|
Evaluation of copper-64-labeled somatostatin agonists and antagonist in SSTr2-transfected cell lines that are positive and negative for p53: implications for cancer therapy. Nucl Med Biol 2011; 39:187-97. [PMID: 22056254 DOI: 10.1016/j.nucmedbio.2011.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/10/2011] [Accepted: 08/14/2011] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Radiolabeled somatostatin analogs have become important agents for molecular imaging and targeted radiotherapy of somatostatin receptor-positive tumors. Here we determine the effect of the tumor suppressor protein, p53, on trafficking (64)Cu to tumor cell nuclei from DOTA vs. CB-TE2A-conjugated agonist Y3-TATE and the antagonist (64)Cu-CB-TE2A-sst2-ANT in cell lines that are positive or negative for p53. METHODS Receptor binding, internalization, cyclic adenosine monophosphate (cAMP) and nuclear localization studies were performed with the somatostatin receptor subtype 2 (SSTr2) agonists, (64)Cu-CB-TE2A-Y3-TATE and (64)Cu-DOTA-Y3-TATE vs. antagonist, (64)Cu-CB-TE2A-sst2-ANT, in SSTr2-transfected p53 +/+ and -/- HCT116 colorectal carcinoma cells. RESULTS The antagonist, (64)Cu-CB-TE2A-sst2-ANT, bound 8-9-fold more SSTr2 binding sites than did the (64)Cu-labeled agonists. (64)Cu-CB-TE2A-Y3-TATE was more efficiently internalized than (64)Cu-DOTA-Y3-TATE, while (64)Cu-CB-TE2A-sst2-ANT showed lower yet significant levels of internalization. CB-TE2A-Y3-TATE acted as a full agonist, inhibiting cAMP production, whereas CB-TE2A-sst2-ANT showed no inhibition of cAMP production. The (64)Cu from agonists (64)Cu-DOTA-Y3-TATE and (64)Cu-CB-TE2A-Y3-TATE showed greater nuclear localization at 24 h in p53 +/+ vs. -/- cells; however, there was no difference in the levels of (64)Cu from the antagonist based on p53 status. Surprisingly, the DOTA and CB-TE2A-conjugated agonists showed similar nuclear localization in the p53 +/+ and -/- cells, suggesting no difference in (64)Cu release from these chelators in the HCT116 cell lines. CONCLUSION Based on these in vitro data, the agonist (64)Cu-CB-TE2A-Y3-TATE demonstrates the most promise as an agent for targeted radiotherapy in p53 positive, SSTr2-positive tumors.
Collapse
|
7
|
|
8
|
Erchegyi J, Grace CRR, Samant M, Cescato R, Piccand V, Riek R, Reubi JC, Rivier JE. Ring size of somatostatin analogues (ODT-8) modulates receptor selectivity and binding affinity. J Med Chem 2008; 51:2668-75. [PMID: 18410084 PMCID: PMC2782568 DOI: 10.1021/jm701444y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The synthesis, biological testing, and NMR studies of several analogues of H-c[Cys (3)-Phe (6)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Phe (11)-Cys (14)]-OH (ODT-8, a pan-somatostatin analogue, 1) have been performed to assess the effect of changing the stereochemistry and the number of atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (somatostatin numbering) were/was substituted with d-cysteine, norcysteine, D-norcysteine, homocysteine, and/or D-homocysteine. The 3D structure analysis of selected partially selective, bioactive analogues (3, 18, 19, and 21) was carried out in dimethylsulfoxide. Interestingly and not unexpectedly, the 3D structures of these analogues comprised the pharmacophore for which the analogues had the highest binding affinities (i.e., sst 4 in all cases).
Collapse
Affiliation(s)
- Judit Erchegyi
- The Clayton Foundation Laboratories for Peptide Biology and Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bapst JP, Froidevaux S, Calame M, Tanner H, Eberle AN. Dimeric DOTA-alpha-melanocyte-stimulating hormone analogs: synthesis and in vivo characteristics of radiopeptides with high in vitro activity. J Recept Signal Transduct Res 2008; 27:383-409. [PMID: 18097939 DOI: 10.1080/10799890701723528] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Dimeric analogs of alpha-melanocyte-stimulating hormone (alpha-MSH) labeled with radiometals are potential candidates for diagnosis and therapy of melanoma by receptor-mediated tumor targeting. Both melanotic and amelanotic melanomas (over-)express the melanocortin-1 receptor (MC1-R), the target for alpha-MSH. In the past, dimerized MSH analogs have been shown to display increased receptor affinity compared to monomeric MSH, offering the possibility of improving the ratio between specific uptake of radiolabeled alpha-MSH by melanoma and nonspecific uptake by the kidneys. We have designed three linear dimeric analogs containing a slightly modified MSH hexapeptide core sequence (Nle-Asp-His-d-Phe-Arg-Trp) in parallel or antiparallel orientation, a short spacer, and the DOTA chelator for incorporation of the radiometal. In vitro, all three peptides were more potent ligands of the mouse B16-F1 melanoma cell melanocortin-1 receptor (MC1-R) than DOTA-NAPamide, which served as standard. The binding activity of DOTA-diHexa(NC-NC)-amide was 1.75-fold higher, that of diHexa(NC-NC)-Gly-Lys(DOTA)-amide was 3.37-fold higher, and that of DOTA-diHexa(CN-NC)-amide was 2.34-fold higher. Using human HBL melanoma cells, the binding activity of diHexa(NC-NC)-Gly-Lys(DOTA)-amide was sixfold higher than that of DOTA-NAPamide. Uptake by cultured B16-F1 cells was rapid and almost quantitative. In vivo, however, the data were less promising: tumor-to-kidney ratios 4 hr postinjection were 0.11 for [(111)In]DOTA-diHexa(NC-NC)-amide, 0.26 for diHexa(NC-NC)-Gly-Lys([(111)In]DOTA)-amide, and 0.36 for [(111)In]DOTA-diHexa(CN-NC)-amide, compared to 1.67 for [(111)In]DOTA-NAPamide. It appears that despite the higher affinity to the MC1-R of the peptide dimers and their excellent internalization in vitro, the uptake by melanoma tumors in vivo was lower, possibly because of reduced tissue penetration. More striking, however, was the marked increase of kidney uptake of the dimers, explaining the unfavorable ratios. In conclusion, although radiolabeled alpha-MSH dimer peptides display excellent receptor affinity and internalization, they are no alternative to the monomeric DOTA-NAPamide for in vivo application.
Collapse
Affiliation(s)
- Jean-Philippe Bapst
- Laboratory of Endocrinology, Department of Research, University Hospital and University Children's Hospital, Basel, Switzerland
| | | | | | | | | |
Collapse
|
10
|
Abstract
The availability of specific imaging probes is the nuclear fuel for molecular imaging by positron emission tomography and single-photon emission computed tomography. These two radiotracer-based imaging modalities represent the prototype methods for noninvasive depiction and quantification of biochemical processes, allowing a functional characterization of tumor biology. A variety of powerful radiolabeled probes--tracers--are already established in the routine clinical management of human disease and others are currently subject to clinical assessment. Emerging from investigations of the genomic and proteomic signatures of cancer cells, an increasing number of promising targets are being identified, including receptors, enzymes, transporters, and antigens. Corresponding probes for these newly identified targets need to be developed and transferred into the clinical setting. Starting with a brief summary of the characteristics and prerequisites for a "good tracer," an overview of tracer concepts, target selection, and development strategies is given. The influence of the imaging concepts on tracer development is also discussed.
Collapse
Affiliation(s)
- Hans-Jürgen Wester
- Department of Nuclear Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
11
|
Kelloff GJ, Krohn KA, Larson SM, Weissleder R, Mankoff DA, Hoffman JM, Link JM, Guyton KZ, Eckelman WC, Scher HI, O'Shaughnessy J, Cheson BD, Sigman CC, Tatum JL, Mills GQ, Sullivan DC, Woodcock J. The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 2006; 11:7967-85. [PMID: 16299226 DOI: 10.1158/1078-0432.ccr-05-1302] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
As addressed by the recent Food and Drug Administration Critical Path Initiative, tools are urgently needed to increase the speed, efficiency, and cost-effectiveness of drug development for cancer and other diseases. Molecular imaging probes developed based on recent scientific advances have great potential as oncologic drug development tools. Basic science studies using molecular imaging probes can help to identify and characterize disease-specific targets for oncologic drug therapy. Imaging end points, based on these disease-specific biomarkers, hold great promise to better define, stratify, and enrich study groups and to provide direct biological measures of response. Imaging-based biomarkers also have promise for speeding drug evaluation by supplementing or replacing preclinical and clinical pharmacokinetic and pharmacodynamic evaluations, including target interaction and modulation. Such analyses may be particularly valuable in early comparative studies among candidates designed to interact with the same molecular target. Finally, as response biomarkers, imaging end points that characterize tumor vitality, growth, or apoptosis can also serve as early surrogates of therapy success. This article outlines the scientific basis of oncology imaging probes and presents examples of probes that could facilitate progress. The current regulatory opportunities for new and existing probe development and testing are also reviewed, with a focus on recent Food and Drug Administration guidance to facilitate early clinical development of promising probes.
Collapse
Affiliation(s)
- Gary J Kelloff
- Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Eberle AN, Beglinger C. Does 177Lu-labeled octreotate improve the rate of remission of endocrine gastroenteropancreatic tumors? ACTA ACUST UNITED AC 2005; 1:20-1. [PMID: 16929362 DOI: 10.1038/ncpendmet0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 09/09/2005] [Indexed: 11/09/2022]
|