1
|
Huysman MJJ, Vyverman W, De Veylder L. Molecular regulation of the diatom cell cycle. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2573-2584. [PMID: 24277280 DOI: 10.1093/jxb/ert387] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Accounting for almost one-fifth of the primary production on Earth, the unicellular eukaryotic group of diatoms plays a key ecological and biogeochemical role in our contemporary oceans. Furthermore, as producers of various lipids and pigments, and characterized by their finely ornamented silica cell wall, diatoms hold great promise for different industrial fields, including biofuel production, nanotechnology, and pharmaceutics. However, in spite of their major ecological importance and their high commercial value, little is known about the mechanisms that control the diatom life and cell cycle. To date, both microscopic and genomic analyses have revealed that diatoms exhibit specific and unique mechanisms of cell division compared with those found in the classical model organisms. Here, we review the structural peculiarities of diatom cell proliferation, highlight the regulation of their major cell cycle checkpoints by environmental factors, and discuss recent progress in molecular cell division research.
Collapse
Affiliation(s)
- Marie J J Huysman
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Wim Vyverman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, B-9000 Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| |
Collapse
|
2
|
Modeling Microtubule-Mediated Forces and Centrosome Positioning in Caenorhabditis elegans Embryos. Methods Cell Biol 2010; 97:437-53. [DOI: 10.1016/s0091-679x(10)97023-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
3
|
De Martino A, Amato A, Bowler C. Mitosis in diatoms: rediscovering an old model for cell division. Bioessays 2009; 31:874-84. [DOI: 10.1002/bies.200900007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
von Dassow G. Concurrent cues for cytokinetic furrow induction in animal cells. Trends Cell Biol 2009; 19:165-73. [PMID: 19285868 DOI: 10.1016/j.tcb.2009.01.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 01/23/2023]
Abstract
Animal cells are deformable, yet live together bound into tissues. Consequently, physical perturbations imposed by neighbors threaten to disrupt the spatial coordination of cell cleavage with chromosome segregation during mitosis. Emerging evidence demonstrates that animal cells integrate multiple positional cues during cleavage-furrow induction, perhaps to facilitate error correction. Classical work indicated that the asters provide the stimulus for furrow induction, but recent results implicate the central spindle at least as much. Similarly, although classical work concluded that the stimulus occurs at the cell equator, new evidence shows that asters modulate cortical contractility outside the equator as well. Meanwhile, a newly revealed distinction between stable and dynamic astral microtubules suggests that these subsets might have complementary effects on furrow induction.
Collapse
Affiliation(s)
- George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, 97420, USA.
| |
Collapse
|
5
|
Pollock FM, Pickett-Heaps JD. Spatial determinants in morphogenesis: recovery from plasmolysis in the diatom Ditylum. ACTA ACUST UNITED AC 2005; 60:71-82. [PMID: 15593280 DOI: 10.1002/cm.20044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ditylum cells are enclosed in a rigid wall consisting of two "valves" (end walls) connected by "girdle bands." A hollow spine, the Labiate Process (LP), extends from each valve and a stable cytoplasmic strand connects its base with the nucleus. We investigated whether cells might possess "spatial determinants" for controlling their internal organization and wall morphogenesis. Upon plasmolysis, cells contracted into a spherical protoplast detached from the wall. Recovery was initiated by growing filopodia that "searched" the inside of the wall. Some attached to the inside corners, generating tension that could temporarily displace the protoplast. Others consolidated into the strand connecting nucleus with the LP. The protoplasts soon expanded and cells recovered: some divided immediately, the rest within 24 h. When recently divided cells were plasmolysed, their nascent valves were exocytosed. These were ignored by the filopodia during recovery. Later, protoplasts secreted a new valve, while the nascent valves were discarded. The interphase microtubule (MT) cytoskeleton radiates from a central Microtubule Center. A thicker bundle connects the nucleus to each LP. Plasmolysis destroyed the MT cytoskeleton; its re-establishment matched growth of the filopodia. The anti-MT drug oryzalin prevented filopodial extension while existing filopodia retracted, except those stabilized by attachment to the corners of the cell and the LP. Several anti-actin agents had relatively little effect. However, one, mycalolide B, caused the nucleus to be extruded from the protoplast by a bundle of MTs. We conclude that the geometry of the wall could provide spatial information to which the MT-cytoskeleton/filopodia respond.
Collapse
Affiliation(s)
- Fiona M Pollock
- School of Botany, University of Melbourne, Parkville, Australia
| | | |
Collapse
|
6
|
Hanke-Bücker G, Lanners HN, Hauser M. Nuclear phenomena during conjugation of Heliophrya erhardi (Ciliata, Suctoria). II. The orientation of postmeiotic and metagamic division spindles is organized by the cytoskeleton. Eur J Protistol 2000. [DOI: 10.1016/s0932-4739(00)80039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
Yeast cells that divide by budding place new buds in predetermined locations. Recent studies of the subcellular localization of the Bud3 protein help to explain how this occurs.
Collapse
Affiliation(s)
- S L Sanders
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143-0448, USA
| | | |
Collapse
|
8
|
Successive observations on the fertilization of a centric diatomMelosira moniliformis var.octagona. ACTA ACUST UNITED AC 1992. [DOI: 10.1007/bf02489438] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Pape R, Kissmehl R, Glas-Albrecht R, Plattner H. Effects of anti-microtubule agents on Paramecium cell culture growth. Eur J Protistol 1991. [DOI: 10.1016/s0932-4739(11)80066-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
|
11
|
Abstract
We have found that nocodazole reversibly inhibits nuclear migration and can be used to induce karyokinesis before the completion of nuclear migration, resulting in spindles that are displaced toward the hypothecal end of the cell. Surprisingly, displacement of mitotic nuclei results in complete spatial uncoupling of karyokinesis from cytokinesis. Nocodazole-induced displacement of mitotic nuclei will neither alter the position of the original furrow nor induce additional furrows. This demonstrates that in S. turris the location of the presumptive cleavage furrow is not determined by the position of the spindle but is cortically determined before mitosis. Therefore, although cell division in S. turris resembles certain mechanochemical aspects of cleavage in animal cells, our evidence suggests that the spatial regulation of the cytokinetic apparatus relies on a mechanism of cortical determination that is characteristic of plant cells.
Collapse
Affiliation(s)
- L Wordeman
- Department of Pharmacology, University of California, San Francisco 94143
| | | |
Collapse
|
12
|
Wordeman L, Davis FM, Rao PN, Cande WZ. Distribution of phosphorylated spindle-associated proteins in the diatom Stephanopyxis turris. CELL MOTILITY AND THE CYTOSKELETON 1989; 12:33-41. [PMID: 2650886 DOI: 10.1002/cm.970120105] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mitotic spindles isolated from the diatom Stephanopyxis turris become thiophosphorylated in the presence of ATP gamma S at specific locations within the mitotic apparatus, resulting in a stimulation of ATP-dependent spindle elongation in vitro. Here, using indirect immunofluorescence, we compare the staining pattern of an antibody against thiophosphorylated proteins to that of MPM-2, an antibody against mitosis-specific phosphoproteins, in isolated spindles. Both antibodies label spindle poles, kinetochores, and the midzone. Neither antibody exhibits reduced labeling in salt-extracted spindles, although prior salt extraction inhibits thiophosphorylation in ATP gamma S. Furthermore, both antibodies recognize a 205 kd band on immunoblots of spindle extracts. Microtubule-organizing centers and mitotic spindles label brightly with the MPM-2 antibody in intact cells. These results show that functional mitotic spindles isolated from S. turris are phosphorylated both in vivo and in vitro. We discuss the possible role of phosphorylated cytoskeletal proteins in the control of mitotic spindle function.
Collapse
Affiliation(s)
- L Wordeman
- Department of Pharmacology, University of California, San Francisco
| | | | | | | |
Collapse
|
13
|
Masuda H, McDonald KL, Cande WZ. The mechanism of anaphase spindle elongation: uncoupling of tubulin incorporation and microtubule sliding during in vitro spindle reactivation. J Cell Biol 1988; 107:623-33. [PMID: 3047143 PMCID: PMC2115210 DOI: 10.1083/jcb.107.2.623] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To study tubulin polymerization and microtubule sliding during spindle elongation in vitro, we developed a method of uncoupling the two processes. When isolated diatom spindles were incubated with biotinylated tubulin (biot-tb) without ATP, biot-tb was incorporated into two regions flanking the zone of microtubule overlap, but the spindles did not elongate. After biot-tb was removed, spindle elongation was initiated by addition of ATP. The incorporated biot-tb was found in the midzone between the original half-spindles. The extent and rate of elongation were increased by preincubation in biot-tb. Serial section reconstruction of spindles elongating in tubulin and ATP showed that the average length of half-spindle microtubules increased due to growth of microtubules from the ends of native microtubules. The characteristic packing pattern between antiparallel microtubules was retained even in the "new" overlap region. Our results suggest that the forces required for spindle elongation are generated by enzymes in the overlap zone that mediate the sliding apart of antiparallel microtubules, and that tubulin polymerization does not contribute to force generation. Changes in the extent of microtubule overlap during spindle elongation were affected by tubulin and ATP concentration in the incubation medium. Spindles continued to elongate even after the overlap zone was composed entirely of newly polymerized microtubules, suggesting that the enzyme responsible for microtubule translocation either is bound to a matrix in the spindle midzone, or else can move on one microtubule toward the spindle midzone and push another microtubule of opposite polarity toward the pole.
Collapse
Affiliation(s)
- H Masuda
- Department of Botany, University of California, Berkeley 94720
| | | | | |
Collapse
|
14
|
Wordeman L, Cande WZ. Reactivation of spindle elongation in vitro is correlated with the phosphorylation of a 205 kd spindle-associated protein. Cell 1987; 50:535-43. [PMID: 3038336 DOI: 10.1016/0092-8674(87)90026-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitotic spindles isolated from the diatom Stephanopyxis turris consist of two half-spindles of closely interdigitating microtubules that slide relative to one another in the presence of ATP, reinitiating spindle elongation (anaphase B) in vitro. Purified spindles that have been exposed to ATP-gamma-S undergo ATP-dependent reactivation more readily than do control spindles. Thiophosphorylated proteins in such spindles are located in the spindle midzone, kinetochores, and a portion of the pole complex. One major thiophosphorylated peptide of 205 kd is detected in extracts prepared from spindles labeled with [35S]ATP-gamma-S, and is also localized in the spindle midzone by using an antibody that recognizes thiophosphorylated proteins. It is likely that this 205 kd peptide is either a positive regulator or mechanochemical transducer of microtubule sliding when it is in a phosphorylated state.
Collapse
|
15
|
Abstract
Earlier studies using colchicine (L. G. Tilney and J. R. Gibbins, 1969, J. Cell Sci. 5, 195-210) had suggested that intact microtubules (MTs) are necessary for archenteron elongation during the second phase of sea urchin gastrulation (secondary invagination), presumably by allowing secondary mesenchyme cells (SMCs) to extend their long filopodial processes. In light of subsequently discovered effects of colchicine on other cellular processes, the role of MTs in archenteron elongation in the sea urchin, Lytechinus pictus, has been reexamined. Immunofluorescent staining of ectodermal fragments and isolated archenterons reveals a characteristic pattern of MTs in the ectoderm and endoderm during gastrulation. Ectodermal cells exhibit arrays of MTs radiating away from the region of the basal body/ciliary rootlet and extending along the periphery of the cell, whereas endodermal cells exhibit a similar array of peripheral MTs emanating from the region of the apical ciliary rootlet facing the lumen of the archenteron. MTs are found primarily at the bases of the filopodia of normal SMCs. beta-Lumicolchicine (0.1 mM), an analog of colchicine which does not bind tubulin, inhibits secondary invagination, indicating that the effects previously ascribed to the disruption of MTs are probably due to the effects of colchicine on other cellular processes. The MT inhibitor nocodazole (5-10 micrograms/ml) added prior to secondary invagination does not prevent gastrulation or spontaneous exogastrulation, even though indirect immunofluorescence indicates that cytoplasmic MTs are completely disrupted in drug-treated embryos. Transverse tissue sections indicate that a comparable amount of cell rearrangement occurs in nocodazole-treated and control embryos. Significantly, SMCs in nocodazole-treated embryos often detach prematurely from the tip of the gut rudiment and extend abnormally large broad lamellipodial protrusions but are also capable of extending long slender filopodia comparable in length to those of control embryos. These results indicate that cytoplasmic MTs are not essential for either filopodial extension by SMCs or for the active epithelial cell rearrangement which accompanies elongation during sea urchin gastrulation.
Collapse
|
16
|
Abstract
We describe the effect of exogenous tubulin on reactivation of anaphase spindle elongation in isolated diatom spindles. In the absence of tubulin, spindle elongation is limited to the equivalent of the microtubule overlap zone, but in the presence of tubulin spindle elongation is several times the length of the overlap zone. Biotinylated neurotubulin is incorporated into the overlap zone and around the poles. Before spindles have elongated by the equivalent of the overlap zone, there are two regions of incorporated tubulin flanking this zone. After further elongation, there is one broad zone of incorporated tubulin in the spindle midzone. Spindle elongation and the pattern of tubulin incorporation into the midzone, but not the poles, are ATP-dependent and vanadate-sensitive. These results suggest that tubulin adds onto the ends of microtubules in the overlap zone, which then slide through the midzone as the spindle elongates.
Collapse
|
17
|
Cande WZ, McDonald K. Physiological and ultrastructural analysis of elongating mitotic spindles reactivated in vitro. J Biophys Biochem Cytol 1986; 103:593-604. [PMID: 3733882 PMCID: PMC2113827 DOI: 10.1083/jcb.103.2.593] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We have developed a simple procedure for isolating mitotic spindles from the diatom Stephanopyxis turris and have shown that they undergo anaphase spindle elongation in vitro upon addition of ATP. The isolated central spindle is a barrel-shaped structure with a prominent zone of microtubule overlap. After ATP addition greater than 75% of the spindle population undergoes distinct structural rearrangements: the spindles on average are longer and the two half-spindles are separated by a distinct gap traversed by only a small number of microtubules, the phase-dense material in the overlap zone is gone, and the peripheral microtubule arrays have depolymerized. At the ultrastructural level, we examined serial cross-sections of spindles after 1-, 5-, and 10-min incubations in reactivation medium. Microtubule depolymerization distal to the poles is confirmed by the increased number of incomplete, i.e., c-microtubule profiles specifically located in the region of overlap. After 10 min we see areas of reduced microtubule number which correspond to the gaps seen in the light microscope and an overall reduction in the number of half-spindle microtubules to about one-third the original number. The changes in spindle structure are highly specific for ATP, are dose-dependent, and do not occur with nonhydrolyzable nucleotide analogues. Spindle elongation and gap formation are blocked by 10 microM vanadate, equimolar mixtures of ATP and AMPPNP, and by sulfhydryl reagents. This process is not affected by nocodazole, erythro-9-[3-(2-hydroxynonyl)]adenine, cytochalasin D, and phalloidin. In the presence of taxol, the extent of spindle elongation is increased; however, distinct gaps still form between the two half-spindles. These results show that the response of isolated spindles to ATP is a complex process consisting of several discrete steps including initiation events, spindle elongation mechanochemistry, controlled central spindle microtubule plus-end depolymerization, and loss of peripheral microtubules. They also show that the microtubule overlap zone is an important site of ATP action and suggest that spindle elongation in vitro is best explained by a mechanism of microtubule-microtubule sliding. Spindle elongation in vitro cannot be accounted for by cytoplasmic forces pulling on the poles or by microtubule polymerization.
Collapse
|