1
|
Wang R, Wang H, Wang Z. Live Imaging to Study Microtubule Dynamic Instability in Taxane-resistant Breast Cancers. J Vis Exp 2017. [PMID: 28287508 DOI: 10.3791/55027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Taxanes such as docetaxel belong to a group of microtubule-targeting agents (MTAs) that are commonly relied upon to treat cancer. However, taxane resistance in cancerous cells drastically reduces the effectiveness of the drugs' long-term usage. Accumulated evidence suggests that the mechanisms underlying taxane resistance include both general mechanisms, such as the development of multidrug resistance due to the overexpression of drug-efflux proteins, and taxane-specific mechanisms, such as those that involve microtubule dynamics. Because taxanes target cell microtubules, measuring microtubule dynamic instability is an important step in determining the mechanisms of taxane resistance and provides insight into how to overcome this resistance. In the experiment, an in vivo method was used to measure microtubule dynamic instability. GFP-tagged α-tubulin was expressed and incorporated into microtubules in MCF-7 cells, allowing for the recording of the microtubule dynamics by time lapse using a sensitive camera. The results showed that, as opposed to the non-resistant parental MCF-7CC cells, the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitive to docetaxel treatment, which causes the resistance to docetaxel-induced mitotic arrest and apoptosis. This paper will outline this in vivo method of measuring microtubule dynamic instability.
Collapse
Affiliation(s)
- Richard Wang
- Department of Medical Genetics, Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta
| | - Harris Wang
- Department of Medical Genetics, Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta
| | - Zhixiang Wang
- Department of Medical Genetics, Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta;
| |
Collapse
|
2
|
Ledda FD, Ramoino P, Ravera S, Perino E, Bianchini P, Diaspro A, Gallus L, Pronzato R, Manconi R. Tubulin posttranslational modifications induced by cadmium in the sponge Clathrina clathrus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:98-105. [PMID: 23765032 DOI: 10.1016/j.aquatox.2013.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 05/09/2023]
Abstract
As sessile filter feeders, sponges are exposed to environmental stress due to pollutants of both anthropogenic and natural origins and are able to accumulate harmful substances. Thus, sponges are considered a good tool for the biomonitoring of coastal areas. In this study, we used biochemical and immunocytochemical analyses to provide new data on the cadmium-related changes in sponge cells. In particular, we analyzed the effects of different concentrations of cadmium on the microtubule network in the calcisponge Clathrina clathrus. Quantitative densitometry of the immunoblots showed that, while the levels of α- and β-tubulin remained relatively constant in C. clathrus when exposed to 1 and 5 μM CdCl2, there were progressive shifts in the levels of some tubulin isoforms. Exposure for 24h to sublethal concentrations of cadmium reduced the level of tyrosinated α-tubulin and enhanced the levels of acetylated and detyrosinated α-tubulin relative to the levels in controls. Confocal microscopy analysis of immunolabeled tissue sections showed that the inhibitory effect of cadmium was associated with a decrease in the labeling of the cells with a monoclonal antibody that recognizes tyrosinated α-tubulin. By contrast, the reactivity with a monoclonal antibody that recognizes acetylated α-tubulin and with a polyclonal antibody specific for detyrosinated α-tubulin was enhanced at the same time points. Because the acetylation and detyrosination of α-tubulin occur on stable microtubules, the marked enhancement of α-tubulin acetylation and detyrosination in Cd(2+)-treated cells indicates that divalent Cd ions stabilize microtubules. The possibility that Cd(2+) may increase the stability of cytoplasmic microtubules was tested by exposing Cd(2+)-treated cells to a cold temperature (0°C). As shown, the microtubule bundles induced by Cd(2+), which were labeled by the monoclonal antibodies against acetylated and detyrosinated α-tubulin, were resistant to cold.
Collapse
Affiliation(s)
- F D Ledda
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Corso Europa 26, I-16132 Genova, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Qi Q, Liu X, Li S, Joshi HC, Ye K. Synergistic suppression of noscapine and conventional chemotherapeutics on human glioblastoma cell growth. Acta Pharmacol Sin 2013; 34:930-8. [PMID: 23708557 DOI: 10.1038/aps.2013.40] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/21/2013] [Indexed: 01/14/2023] Open
Abstract
AIM Noscapine (NOS) is a non-narcotic opium alkaloid with anti-tumor activity. The aim of this study was to investigate the effects of the combination of NOS with conventional chemotherapeutics temozolamide (TMZ), bis-chloroethylnitrosourea (BCNU), or cisplatin (CIS)on human glioblastoma cells. METHODS U87MG human glioblastoma cells were examined. Cell proliferation was quantified using MTT assay. Western blotting and flow cytometry were used to examine apoptosis and the expression of active caspase-3 and cleaved PARP. Mouse tumor xenograft model bearing U87MG cells was treated with TMZ (2 mg·kg(-1)·d(-1), ip) or CIS (2 mg/kg, ip 3 times a week) alone or in combination with NOS (200 mg·kg(-1)·d(-1), ig) for 3 weeks. Immunohistochemistry was used to investigate the expression of active caspase-3 and Ki67 following treatment in vivo. The safety of the combined treatments was evaluated based on the body weight and histological studies of the animal's organs. RESULTS NOS (10 or 20 mol/L) markedly increased the anti-proliferation effects of TMZ, BCNU, and CIS on U87MG cells in vitro. The calculated combination index (CI) values of NOS-CIS, NOS-TMZ, and NOS-BCNU (20 μmol/L) were 0.45, 0.51, and 0.57, respectively, demonstrating synergistic inhibition of the drug combinations. In tumor xenograft models, combined treatment with NOS robustly augmented the anti-cancer actions of TMZ and CIS, and showed no detectable toxicity. The combined treatments significantly enhanced the apoptosis, the activated caspase-3 and PARP levels in U87MG cells in vitro, and reduced Ki67 staining and increased the activated caspase-3 level in the shrinking xenografts in vivo. CONCLUSION NOS synergistically potentiated the efficacy of FDA-approved anti-cancer drugs against human glioblastoma cells, thereby allowing them to be used at lower doses and hence minimizing their toxic side effects.
Collapse
|
4
|
Sironi L, Solon J, Conrad C, Mayer TU, Brunner D, Ellenberg J. Automatic quantification of microtubule dynamics enables RNAi-screening of new mitotic spindle regulators. Cytoskeleton (Hoboken) 2011; 68:266-78. [DOI: 10.1002/cm.20510] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/03/2011] [Accepted: 03/02/2011] [Indexed: 11/08/2022]
|
5
|
Erb TM, Schneider C, Mucko SE, Sanfilippo JS, Lowry NC, Desai MN, Mangoubi RS, Leuba SH, Sammak PJ. Paracrine and epigenetic control of trophectoderm differentiation from human embryonic stem cells: the role of bone morphogenic protein 4 and histone deacetylases. Stem Cells Dev 2011; 20:1601-14. [PMID: 21204619 DOI: 10.1089/scd.2010.0281] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our understanding of paracrine and epigenetic control of trophectoderm (TE) differentiation is limited by available models of preimplantation human development. Simple, defined media for selective TE differentiation of human embryonic stem cells (hESCs) were developed, enabling mechanistic studies of early placental development. Paracrine requirements of preimplantation human development were evaluated with hESCs by measuring lineage-specific transcription factor expression levels in single cells and morphological transformation in response to selected paracrine and epigenetic modulators. Bone morphogenic protein 4 (BMP4) addition to feeder-free pluripotent stem cells on matrigel frequently formed CDX2-positive TE. However, BMP4 or activin A inhibition alone also produced a mix of mesoderm and extraembryonic endoderm under these conditions. Further, BMP4 failed to form TE from adherent hESC maintained in standard feeder-dependent monolayers. Given that the efficiency and selectivity of BMP4-induced TE depended on medium components, we developed a basal medium containing insulin and heparin. In this medium, BMP4 induction of TE was dose dependent and with activin A inhibition by SB431542 (SB), approached 100% of cells. This paracrine stimulation of pluripotent cells transformed colony morphology from a cuboidal to squamous epithelium quantitatively on day 3, and produced significant multinucleated syncytiotrophoblasts by day 8. Addition of trichostatin A, a histone deacetylase (HDAC) inhibitor, reduced HDAC3, histone H3K9 methylation, and slowed differentiation in a dose-dependent manner. Modulators of BMP4- or HDAC-dependent signaling might adversely influence the timing and viability of early blastocyst developed in vitro. Since blastocyst development is synchronized to uterine receptivity, epigenetic regulators of TE differentiation might adversely affect implantation in vivo.
Collapse
Affiliation(s)
- Teresa M Erb
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Hospital of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yenjerla M, Lopus M, Wilson L. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev. Methods Cell Biol 2010; 95:189-206. [PMID: 20466136 DOI: 10.1016/s0091-679x(10)95011-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Microtubules are major constituents of the cytoskeleton which display dynamic properties. They exhibit dynamic instability which is defined as the stochastic switching between growing and shortening at microtubule ends. Dynamic instability plays an important role in diverse cellular functions including cell migration and mitosis. Many successful antimitotic drugs and microtubule-associated proteins (MAPs) are known to modulate microtubule dynamics, and it is important to analyze the in vitro dynamic instability of microtubules to study the mechanism of action of microtubule-targeted therapeutics and MAPs. In this chapter, we describe a method to analyze the in vitro dynamic instability of microtubules at steady state using video-enhanced differential contrast (VE-DIC) microscopy in detail. In this method, microtubules are assembled to steady state at 30 degrees C with MAP-free tubulin in a slide chamber in the presence of GTP, using sea urchin axonemes as nucleating seeds. Images of microtubules are enhanced and recorded in real time by a video camera and an image processor connected to a DIC microscope which is maintained at 30 degrees C. We use two software programs to track and analyze the growing and shortening of plus or minus ends of microtubules in the real-time images recorded using VE-DIC. In this chapter, we describe the instructions to use the tracking software Real Time Measurement II (RTM II) program. The instructions to use the analysis software Microtubule Life History Analysis Procedures (MT-LHAP) in Igor Pro software have been described in detail in an appendix (Oroudjev, 2010) following this chapter.
Collapse
Affiliation(s)
- Mythili Yenjerla
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
7
|
Purich DL, Angelastro JM. Microtubule dynamics: bioenergetics and control. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:121-54. [PMID: 7817867 DOI: 10.1002/9780470123157.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- D L Purich
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine Health Science Center, Gainesville
| | | |
Collapse
|
8
|
Komarova YA, Akhmanova AS, Kojima SI, Galjart N, Borisy GG. Cytoplasmic linker proteins promote microtubule rescue in vivo. J Cell Biol 2002; 159:589-99. [PMID: 12446741 PMCID: PMC2173097 DOI: 10.1083/jcb.200208058] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of plus end-tracking proteins in regulating microtubule (MT) dynamics was investigated by expressing a dominant negative mutant that removed endogenous cytoplasmic linker proteins (CLIPs) from MT plus ends. In control CHO cells, MTs exhibited asymmetric behavior: MTs persistently grew toward the plasma membrane and displayed frequent fluctuations of length near the cell periphery. In the absence of CLIPs, the microtubule rescue frequency was reduced by sevenfold. MT behavior became symmetrical, consisting of persistent growth and persistent shortening. Removal of CLIPs also caused loss of p150Glued but not CLIP-associating protein (CLASP2) or EB1. This result raised the possibility that the change in dynamics was a result of the loss of either CLIPs or p150Glued. To distinguish between these possibilities, we performed rescue experiments. Normal MT dynamics were restored by expression of the CLIP-170 head domain, but p150Glued was not recruited back to MT plus ends. Expression of p150Glued head domain only partially restored MT dynamics. We conclude that the CLIP head domain is sufficient to alter MT dynamics either by itself serving as a rescue factor or indirectly by recruiting a rescue factor. By promoting a high rescue frequency, CLIPs provide a mechanism by which MT plus ends may be concentrated near the cell margin.
Collapse
Affiliation(s)
- Yulia A Komarova
- Department of Cell and Molecular Biology, N University Medical School, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
9
|
Komarova YA, Vorobjev IA, Borisy GG. Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J Cell Sci 2002; 115:3527-39. [PMID: 12154083 DOI: 10.1242/jcs.115.17.3527] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubule dynamics were investigated in CHO and NRK cells by novel experimental approaches designed to evaluate the microtubule behavior in the cell interior. These approaches were: (1) laser photobleaching of a path through the centrosome; (2) direct observation of microtubules in centrosome-containing cytoplasts; (3) GFP-CLIP-170 expression as a marker for microtubule plus end growth; and (iv) sequential subtraction analysis. The combination of these approaches allowed us to obtain data where the density of microtubules had previously prevented conventional methods to be applicable.In the steady state, nascent microtubules grew persistently from the centrosome towards the cell margin. Frequently, they arrived at the cell margin without undergoing any transition to the shortening phase. In contrast to the growth of microtubules, shortening of the plus ends from the periphery was non-persistent; that is, rescue was frequent and the extent of shortening showed a distribution of lengths reflecting a stochastic process. The combination of persistent growth and a cell boundary led to a difference in apparent microtubule behavior in the cell interior compared with that near the cell margin. Whereas microtubules in the cell interior showed asymmetric transition frequencies, their behavior near the cell margin showed frequent fluctuations between phases of shortening and growth. Complete microtubule turnover was accomplished by the relatively rare episodes of shortening back to the centrosome. Release from the centrosome with subsequent minus end shortening also occurred but was a minor mechanism for microtubule turnover compared with the plus end pathway.We propose a life cycle for a microtubule which consists of rapid growth from the centrosome to the cell margin followed by an indefinite period of fluctuations of phases of shortening and growth. We suggest that persistent growth and asymmetric transition frequencies serve the biological function of providing a mechanism by which microtubules may rapidly accommodate to the changing shape and advancing edge of motile cells.
Collapse
Affiliation(s)
- Yulia A Komarova
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
10
|
Yvon AM, Gross DJ, Wadsworth P. Antagonistic forces generated by myosin II and cytoplasmic dynein regulate microtubule turnover, movement, and organization in interphase cells. Proc Natl Acad Sci U S A 2001; 98:8656-61. [PMID: 11438687 PMCID: PMC37491 DOI: 10.1073/pnas.141224198] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photoactivation of caged fluorescent tubulin was used mark the microtubule (MT) lattice and monitor MT behavior in interphase cells. A broadening of the photoactivated region occurred as MTs moved bidirectionally. MT movement was not inhibited when MT assembly was suppressed with nocodazole or Taxol; MT movement was suppressed by inhibition of myosin light chain kinase with ML7 or by a peptide inhibitor. Conversely, MT movement was increased after inhibition of cytoplasmic dynein with the antibody 70.1. In addition, the half-time for MT turnover was decreased in cells treated with ML7. These results demonstrate that myosin II and cytoplasmic dynein contribute to a balance of forces that regulates MT organization, movement, and turnover in interphase cells.
Collapse
Affiliation(s)
- A M Yvon
- Program in Molecular and Cellular Biology and Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
11
|
Yvon AM, Wadsworth P. Region-specific microtubule transport in motile cells. J Cell Biol 2000; 151:1003-12. [PMID: 11086002 PMCID: PMC2174357 DOI: 10.1083/jcb.151.5.1003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2000] [Accepted: 10/09/2000] [Indexed: 11/24/2022] Open
Abstract
Photoactivation and photobleaching of fluorescence were used to determine the mechanism by which microtubules (MTs) are remodeled in PtK2 cells during fibroblast-like motility in response to hepatocyte growth factor (HGF). The data show that MTs are transported during cell motility in an actomyosin-dependent manner, and that the direction of transport depends on the dominant force in the region examined. MTs in the leading lamella move rearward relative to the substrate, as has been reported in newt cells (Waterman-Storer, C.M., and E.D. Salmon. 1997. J. Cell Biol. 139:417-434), whereas MTs in the cell body and in the retraction tail move forward, in the direction of cell locomotion. In the transition zone between the peripheral lamella and the cell body, a subset of MTs remains stationary with respect to the substrate, whereas neighboring MTs are transported either forward, with the cell body, or rearward, with actomyosin retrograde flow. In addition to transport, the photoactivated region frequently broadens, indicating that individual marked MTs are moved either at different rates or in different directions. Mark broadening is also observed in nonmotile cells, indicating that this aspect of transport is independent of cell locomotion. Quantitative measurements of the dissipation of photoactivated fluorescence show that, compared with MTs in control nonmotile cells, MT turnover is increased twofold in the lamella of HGF-treated cells but unchanged in the retraction tail, demonstrating that microtubule turnover is regionally regulated.
Collapse
Affiliation(s)
- A M Yvon
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
12
|
Abstract
The effects of calcium (Ca) were assessed using video-enhanced differential interference contrast light microscopy on individual microtubules in vitro. Phosphocellulose-purified (PC) and microtubule associated protein (MAP)-containing preparations of porcine brain tubulin were assembled in a flow chamber onto sperm axoneme fragments and the pattern of growth and shortening of the microtubules was observed. Tubulin plus Ca was then added to the chamber and observation continued. Ca promoted the disassembly of microtubules by specifically promoting the catastrophe reaction in both PC- and MAP-containing microtubules, without an appreciable change in elongation rate. The effect on catastrophe frequency increased very rapidly above 0.5 mM free Ca, implying a possible cooperative effect. The rescue rate remained very high after Ca addition in MAP-containing microtubules, and the shortening rate was unchanged, while in phosphocellulose-purified microtubules, rescue appeared to be decreased by Ca addition and shortening rates increased 4 to 6-fold. These results illustrate that Ca can directly destabilize growing microtubule ends without changing the effective concentration of free tubulin, and that this effect can be seen even against the background of the profound differences in dynamics conferred by the microtubule-associated proteins. Considered within models of the GTP cap, the results imply that high Ca may act to increase the rate of GTP hydrolysis within the cap.
Collapse
Affiliation(s)
- E T O'Brien
- Department of Ophthalmology and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
13
|
Vorobjev IA, Rodionov VI, Maly IV, Borisy GG. Contribution of plus and minus end pathways to microtubule turnover. J Cell Sci 1999; 112 ( Pt 14):2277-89. [PMID: 10381384 DOI: 10.1242/jcs.112.14.2277] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Turnover is important for the maintenance and remodeling of the cytoskeleton during the processes of cell morphogenesis, mitosis and motility. Microtubule (MT) turnover is thought to occur by dynamic instability, growth and shortening at distal (plus) ends. Recent observation of MT release from the centrosome and depolymerization from proximal (minus) ends indicates the existence of a minus end pathway. To evaluate the relative contributions of plus and minus end pathways to turnover, we analyzed MT dynamics in a model system, the fish melanophore, a large non-motile cell with a regular radial array of long MTs. MT ends were tracked in digital fluorescence time-lapse sequences and life histories of individual MTs were analyzed using random walk theory generalized to the case of diffusion with drift. Analysis of plus end dynamics gave an apparent diffusion coefficient of D=7.5 microm2/minute. The random walk model predicts that the half-time for turnover driven solely by plus end dynamics will depend strongly on position in the cell. Based on the experimentally determined value of D, turnover of MTs near the center of a typical melanophore of radius 70 microm was calculated to require over 5 hours, a paradoxically long time. To examine MT behavior deep in the cytoplasm, we developed a novel, sequential subtraction mode of image analysis. This analysis revealed a subpopulation of MTs which shortened from their minus ends, presumably after constitutive release from the centrosome. Given the relative slowness of plus end dynamics to turn over the root of a long MT, the turnover of MTs near the cell center is determined primarily by the minus-end pathway. MTs released from the centrosome become replaced by newly nucleated ones. The relative contributions of plus and minus end pathways was estimated from the diffusion coefficient, D, for the plus end, the length distribution of MTs, t he frequency of free minus ends, and the rate of minus-end shortening. We conclude that, in large animal cells with a centrosomally focussed array of MTs, turnover occurs by a combination of plus and minus end pathways, the plus end dominating at the cell periphery and the minus end dominating near the cell center.
Collapse
Affiliation(s)
- I A Vorobjev
- Laboratory of Cell Motility, A. N. Belozersky Institute, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
14
|
Jordan MA, Wilson L. Use of drugs to study role of microtubule assembly dynamics in living cells. Methods Enzymol 1998; 298:252-76. [PMID: 9751887 DOI: 10.1016/s0076-6879(98)98024-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M A Jordan
- Department of Molecular, Cellular, and Development Biology, University of California, Santa Barbara 93106-9610, USA
| | | |
Collapse
|
15
|
Saoudi Y, Fotedar R, Abrieu A, Dorée M, Wehland J, Margolis RL, Job D. Stepwise reconstitution of interphase microtubule dynamics in permeabilized cells and comparison to dynamic mechanisms in intact cells. J Cell Biol 1998; 142:1519-32. [PMID: 9744881 PMCID: PMC2141776 DOI: 10.1083/jcb.142.6.1519] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Microtubules in permeabilized cells are devoid of dynamic activity and are insensitive to depolymerizing drugs such as nocodazole. Using this model system we have established conditions for stepwise reconstitution of microtubule dynamics in permeabilized interphase cells when supplemented with various cell extracts. When permeabilized cells are supplemented with mammalian cell extracts in the presence of protein phosphatase inhibitors, microtubules become sensitive to nocodazole. Depolymerization induced by nocodazole proceeds from microtubule plus ends, whereas microtubule minus ends remain inactive. Such nocodazole-sensitive microtubules do not exhibit subunit turnover. By contrast, when permeabilized cells are supplemented with Xenopus egg extracts, microtubules actively turn over. This involves continuous creation of free microtubule minus ends through microtubule fragmentation. Newly created minus ends apparently serve as sites of microtubule depolymerization, while net microtubule polymerization occurs at microtubule plus ends. We provide evidence that similar microtubule fragmentation and minus end-directed disassembly occur at the whole-cell level in intact cells. These data suggest that microtubule dynamics resembling dynamics observed in vivo can be reconstituted in permeabilized cells. This model system should provide means for in vitro assays to identify molecules important in regulating microtubule dynamics. Furthermore, our data support recent work suggesting that microtubule treadmilling is an important mechanism of microtubule turnover.
Collapse
Affiliation(s)
- Y Saoudi
- CEA-Grenoble, Département de Biologie Moléculaire et Structurale, Laboratoire du Cytosquelette, INSERM Unité 366, 38054 Grenoble cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
16
|
Blocker A, Griffiths G, Olivo JC, Hyman AA, Severin FF. A role for microtubule dynamics in phagosome movement. J Cell Sci 1998; 111 ( Pt 3):303-12. [PMID: 9427679 DOI: 10.1242/jcs.111.3.303] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown previously that intracellular phagosome movement requires microtubules. Here we provide evidence that within cells phagosomes display two different kinds of microtubule-based movements in approximately equal proportions. The first type occurs predominantly in the cell periphery, often shortly after the phagosome is formed, and at speeds below 0.1 microm/second. The second is faster (0.2-1.5 micron/second) and occurs mainly after phagosomes have reached the cell interior. Treating cells with nanomolar concentrations of taxol or nocodazole alters microtubule dynamics without affecting either total polymer mass or microtubule organisation. Such treatments slow the accumulation of phagosomes in the perinuclear region and reduce the number of slow movements by up to 50% without affecting the frequency of fast movements. This suggests that a proportion of slow movements are mediated by microtubule dynamics while fast movements are powered by microtubule motors. In macrophages, interphase microtubules radiate from the microtubule organising centre with their plus-end towards the cell periphery. To understand the behaviour of ‘early’ phagosomes at the cell periphery we investigated their ability to bind microtubule plus-ends in vitro. We show that early phagosomes have a strong preference for microtubule plus-ends, whereas ‘late’ phagosomes do not, and that plus-end affinity requires the presence of microtubule-associated proteins within cytosol. We suggest that phagosomes can bind to the plus-ends of dynamic microtubules and move by following their shrinkage or growth.
Collapse
Affiliation(s)
- A Blocker
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
17
|
Waterman-Storer CM, Salmon ED. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. J Cell Biol 1997; 139:417-34. [PMID: 9334345 PMCID: PMC2139796 DOI: 10.1083/jcb.139.2.417] [Citation(s) in RCA: 364] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1997] [Indexed: 02/05/2023] Open
Abstract
We have discovered several novel features exhibited by microtubules (MTs) in migrating newt lung epithelial cells by time-lapse imaging of fluorescently labeled, microinjected tubulin. These cells exhibit leading edge ruffling and retrograde flow in the lamella and lamellipodia. The plus ends of lamella MTs persist in growth perpendicular to the leading edge until they reach the base of the lamellipodium, where they oscillate between short phases of growth and shortening. Occasionally "pioneering" MTs grow into the lamellipodium, where microtubule bending and reorientation parallel to the leading edge is associated with retrograde flow. MTs parallel to the leading edge exhibit significantly different dynamics from MTs perpendicular to the cell edge. Both parallel MTs and photoactivated fluorescent marks on perpendicular MTs move rearward at the 0.4 mircon/min rate of retrograde flow in the lamella. MT rearward transport persists when MT dynamic instability is inhibited by 100-nM nocodazole but is blocked by inhibition of actomyosin by cytochalasin D or 2,3-butanedione-2-monoxime. Rearward flow appears to cause MT buckling and breaking in the lamella. 80% of free minus ends produced by breakage are stable; the others shorten and pause, leading to MT treadmilling. Free minus ends of unknown origin also depolymerize into the field of view at the lamella. Analysis of MT dynamics at the centrosome shows that these minus ends do not arise by centrosomal ejection and that approximately 80% of the MTs in the lamella are not centrosome bound. We propose that actomyosin-based retrograde flow of MTs causes MT breakage, forming quasi-stable noncentrosomal MTs whose turnover is regulated primarily at their minus ends.
Collapse
Affiliation(s)
- C M Waterman-Storer
- Department of Biology, 607 Fordham Hall, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | |
Collapse
|
18
|
Keating TJ, Peloquin JG, Rodionov VI, Momcilovic D, Borisy GG. Microtubule release from the centrosome. Proc Natl Acad Sci U S A 1997; 94:5078-83. [PMID: 9144193 PMCID: PMC24634 DOI: 10.1073/pnas.94.10.5078] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1997] [Accepted: 02/18/1997] [Indexed: 02/04/2023] Open
Abstract
Although microtubules (MTs) are generally thought to originate at the centrosome, a number of cell types have significant populations of MTs with no apparent centrosomal connection. The origin of these noncentrosomal MTs has been unclear. We applied kinetic analysis of MT formation in vivo to establish their mode of origin. Time-lapse fluorescence microscopy demonstrated that noncentrosomal MTs in cultured epithelial cells arise primarily by constitutive nucleation at, and release from, the centrosome. After release, MTs moved away from the centrosome and tended to depolymerize. Laser-marking experiments demonstrated that released MTs moved individually with their plus ends leading, suggesting that they were transported by minus end-directed motors. Released MTs were dynamic. The laser marking experiments demonstrated that plus ends of released MTs grew, paused, or shortened while the minus ends were stable or shortened. Microtubule release may serve two kinds of cellular function. Release and transport could generate the noncentrosomal MT arrays observed in epithelial cells, neurons, and other asymmetric, differentiated cells. Release would also contribute to polymer turnover by exposing MT minus ends, thereby providing additional sites for loss of subunits. The noncentrosomal population of MTs may reflect a steady-state of centrosomal nucleation, release, and dynamics.
Collapse
Affiliation(s)
- T J Keating
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
19
|
Paramio JM, Casanova ML, Alonso A, Jorcano JL. Keratin intermediate filament dynamics in cell heterokaryons reveals diverse behaviour of different keratins. J Cell Sci 1997; 110 ( Pt 9):1099-111. [PMID: 9175706 DOI: 10.1242/jcs.110.9.1099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the dynamics of keratin intermediate filaments, we fused two different types of epithelial cells (PtK2 and BMGE+H) and studied how the keratins from the parental cells recombine and copolymerize to form the heterokaryon cytoskeleton. The behaviour of the keratins during this process was followed by immunofluorescence using specific antibodies. After fusion, the parental cytoskeletons undergo a depolymerization process most apparent in the region adjacent to the fusion area. The depolymerized subunits spread throughout the heterokaryon and copolymerize into a new hybrid cytoskeleton. The complete process is very rapid, occurring in 3–4 hours, thus demonstrating the highly dynamic nature of the keratin cytoskeleton. Although newly synthesised subunits contribute to the formation of the hybrid cytoskeleton, the process takes place with similar kinetics in the absence of protein synthesis, showing the dynamic nature of the keratins from pre-existing cytoskeletons. During this process, specific keratins behave differently. Keratins K8, K18, K5 and K10 are mobilised from the parental cytoskeletons and reassemble rapidly into the hybrid cytoskeleton (3–6 hours), whereas K14 requires a substantially longer period (9–24 hours). Thus, different keratins, even when they form part of the same heterodimeric/tetrameric complexes, as is the case for K5 and K14, exhibit different dynamics. This suggests that individual polypeptides or homopolymeric complexes rather than exclusively heterodimeric/ tetrameric subunits, as is currently thought, can also take part in keratin intermediate filament assembly and dynamics. Biochemical analysis performed in the absence of protein synthesis revealed greater amounts of K5 than of K14 in the soluble pool of BMGE+H cells. Crosslinking and immunoprecipitation experiments indicated an excess of monomeric K5, as well as of K5/K14 heterodimers and K5 homodimers in the soluble pool. These results are in agreement with the different dynamic behaviour of these keratins observed in immunofluorescence. On the contrary, the phosphorylation levels of K5 and K14 are similar in both the soluble pool and the polymerized fraction, suggesting that phosphorylation does not play an important role in the different dynamics displayed by these two proteins. In summary, our results demonstrate that, following fusion, the keratin intermediate filament network reshapes rather rapidly and that keratins are highly dynamic proteins, although this mobility depends on each particular polypeptide.
Collapse
Affiliation(s)
- J M Paramio
- Department of Cell and Molecular Biology, CIEMAT, Madrid, Spain.
| | | | | | | |
Collapse
|
20
|
Abstract
In vivo, cytoplasmic microtubules are nucleated and anchored by their minus ends at the centrosome and are believed to turn over by a mechanism termed dynamic instability: depolymerization and repolymerization at their plus ends. In cytoplasmic fragments of fish melanophores, microtubules were shown to detach from their nucleation site and depolymerize from their minus ends. Free microtubules moved toward the periphery by treadmilling-growth at one end and shortening from the opposite end. Frequent release from nucleation sites may be a general property of centrosomes and permit a minus-end mechanism of microtubule turnover and treadmilling.
Collapse
Affiliation(s)
- V I Rodionov
- Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
| | | |
Collapse
|
21
|
Zhai Y, Kronebusch PJ, Simon PM, Borisy GG. Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis. J Cell Biol 1996; 135:201-14. [PMID: 8858174 PMCID: PMC2121030 DOI: 10.1083/jcb.135.1.201] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We recently developed a direct fluorescence ratio assay (Zhai, Y., and G.G. Borisy. 1994. J. Cell Sci. 107:881-890) to quantify microtubule (MT) polymer in order to determine if net MT depolymerization occurred upon anaphase onset as the spindle was disassembled. Our results showed no net decrease in polymer, indicating that the disassembly of kinetochore MTs was balanced by assembly of midbody and astral MTs. Thus, the mitosis-interphase transition occurs by a redistribution of tubulin among different classes of MTs at essentially constant polymer level. We now examine the reverse process, the interphase-mitosis transition. Specifically, we quantitated both the level of MT polymer and the dynamics of MTs during the G2/M transition using the fluorescence ratio assay and a fluorescence photoactivation approach, respectively. Prophase cells before nuclear envelope breakdown (NEB) had high levels of MT polymer (62%) similar to that previously reported for random interphase populations (68%). However, prophase cells just after NEB had significantly reduced levels (23%) which recovered as MT attachments to chromosomes were made (prometaphase, 47%; metaphase, 56%). The abrupt reorganization of MTs at NEB was corroborated by anti-tubulin immunofluorescence staining using a variety of fixation protocols. Sensitivity to nocodazole also increased at NEB. Photoactivation analyses of MT dynamics showed a similar abrupt change at NEB, basal rates of MT turnover (pre-NEB) increased post-NEB and then became slower later in mitosis. Our results indicate that the interphase-mitosis (G2/M) transition of the MT array does not occur by a simple redistribution of tubulin at constant polymer level as the mitosis-interphase (M/G1) transition. Rather, an abrupt decrease in MT polymer level and increase in MT dynamics occurs tightly correlated with NEB. A subsequent increase in MT polymer level and decrease in MT dynamics occurs correlated with chromosome attachment. These results carry implications for understanding spindle morphogenesis. They indicate that changes in MT dynamics may cause the steady-state MT polymer level in mitotic cells to be lower than in interphase. We propose that tension exerted on the kMTs may lead to their lengthening and thereby lead to an increase in the MT polymer level as chromosomes attach to the spindle.
Collapse
Affiliation(s)
- Y Zhai
- Laboratory of Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
22
|
Chu Q, Fukui Y. In vivo dynamics of myosin II in Dictyostelium by fluorescent analogue cytochemistry. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:254-68. [PMID: 8913645 DOI: 10.1002/(sici)1097-0169(1996)35:3<254::aid-cm7>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We used fluorescent analogue cytochemistry to study in vivo dynamics of myosin II in Dictyostelium discoideum. We labeled myosin with biotin or tetramethyl-rhodamine iodoacetamide (IATR). The labeled myosin shows normal activities as reversible filament assembly and Ca2+ and actin-activatable Mg(2+)-ATPase. We used the biotin-myosin as a probe examining the effects of microinjection on the amoebae and the ability to associate with endogenous actin cytoskeleton. The biotin-myosin incorporates into certain actin populations and localizes to the cortex with the highest accumulation in the posterior end of polarized amoebae. The dynamics in live amoebae were probed by TR-myosin. We monitored the dynamics for a long period to determined the dynamic reorganization corresponding specific cellular behaviors. The TR-myosin converges into a discrete actin- and myosin-rich structure located at the posterior end ("myosin-organizing center"). The rod-shaped TR-myosin exhibits linear orderly arrays emanating from the organizing center which extend about two-thirds of the cell length. The myosin arrays show a dynamic reorganization when the amoebae move. To examine if the observed myosin dynamics are related to filamentous (F-) actin, we disrupted the F-actin by cytochalasin D. The ratioed image of TR-myosin (vs. FITC-dextran) demonstrates that myosin in these cells accumulates in the cortex but does not form the organizing center. Overall, the results suggest that the filamentous myosin organizes into orderly arrays in the live cytoplasm and its translocation occurs by means of F-actin cables, converging into the organizing center.
Collapse
Affiliation(s)
- Q Chu
- Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611-3008, USA
| | | |
Collapse
|
23
|
Insinna EM, Zaborski P, Tuszynski J. Electrodynamics of microtubular motors: the building blocks of a new model. Biosystems 1996; 39:187-226. [PMID: 8894122 DOI: 10.1016/0303-2647(96)01616-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microtubules are ubiquitous components of the cytoskeleton. They participate in many motility processes ranging from intracellular transport or chromosome movement during mitosis to ciliary and flagellar beating. The biophysical mechanism inherent in the generation and control of movement in all these motility phenomena has not yet been entirely elucidated. The authors propose a new model based on a charge transfer mechanism capable of shedding a new light on the molecular foundations of all motility processes. Electron transfer along the microtubular lattice is responsible for activation and control of all microtubule-associated ATPases (i.e. force generating enzymes). Microtubules are thus shown to be the basic motors of cell dynamics. The model is first applied to intracellular transport and ciliary and flagellar beating. Through two additional examples, the authors show the heuristic capabilities of the suggested hypothesis. The application of charge transfer control to the Protozoan Euglena gracilis leads to a plausible model capable of accounting for its phototactic response mechanism. Furthermore, the model allows a new interpretation of the electrophysiological response in vertebrate photoreceptors.
Collapse
Affiliation(s)
- E M Insinna
- Bioelectronics Research Association, Bussy St Georges, France.
| | | | | |
Collapse
|
24
|
Heidemann SR. Cytoplasmic mechanisms of axonal and dendritic growth in neurons. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 165:235-96. [PMID: 8900961 DOI: 10.1016/s0074-7696(08)62224-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The structural mechanisms responsible for the gradual elaboration of the cytoplasmic elongation of neurons are reviewed. In addition to discussing recent work, important older work is included to inform newcomers to the field how the current perspective arose. The highly specialized axon and the less exaggerated dendrite both result from the advance of the motile growth cone. In the area of physiology, studies in the last decade have directly confirmed the classic model of the growth cone pulling forward and the axon elongating from this tension. Particularly in the case of the axon, cytoplasmic elongation is closely linked to the formation of an axial microtubule bundle from behind the advancing growth cone. Substantial progress has been made in understanding the expression of microtubule-associated proteins during neuronal differentiation to stiffen and stabilize axonal microtubules, providing specialized structural support. Studies of membrane organelle transport along the axonal microtubules produced an explosion of knowledge about ATPase molecules serving as motors driving material along microtubule rails. However, most aspects of the cytoplasmic mechanisms responsible for neurogenesis remain poorly understood. There is little agreement on mechanisms for the addition of new plasma membrane or the addition of new cytoskeletal filaments in the growing axon. Also poorly understood are the mechanisms that couple the promiscuous motility of the growth cone to the addition of cytoplasmic elements.
Collapse
Affiliation(s)
- S R Heidemann
- Department of Physiology, Michigan State University, East Lansing 48824-1101, USA
| |
Collapse
|
25
|
Zhai Y, Kronebusch PJ, Borisy GG. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 1995; 131:721-34. [PMID: 7593192 PMCID: PMC2120628 DOI: 10.1083/jcb.131.3.721] [Citation(s) in RCA: 234] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have quantitatively studied the dynamic behavior of kinetochore fiber microtubules (kMTs); both turnover and poleward transport (flux) in metaphase and anaphase mammalian cells by fluorescence photoactivation. Tubulin derivatized with photoactivatable fluorescein was microinjected into prometaphase LLC-PK and PtK1 cells and allowed to incorporate to steady-state. A fluorescent bar was generated across the MTs in a half-spindle of the mitotic cells using laser irradiation and the kinetics of fluorescence redistribution were determined in terms of a double exponential decay process. The movement of the activated zone was also measured along with chromosome movement and spindle elongation. To investigate the possible regulation of MT transport at the metaphase-anaphase transition, we performed double photoactivation analyses on the same spindles as the cell advanced from metaphase to anaphase. We determined values for the turnover of kMTs (t1/2 = 7.1 +/- 2.4 min at 30 degrees C) and demonstrated that the turnover of kMTs in metaphase is approximately an order of magnitude slower than that for non-kMTs. In anaphase, kMTs become dramatically more stable as evidenced by a fivefold increase in the fluorescence redistribution half-time (t1/2 = 37.5 +/- 8.5 min at 30 degrees C). Our results also indicate that MT transport slows abruptly at anaphase onset to one-half the metaphase value. In early anaphase, MT depolymerization at the kinetochore accounted, on average, for 84% of the rate of chromosome movement toward the pole whereas the relative contribution of MT transport and depolymerization at the pole contributed 16%. These properties reflect a dramatic shift in the dynamic behavior of kMTs at the metaphase-anaphase transition. A release-capture model is presented in which the stability of kMTs is increased at the onset of anaphase through a reduction in the probability of MT release from the kinetochore. The reduction in MT transport at the metaphase-anaphase transition suggests that motor activity and/or subunit dynamics at the centrosome are subject to modulation at this key cell cycle point.
Collapse
Affiliation(s)
- Y Zhai
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
26
|
Zhai Y, Borisy GG. Quantitative determination of the proportion of microtubule polymer present during the mitosis-interphase transition. J Cell Sci 1994; 107 ( Pt 4):881-90. [PMID: 8056844 DOI: 10.1242/jcs.107.4.881] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a new method for determining levels of tubulin polymer, based on quantitative fluorescence detection of x-rhodamine tubulin microinjected into living cells and we have applied this method to analysis of the mitosis-interphase transition. LLC-PK cells in interphase and mitosis were microinjected, then cooled and rewarmed to drive tubulin incorporation. Total tubulin fluorescence in individual, living cells was quantified using a cooled, scientific grade CCD image sensor. Cells were then washed and lysed into a microtubule-stabilizing buffer to extract the soluble pool. Total tubulin polymer fluorescence was determined for the extracted cells in the same way as for living cells. Fluorescence images were corrected by flat-fielding and background subtraction. The ratio of extracted cell fluorescence/living cell fluorescence for individual cells, was taken as the proportion of tubulin as polymer. Cells in M-phase, G1 and random interphase were analyzed. G1 cells had almost the same proportion as random interphase cells. Mitotic cells gave a value of 90 +/- 5% of G1 cells at 37 degrees C. Within M-phase, levels of tubulin as polymer in metaphase and early anaphase were not significantly different. In contrast to the general expectation of microtubule depolymerization at anaphase onset, these results indicate that as cells exit mitosis, the overall proportion of tubulin as polymer does not change dramatically even though the mitotic spindle disassembles. We conclude that the mitosis-interphase transition is accompanied by a redistribution of tubulin at an essentially constant polymer level. Therefore, a global shift to depolymerization conditions is not the driving force for anaphase chromosome movement.
Collapse
Affiliation(s)
- Y Zhai
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706
| | | |
Collapse
|
27
|
Hush JM, Wadsworth P, Callaham DA, Hepler PK. Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J Cell Sci 1994; 107 ( Pt 4):775-84. [PMID: 8056836 DOI: 10.1242/jcs.107.4.775] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubule (MT) turnover within the four principal MT arrays, the cortical array, the preprophase band, the mitotic spindle and the phragmoplast, has been measured in living stamen hair cells of Tradescantia that have been injected with fluorescent neurotubulin. Using the combined techniques of confocal laser scanning microscopy and fluorescence redistribution after photobleaching (FRAP), we report that the half-time of turnover in spindle MTs is t 1/2 = 31 +/- 6 seconds, which is in excellent agreement with previous measurements of turnover in animal cell spindles. Tradescantia interphase MTs, however, exhibit turnover rates (t 1/2 = 67 +/- seconds) that are some 3.4-fold faster than those measured in interphase mammalian cells, and thus are revealed as being highly dynamic. Preprophase band and phragmoplast MTs have turnover rates similar to those of interphase MTs in Tradescantia. The spatial and temporal aspects of the fluorescence redistribution after photobleaching in all four MT arrays are more consistent with subunit exchange by the mechanism of dynamic instability than treadmilling. This is the first quantification of MT dynamics in plant cells.
Collapse
Affiliation(s)
- J M Hush
- Biology Department, University of Massachusetts, Amherst 01003
| | | | | | | |
Collapse
|
28
|
Lieuvin A, Labbé JC, Dorée M, Job D. Intrinsic microtubule stability in interphase cells. J Biophys Biochem Cytol 1994; 124:985-96. [PMID: 8132719 PMCID: PMC2119966 DOI: 10.1083/jcb.124.6.985] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Interphase microtubule arrays are dynamic in intact cells under normal conditions and for this reason they are currently assumed to be composed of polymers that are intrinsically labile, with dynamics that correspond to the behavior of microtubules assembled in vitro from purified tubulin preparations. Here, we propose that this apparent lability is due to the activity of regulatory effectors that modify otherwise stable polymers in the living cell. We demonstrate that there is an intrinsic stability in the microtubule network in a variety of fibroblast and epithelial cells. In the absence of regulatory factors, fibroblast cell interphase microtubules are for the most part resistant to cold temperature exposure, to dilution-induced disassembly and to nocodazole-induced disassembly. In epithelial cells, microtubules are cold-labile, but otherwise similar in behavior to polymers observed in fibroblast cells. Factors that regulate stability of microtubules appear to include Ca2+ and the p34cdc2 protein kinase. Indeed, this kinase induced complete destabilization of microtubules when applied to lysed cells, while a variety of other protein kinases were ineffective. This suggests that p34cdc2, or a kinase of similar specificity, may phosphorylate and inactivate microtubule-associated proteins, thereby conferring lability to otherwise length-wise stabilized microtubules.
Collapse
Affiliation(s)
- A Lieuvin
- Institut National de la Santé de la Recherche Medicale Unité 366, Centre d'Etudes Nucléaires de Grenoble, France
| | | | | | | |
Collapse
|
29
|
Chapin SJ, Bulinski JC. Cellular microtubules heterogeneous in their content of microtubule-associated protein 4 (MAP4). CELL MOTILITY AND THE CYTOSKELETON 1994; 27:133-49. [PMID: 7909279 DOI: 10.1002/cm.970270205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous immunolocalization studies using many primate cultured cell lines demonstrated that a microtubule-associated protein of M(r) approximately 210,000 which is now called MAP4, is present along the length of microtubules in interphase and mitotic cells [Bulinski and Borisy (1980) J. Cell Biol. 87:802-808; DeBrabander et al. (1981) J. Cell Biol. 91:438-455]. Since MAP4 has been implicated as a microtubule stabilizer, we asked whether all classes of microtubules possess an equal complement of MAP4. We have reexamined the cellular distribution of MAP4, using both conventional double-label immunofluorescence and an antibody blocking technique [Schulze and Kirschner (1987) J. Cell Biol. 104:277-288] to highlight microtubules lacking, or depleted in, MAP4. These techniques have revealed that thin processes extending from monkey kidney cells (TC-7), and those made by human neuroblastoma cells (IMR-32) in response to retinoic acid, are often deficient in MAP4 immunoreactivity. Since both types of cellular processes contain stable microtubules, which are enriched in detyrosinated (Glu) tubulin, we tested the ability of MAP4 to bind to microtubules made from pure Glu and pure tyrosinated (Tyr) tubulin in vitro. MAP4 bound to both types of microtubules, and the similar saturation level of MAP4 binding to Glu and Tyr microtubules suggested that differential binding to these forms of tubulin does not contribute directly to a mechanism for segregation of MAP4 on microtubules in vivo. In TC-7 cells, we also observed MAP4-depletion on single microtubules, distal regions of broad cytoplasmic extensions, and midbodies of dividing cells. MAP4 depletion may reflect recent, rapid growth of microtubules to which MAP4 has not yet bound, or the presence of other MAPs that may compete with MAP4 for binding sites on the MT. We suggest that different levels of MAP4 on microtubules may directly modulate microtubule dynamics within single cells, as well as other microtubule functions such as those involving microtubule motor activity.
Collapse
Affiliation(s)
- S J Chapin
- Department of Anatomy and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
30
|
Gliksman NR, Skibbens RV, Salmon ED. How the transition frequencies of microtubule dynamic instability (nucleation, catastrophe, and rescue) regulate microtubule dynamics in interphase and mitosis: analysis using a Monte Carlo computer simulation. Mol Biol Cell 1993; 4:1035-50. [PMID: 8298190 PMCID: PMC275737 DOI: 10.1091/mbc.4.10.1035] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Microtubules (MTs) in newt mitotic spindles grow faster than MTs in the interphase cytoplasmic microtubule complex (CMTC), yet spindle MTs do not have the long lengths or lifetimes of the CMTC microtubules. Because MTs undergo dynamic instability, it is likely that changes in the durations of growth or shortening are responsible for this anomaly. We have used a Monte Carlo computer simulation to examine how changes in the number of MTs and changes in the catastrophe and rescue frequencies of dynamic instability may be responsible for the cell cycle dependent changes in MT characteristics. We used the computer simulations to model interphase-like or mitotic-like MT populations on the basis of the dynamic instability parameters available from newt lung epithelial cells in vivo. We started with parameters that produced MT populations similar to the interphase newt lung cell CMTC. In the simulation, increasing the number of MTs and either increasing the frequency of catastrophe or decreasing the frequency of rescue reproduced the changes in MT dynamics measured in vivo between interphase and mitosis.
Collapse
Affiliation(s)
- N R Gliksman
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
31
|
Oakley C, Brunette DM. The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. J Cell Sci 1993; 106 ( Pt 1):343-54. [PMID: 8270636 DOI: 10.1242/jcs.106.1.343] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Contact guidance refers to the reactions of cells with the topography of their substratum. Current hypotheses on the mechanism of contact guidance focus on the dynamic behaviour of the cytoskeletal components, but most observations have been made on cells that have already become oriented with topographic features of the substratum. The purpose of this study was to examine the sequence in which microtubules, focal contacts and microfilament bundles become aligned to the substratum topography as fibroblasts spread on grooved substrata. Human gingival fibroblasts were trypsinized and seeded onto grooved titanium surfaces produced by micromachining, as well as onto control smooth surfaces. After observation and photography of the spreading cells at times up to 6 hours, the cells were fixed and exposed to one or more of the following antibodies or fluorescent stains: phallacidin to stain actin filaments, monoclonal anti-tubulin, monoclonal anti-vinculin, anti-mouse IgG labelled with Texas-Red or FITC, and/or an aldehyde-reactive stain to identify the cell outline. The cells were photographed and cell area, shape and orientation were calculated. Cells were also examined with confocal microscopy to obtain optical sections so that cell height as well as the precise locations of the cytoskeletal components with respect to the vertical dimension of the grooved substrata could be determined. Microtubules were the first element to become oriented parallel to the direction of the grooves and were first aligned at the bottom of the grooves. This alignment of microtubules was evident as early as 20 minutes after plating and preceded the orientation of the cell as a whole. Aligned actin microfilament bundles were not observed until 40–60 minutes and were observed first at the wall-ridge edges. At early times, focal contacts were distributed radially, but only after 3 hours did the majority of cells demonstrate aligned focal contacts. If the first cytoskeletal component to become aligned is the prime determinant of cell orientation, then these data suggest that microtubules in human gingival fibroblasts may determine cell orientation on grooved titanium surfaces. By analogy with microtubule behaviour in other systems, we suggest that microtubule orientation on grooved substrata may occur as a result of the substratum establishing shear-free planes.
Collapse
Affiliation(s)
- C Oakley
- Department of Oral Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
32
|
Thyberg J, Moskalewski S. Relationship between the Golgi complex and microtubules enriched in detyrosinated or acetylated alpha-tubulin: studies on cells recovering from nocodazole and cells in the terminal phase of cytokinesis. Cell Tissue Res 1993; 273:457-66. [PMID: 8402828 DOI: 10.1007/bf00333700] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Double immunofluorescence microscopy was used to study the relationship between the Golgi complex and microtubules enriched in posttranslationally modified tubulins in cultured mouse L929 fibroblasts. In interphase cells, the elements of the Golgi complex were grouped around the microtubule-organizing center. From here, tyrosinated microtubules extended to the periphery of the cells, whereas the distribution of detyrosinated and acetylated microtubules largely overlapped with that of the Golgi complex. Treatment of cells with 10 microM nocodazole led to the disruption of all microtubules and dispersion of the Golgi elements. Following withdrawal of the drug, tyrosinated microtubules reformed first, followed by acetylated and then detyrosinated microtubules. In parallel, the Golgi elements moved back toward the juxtanuclear region and reestablished a close spatial relationship first with the acetylated and later also with the detyrosinated microtubules. Long-term recovery in the presence of 0.15 or 0.3 microM nocodazole allowed partial reformation of tyrosinated and acetylated microtubules, whereas no or only a few detyrosinated microtubules were detected. At the same time, the Golgi elements were grouped closer together around or on one side of the nucleus in close relation to acetylated microtubules. In synchronized cells released from a mitotic block, a radiating array of tyrosinated microtubules was first formed, followed by acetylated and detyrosinated microtubules. The Golgi elements initially came together in a few groups and thereafter took an overall morphology similar to that in interphase cells. During this reunification, they showed a close spatial relationship to acetylated microtubules, whereas detyrosinated microtubules appeared only later. Microtubules enriched in acetylated and/or detyrosinated tubulin thus appear to take part in establishing and maintaining the organization of the Golgi elements within an interconnected supraorganellar system. Whether the acetylation and detyrosination of tubulin are directly involved in this process or merely represent two modifications within this subpopulation of microtubules remains unknown.
Collapse
Affiliation(s)
- J Thyberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
33
|
Hall SM, Evans J, Haworth SG. Influence of cold preservation on the cytoskeleton of cultured pulmonary arterial endothelial cells. Am J Respir Cell Mol Biol 1993; 9:106-14. [PMID: 8338672 DOI: 10.1165/ajrcmb/9.1.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In donor lungs preserved for transplantation, pulmonary arterial endothelial cells become thin and partially detached from the basement membrane at 4 degrees C, recovering slowly after transplantation. These changes have now been modeled in vitro. Porcine pulmonary arterial endothelial cell monolayers were incubated at 4 degrees C for 2 or 4 h, rewarmed to 37 degrees C, and incubated for up to 24 h. Responses were studied using wound healing assays, bead phagocytosis, immunostaining of cytoskeletal components, and quantification of actin by SDS-PAGE and immunoblotting. Cooling caused cessation of cell movement and phagocytosis associated with depolymerization of the cytoskeleton. Depolymerization of microtubules was complete after 2 h but 14.6% of actin filaments remained (SDS-PAGE) after 4 h at 4 degrees C. Loss of actin stress fibers paralleled the disappearance of vinculin/talin co-labeling focal adhesions. However, a fiber network at the inner surface of the cell membrane labeling for talin was stable at 4 degrees C. After rewarming, the rate of cell movement and phagocytosis immediately returned to normal. Actin filaments and thin stress fibers were present by 1 h, although poorly organized, and actin had increased to 68.2% of control. Many small vinculin/talin focal adhesions had formed. Microtubules redeveloped by 1 h. The cytoskeleton of cultured human pulmonary arterial endothelial cells showed similar changes. In conclusion, the cytoskeletal changes help explain in vivo observations. On rewarming, the endothelial cells appeared to recover rapidly, but the abnormal appearance of the reformed cytoskeleton suggests an interim period of instability which may have metabolic and mechanical consequences.
Collapse
Affiliation(s)
- S M Hall
- Unit of Developmental Vascular Biology, Institute of Child Health, London, United Kingdom
| | | | | |
Collapse
|
34
|
Yamauchi PS, Flynn GC, Marsh RL, Purich DL. Reduction in microtubule dynamics in vitro by brain microtubule-associated proteins and by a microtubule-associated protein-2 second repeated sequence analogue. J Neurochem 1993; 60:817-26. [PMID: 7679726 DOI: 10.1111/j.1471-4159.1993.tb03225.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microtubule-associated protein (MAP) binding to assembled microtubules (MTs) can be reduced by the addition of polyglutamate without significant MT depolymerization or interference with MT elongation reactions. Ensuing polymer length redistribution in MAP-depleted MTs occurs on a time scale characteristic of that observed with MAP-free MTs. The redistribution phase occurs even in the absence of mechanical shearing and without appreciable effects from end-to-end annealing, as indicated by the time course of incremental changes in polymer length and MT number concentration. We also observed higher rates of MT length redistribution when the [MAP]/[tubulin] ratio was decreased. Together, these results demonstrate that MT length redistribution rates are greatly influenced by MAP content, and the data are compatible with the dynamic instability model. We also found that a peptide analogue corresponding to the second repeated sequence in the MT-binding region of MAP-2 can also markedly retard MT length redistribution kinetics, a finding that accords with the ability of this peptide to promote tubulin polymerization in the absence of MAPs and to displace MAP-2 from MTs. These results provide further evidence that MAPs can modulate MT assembly/disassembly dynamics and that peptide analogues can mimic the action of intact MAPs without the need for three contiguous repeated sequences in the MT-binding region.
Collapse
Affiliation(s)
- P S Yamauchi
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville
| | | | | | | |
Collapse
|
35
|
Okabe S, Hirokawa N. Do photobleached fluorescent microtubules move?: re-evaluation of fluorescence laser photobleaching both in vitro and in growing Xenopus axon. J Biophys Biochem Cytol 1993; 120:1177-86. [PMID: 7679673 PMCID: PMC2119730 DOI: 10.1083/jcb.120.5.1177] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We previously documented differences in the behavior of microtubules in growing axons of two types of neurons, adult mouse sensory neurons and Xenopus embryonal spinal cord neurons. Namely, the bulk of microtubules was stationary in mouse sensory neurons both by the method of photoactivation of caged-fluorescein-labeled tubulin and photobleaching of fluorescein-labeled tubulin, but the bulk of microtubules did translocate anterogradely by the method of photoactivation. Although these results indicated that the stationary nature of photobleached microtubules in mouse neurons is not an artifact derived from the high levels of energy required for the procedure, it has not yet been settled whether the photobleaching method can detect the movement of microtubules properly. Here we report photobleaching experiments on growing axons of Xenopus embryonal neurons. Anterograde movement of photobleached microtubules was observed at a frequency and translocation rate similar to the values determined by the method of photoactivation. Our results suggest that, under appropriate conditions, the photobleaching method is able to reveal the behavior of microtubules as accurately as the photoactivation method.
Collapse
Affiliation(s)
- S Okabe
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
36
|
Shelden E, Wadsworth P. Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J Cell Biol 1993; 120:935-45. [PMID: 8432733 PMCID: PMC2200071 DOI: 10.1083/jcb.120.4.935] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recent experiments have demonstrated that the behavior of the interphase microtubule array is cell-type specific: microtubules in epithelial cells are less dynamic than microtubules in fibroblasts (Pepper-kok et al., 1990; Wadsworth and McGrail, 1990). To determine which parameters of microtubule dynamic instability behavior are responsible for this difference, we have examined the behavior of individual microtubules in both cell types after injection with rhodamine-labeled tubulin subunits. Individual microtubules in both cell types were observed to grow, shorten, and pause, as expected. The average amount of time microtubules remained within the lamellae of CHO fibroblasts, measured from images acquired at 10-s intervals, was significantly shorter than the average amount of time microtubules remained within lamellae of PtK1 epithelial cells. Further analysis of individual microtubule behavior from images acquired at 2-s intervals reveals that microtubules in PtK1 cells undergo multiple brief episodes of growth and shortening, resulting in little overall change in the microtubule network. In contrast, microtubules in lamellae of CHO fibroblasts are observed to undergo fewer transitions which are of longer average duration, resulting in substantial changes in the microtubule network over time. A small subset of more stable microtubules was also detected in CHO fibroblasts. Quantification of the various parameters of dynamic instability behavior from these sequences demonstrates that the average rates of both growth and shortening are significantly greater for the majority of microtubules in fibroblasts than for microtubules in epithelial cells (19.8 +/- 10.8 microns/min, 32.2 +/- 17.7 microns/min, 11.9 +/- 6.5 microns/min, and 19.7 +/- 8.1 microns/min, respectively). The frequency of catastrophe events (1/interval between catastrophe events) was similar in both cell types, but the frequency of rescue events (1/time spent shrinking) was significantly higher in PtK1 cells. Thus, individual microtubules in PtK1 lamellae undergo frequent excursions of short duration and extent, whereas most microtubules in CHO lamellae undergo more extensive excursions often resulting in the appearance or disappearance of microtubules within the field of view. These observations provide the first direct demonstration of cell-type specific behavior of individual microtubules in living cells, and indicate that these differences can be brought about by modulation of the frequency of rescue. These results directly support the view that microtubule dynamic instability behavior is regulated in a cell-type specific manner.
Collapse
Affiliation(s)
- E Shelden
- Department of Biology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
37
|
Edson KJ, Lim SS, Borisy GG, Letourneau PC. FRAP analysis of the stability of the microtubule population along the neurites of chick sensory neurons. CELL MOTILITY AND THE CYTOSKELETON 1993; 25:59-72. [PMID: 8519068 DOI: 10.1002/cm.970250108] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to study microtubule turnover in elongating neurites, chick embryo sensory neurons were microinjected with x-rhodamine tubulin, and after 6-12 hours, short segments along chosen neurites were photobleached at multiple sites. Previous studies [Lim et al., 1989; 1990] indicated that recovery of fluorescence (FRAP) in neurites occurs by the dynamic turnover of stationary microtubules. In all cases, distal bleached zones recovered fluorescence faster than bleached zones more proximally located along the same neurites. Bleached zones at growth cones completely recovered in 30-40 minutes, while bleached zones located more proximally usually recovered in 50-120 minutes. In the most proximal regions of long neurites, recovery of fluorescence was often incomplete, indicating that a significant fraction of the microtubules in these regions were very stable. These studies indicate that there are differences in microtubule stability along the length of growing neurites. These differences may arise from the combined effects of 1) modifications that stabilize and lengthen microtubules in maturing neurites and 2) the dynamic instability of the distally oriented microtubule plus ends.
Collapse
Affiliation(s)
- K J Edson
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis 55455
| | | | | | | |
Collapse
|
38
|
Simerly C, Schatten G. Techniques for localization of specific molecules in oocytes and embryos. Methods Enzymol 1993; 225:516-53. [PMID: 8231872 DOI: 10.1016/0076-6879(93)25035-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C Simerly
- Department of Zoology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
39
|
Febvre-Chevalier C, Febvre J. Microtubule dissassembly in vivo: intercalary destabilization and breakdown of microtubules in the heliozoan Actinocoryne contractilis. J Cell Biol 1992; 118:585-94. [PMID: 1639845 PMCID: PMC2289557 DOI: 10.1083/jcb.118.3.585] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the marine heliozoan Actinocoryne contractilis, uninterrupted rods of microtubules stiffen the axopodia and the stalk. Stimulation in sea water elicits an extremely fast contraction (millisecond range) accompanied by almost complete Mt dissociation. Using high-speed cinematography and light transmittance measurements, we have studied the process of Mt disassembly in real time. In sea water, Mt disassembly follows an exponential decrease (mean half time of 4 ms) or proceeds by short steps. Cell contraction and Mt disassembly have been inhibited or slowed down through the use of artificial media. Although kinetics are slower (mean half time of 3 s), the curves of the length change against time look similar. The rapid as well as the slower process are accompanied by the formation of breakpoints on the stalk, from which disassembly proceeds. In specimens fixed during the slowed contraction, the presence across the Mt rods, of a single or multiple destabilization band that may consist of granular material and polymorphic forms of tubulin supports the hypothesis of "intercalary destabilization and breakdown" of axonemal Mts.
Collapse
Affiliation(s)
- C Febvre-Chevalier
- Laboratoire de Biologie Cellulaire Marine URA 671 C.N.R.S., Observatoire Océanologique de Villefranche-sur-Mer, France
| | | |
Collapse
|
40
|
Okabe S, Hirokawa N. Differential behavior of photoactivated microtubules in growing axons of mouse and frog neurons. J Cell Biol 1992; 117:105-20. [PMID: 1556148 PMCID: PMC2289395 DOI: 10.1083/jcb.117.1.105] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To characterize the behavior of axonal microtubules in vivo, we analyzed the movement of tubulin labeled with caged fluorescein after activation to be fluorescent by irradiation of 365-nm light. When mouse sensory neurons were microinjected with caged fluorescein-labeled tubulin and then a narrow region of the axon was illuminated with a 365-nm microbeam, photoactivated tubulin was stationary regardless of the position of photoactivation. We next introduced caged fluorescein-labeled tubulin into Xenopus embryos and nerve cells isolated from injected embryos were analyzed by photoactivation. In this case, movement of the photoactivated zone toward the axon tip was frequently observed. The photoactivated microtubule segments in the Xenopus axon moved out from their initial position without significant spreading, suggesting that fluorescent microtubules are not sliding as individual filaments, but rather translocating en bloc. Since these observations raised the possibility that the mechanism of nerve growth might differ between two types of neurons, we further characterized the movement of another component of the axon structure, the plasma membrane. Analysis of the position of polystyrene beads adhering to the neurites of Xenopus neurons revealed anterograde movement of the beads at the rate similar to the rate of microtubule movement. In contrast, no movement of the beads relative to the cell body was observed in mouse sensory neurons. These results suggest that the mode of translocation of cytoskeletal polymers and some components of the axon surface differ between two neuron types and that most microtubules are stationary within the axon of mammalian neurons where the surface-related motility of the axon is not observed.
Collapse
Affiliation(s)
- S Okabe
- Department of Anatomy and Cell Biology, School of Medicine, University of Tokyo, Japan
| | | |
Collapse
|
41
|
Euteneuer U, Schliwa M. Mechanism of centrosome positioning during the wound response in BSC-1 cells. J Cell Biol 1992; 116:1157-66. [PMID: 1740470 PMCID: PMC2289366 DOI: 10.1083/jcb.116.5.1157] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Locomoting cells are characterized by a pronounced external and internal anterior-posterior polarity. One of the events associated with cell polarization at the onset of locomotion is a shift of the centrosome, or MTOC, ahead of the nucleus. This position is believed to be of strategic importance for directional cell movement and cell polarity. We have used BSC-1 cells at the edge of an in vitro wound to clarify the causal relationship between MTOC position and the initiation of cell polarization. We find that pronounced cell polarization (the extension of a lamellipod) can take place in the absence of MTOC repositioning or microtubules. Conversely, MTOCs will reposition even after lamellar extension and cell polarization have occurred. Repositioning requires microtubules that extend to the cell periphery and is independent of selective detyrosination of microtubules extending towards the cell front. Significantly, MTOCs maintain, or at least attempt to maintain, a position at the cell's centroid. This is most clearly demonstrated in wounded monolayers of enucleated cells where the MTOC closely follows the centroid position. We suggest that the primary response to the would is the biased extension of a lamellipod, which can occur in the absence of microtubules and MTOC repositioning. Lamellipod extension leads to a shift of the cell's centroid towards the wound. The MTOC, in an attempt to maintain a position near the cell center, will follow. This will automatically put the MTOC ahead of the nucleus in the vast majority of cells. The nucleus as a reference for MTOC position may not be as meaningful as previously thought.
Collapse
Affiliation(s)
- U Euteneuer
- Institute for Cell Biology, University of Munich, Germany
| | | |
Collapse
|
42
|
The CDC20 gene product of Saccharomyces cerevisiae, a beta-transducin homolog, is required for a subset of microtubule-dependent cellular processes. Mol Cell Biol 1991. [PMID: 1922065 DOI: 10.1128/mcb.11.11.5592] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous analysis of cdc20 mutants of the yeast Saccharomyces cerevisiae suggests that the CDC20 gene product (Cdc20p) is required for two microtubule-dependent processes, nuclear movements prior to anaphase and chromosome separation. Here we report that cdc20 mutants are defective for a third microtubule-mediated event, nuclear fusion during mating of G1 cells, but appear normal for a fourth microtubule-dependent process, nuclear migration after DNA replication. Therefore, Cdc20p is required for a subset of microtubule-dependent processes and functions at multiple stages in the life cycle. Consistent with this interpretation, we find that cdc20 cells arrested by alpha-factor or at the restrictive temperature accumulate anomalous microtubule structures, as detected by indirect immunofluorescence. The anomalous microtubule staining patterns are due to cdc20 because intragenic revertants that revert the temperature sensitivity have normal microtubule morphologies. cdc20 mutants have a sevenfold increase in the intensity of antitubulin fluorescence in intranuclear spindles compared with spindles from wild-type cells, yet the total amount of tubulin is indistinguishable by Western immunoblot analysis. This result suggests that Cdc20p modulates microtubule structure in wild-type cells either by promoting microtubule disassembly or by altering the surface of the microtubules. Finally, we cloned and sequenced CDC20 and show that it encodes a member of a family of proteins that share homology to the beta subunit of transducin.
Collapse
|
43
|
Sethi N, Monteagudo MC, Koshland D, Hogan E, Burke DJ. The CDC20 gene product of Saccharomyces cerevisiae, a beta-transducin homolog, is required for a subset of microtubule-dependent cellular processes. Mol Cell Biol 1991; 11:5592-602. [PMID: 1922065 PMCID: PMC361930 DOI: 10.1128/mcb.11.11.5592-5602.1991] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous analysis of cdc20 mutants of the yeast Saccharomyces cerevisiae suggests that the CDC20 gene product (Cdc20p) is required for two microtubule-dependent processes, nuclear movements prior to anaphase and chromosome separation. Here we report that cdc20 mutants are defective for a third microtubule-mediated event, nuclear fusion during mating of G1 cells, but appear normal for a fourth microtubule-dependent process, nuclear migration after DNA replication. Therefore, Cdc20p is required for a subset of microtubule-dependent processes and functions at multiple stages in the life cycle. Consistent with this interpretation, we find that cdc20 cells arrested by alpha-factor or at the restrictive temperature accumulate anomalous microtubule structures, as detected by indirect immunofluorescence. The anomalous microtubule staining patterns are due to cdc20 because intragenic revertants that revert the temperature sensitivity have normal microtubule morphologies. cdc20 mutants have a sevenfold increase in the intensity of antitubulin fluorescence in intranuclear spindles compared with spindles from wild-type cells, yet the total amount of tubulin is indistinguishable by Western immunoblot analysis. This result suggests that Cdc20p modulates microtubule structure in wild-type cells either by promoting microtubule disassembly or by altering the surface of the microtubules. Finally, we cloned and sequenced CDC20 and show that it encodes a member of a family of proteins that share homology to the beta subunit of transducin.
Collapse
Affiliation(s)
- N Sethi
- Department of Biology, University of Virginia, Charlottesville 22901
| | | | | | | | | |
Collapse
|
44
|
Walker RA, Pryer NK, Salmon ED. Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate. J Cell Biol 1991; 114:73-81. [PMID: 2050742 PMCID: PMC2289054 DOI: 10.1083/jcb.114.1.73] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although the mechanism of microtubule dynamic instability is thought to involve the hydrolysis of tubulin-bound GTP, the mechanism of GTP hydrolysis and the basis of microtubule stability are controversial. Video microscopy of individual microtubules and dilution protocols were used to examine the size and lifetime of the stabilizing cap. Purified porcine brain tubulin (7-23 microM) was assembled at 37 degrees C onto both ends of isolated sea urchin axoneme fragments in a miniature flow cell to give a 10-fold variation in elongation rate. The tubulin concentration in the region of microtubule growth could be diluted rapidly (by 84% within 3 s of the onset of dilution). Upon perfusion with buffer containing no tubulin, microtubules experienced a catastrophe (conversion from elongation to rapid shortening) within 4-6 s on average after dilution to 16% of the initial concentration, independent of the predilution rate of elongation and length. Based on extrapolation of catastrophe frequency to zero tubulin concentration, the estimated lifetime of the stable cap after infinite dilution was less than 3-4 s for plus and minus ends, much shorter than the approximately 200 s observed at steady state (Walker, R. A., E. T. O'Brien, N. K. Pryer, M. Soboeiro, W. A. Voter, H. P. Erickson, and E. D. Salmon. 1988. J. Cell Biol. 107:1437-1448.). We conclude that during elongation, both plus and minus ends are stabilized by a short region (approximately 200 dimers or less) and that the size of the stable cap is independent of 10-fold variation in elongation rate. These results eliminate models of dynamic instability which predict extensive "build-up" stabilizing caps and support models which constrain the cap to the elongating tip. We propose that the cell may take advantage of such an assembly mechanism by using "catastrophe factors" that can promote frequent catastrophe even at high elongation rates by transiently binding to microtubule ends and briefly inhibiting GTP-tubulin association.
Collapse
Affiliation(s)
- R A Walker
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
45
|
Miller RK, Vikstrom K, Goldman RD. Keratin incorporation into intermediate filament networks is a rapid process. J Cell Biol 1991; 113:843-55. [PMID: 1709167 PMCID: PMC2288995 DOI: 10.1083/jcb.113.4.843] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The properties of keratin-containing intermediate filament (IF) networks in vivo were studied following the microinjection of biotinylated keratin. Keratin-IFs were biotinylated, disassembled, and separated into type I and type II proteins by ion exchange chromatography. Recombination of these derivatized type I and type II keratins resulted in the formation of 10-nm diameter IF. The type I keratins were microinjected into epithelial cells and observed by immunofluorescence microscopy. Biotin-rich spots were found throughout the cytoplasm at 15-20 min after injection. Short biotinylated fibrous structures were seen at 30-45 min after injection, most of which colocalized with the endogenous bundles of IF (tono-filaments). By 1 1/2 to 2 h after microinjection, extensive biotinylated keratin IF-like networks were evident. These were highly coincident with the endogenous tonofilaments throughout the cell, including those at desmosomal junctions. These results suggest the existence of a relatively rapid subunit incorporation mechanism using numerous sites along the length of the endogenous tonofilament bundles. These observations support the idea that keratin-IFs are dynamic cytoskeletal elements.
Collapse
Affiliation(s)
- R K Miller
- Northwestern University Medical School, Department of Cell, Molecular, and Structural Biology, Chicago, Illinois 60611
| | | | | |
Collapse
|
46
|
Abstract
In the preceding paper we described pathways of mitotic spindle assembly in cell-free extracts prepared from eggs of Xenopus laevis. Here we demonstrate the poleward flux of microtubules in spindles assembled in vitro, using a photoactivatable fluorescein covalently coupled to tubulin and multi-channel fluorescence videomicroscopy. After local photoactivation of fluorescence by UV microbeam, we observed poleward movement of fluorescein-marked microtubules at a rate of 3 microns/min, similar to rates of chromosome movement and spindle elongation during prometaphase and anaphase. This movement could be blocked by the addition of millimolar AMP-PNP but was not affected by concentrations of vanadate up to 150 microM, suggesting that poleward flux may be driven by a microtubule motor similar to kinesin. In contrast to previous results obtained in vivo (Mitchison, T. J. 1989. J. Cell Biol. 109:637-652), poleward flux in vitro appears to occur independently of kinetochores or kinetochore microtubules, and therefore may be a general property of relatively stable microtubules within the spindle. We find that microtubules moving towards poles are dynamic structures, and we have estimated the average half-life of fluxing microtubules in vitro to be between approximately 75 and 100 s. We discuss these results with regard to the function of poleward flux in spindle movements in anaphase and prometaphase.
Collapse
Affiliation(s)
- K E Sawin
- Department of Biochemistry, University of California, San Francisco 94143
| | | |
Collapse
|
47
|
Voter WA, O'Brien ET, Erickson HP. Dilution-induced disassembly of microtubules: relation to dynamic instability and the GTP cap. CELL MOTILITY AND THE CYTOSKELETON 1991; 18:55-62. [PMID: 2004433 DOI: 10.1002/cm.970180106] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microtubules were assembled from purified tubulin in the buffer originally used to study dynamic instability (100 mM PIPES, 2 mM EGTA, 1 mM magnesium, 0.2 mM GTP) and then diluted in the same buffer to study the rate of disassembly. Following a 15-fold dilution, microtubule polymer decreased linearly to about 20% of the starting value in 15 sec. We determined the length distribution of microtubules before dilution, and prepared computer simulations of polymer loss for different assumed rates of disassembly. Our experimental data were consistent with a disassembly rate per microtubule of 60 microns/min. This is the total rate of depolymerization for microtubules in the rapid shortening phase, as determined by light microscopy of individual microtubules (Walker et al.: Journal of Cell Biology 107:1437-1448, 1988). We conclude, therefore, that microtubules began rapid shortening at both ends upon dilution. Moreover, since we could detect no lag between dilution and the onset of rapid disassembly, the transition from elongation to rapid shortening apparently occurred within 1 sec following dilution. Assuming that this transition (catastrophe) involves the loss of the GTP cap, and that cap loss is achieved by the sequential dissociation of GTP-tubulin subunits following dilution, we can estimate the maximum size of the cap based on the kinetic data and model interpretation of Walker et al. The cap is probably shorter than 40 and 20 subunits at the plus and minus ends, respectively.
Collapse
Affiliation(s)
- W A Voter
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | | | | |
Collapse
|
48
|
Vikstrom KL, Miller RK, Goldman RD. Analyzing dynamic properties of intermediate filaments. Methods Enzymol 1991; 196:506-25. [PMID: 1709715 DOI: 10.1016/0076-6879(91)96044-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
49
|
Hermo L, Oko R, Hecht NB. Differential post-translational modifications of microtubules in cells of the seminiferous epithelium of the rat: a light and electron microscope immunocytochemical study. Anat Rec (Hoboken) 1991; 229:31-50. [PMID: 1996783 DOI: 10.1002/ar.1092290106] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cells of the seminiferous epithelium of the rat testis are a rich source of microtubules and contain distinct microtubular structures such as the meiotic spindle and manchette. Microtubule diversity can be maintained by differential genetic expression of the multiple alpha- and beta-tubulin polypeptides or by tubulin monomer acetylation and detyrosination, post-translational modifications of alpha-tubulin. In the present analysis, antibodies that specifically recognize acetylated (antiacetylated), tyrosinated (anti-Tyr) and detyrosinated (anti-Glu) alpha-tubulins were employed to examine the distribution of post-translationally modified microtubules in the cells of the seminiferous epithelium. In the light microscope, a distinct pattern of staining for each antibody was detected using immunoperoxidase techniques on paraffin-embedded testicular sections. In the case of the anti-Glu antibody, a dense immunoperoxidase staining was detected in the cytoplasm of steps 4-7 spermatids. Thereafter, staining was noted over the area corresponding to the manchette of steps 8-15 spermatids, but not over their cytoplasm. The tails of spermatids were also reactive with this antibody. The anti-Tyr antibody was observed to be localized over the cytoplasm of Sertoli cells in their basal, supranuclear, and apical regions. A dense immunoperoxidase staining was also noted in the cytoplasm of pachytene spermatocytes, but it was negligible in the cytoplasm of spermatocytes undergoing their meiotic division; in these cells the centrioles and meiotic spindle were reactive. The spermatid's tails were also reactive. The antiacetylated antibody showed reactivity only over the tails of spermatids. With the electron microscope, a similar pattern of labeling was noted using immunogold labeling on Lowicryl K4M embedded testicular sections. The anti-Glu antibody heavily labeled microtubules of the manchette and the axoneme of tails of spermatids as well as microtubules of the proximal and distal centrioles and centriolar adjunct. The anti-Tyr antibody strongly labeled microtubules of Sertoli cells and the meiotic spindle and midbody of dividing spermatocytes. The anti-Tyr antibody also labeled the microtubules of the axoneme, centrioles, and centriolar adjunct of spermatids, but to a lesser degree than the anti-Glu antibodies; the manchette was faintly labeled. Of the three antibodies, the antiacetylated antibody showed the weakest labeling of microtubules of the centrioles, centriolar adjunct, and midbody, whereas those of the manchette and Sertoli cells were unreactive; the axoneme was moderately labeled.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L Hermo
- Department of Anatomy, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
50
|
Bré MH, Pepperkok R, Hill AM, Levilliers N, Ansorge W, Stelzer EH, Karsenti E. Regulation of microtubule dynamics and nucleation during polarization in MDCK II cells. J Biophys Biochem Cytol 1990; 111:3013-21. [PMID: 2269664 PMCID: PMC2116395 DOI: 10.1083/jcb.111.6.3013] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MDCK cells form a polarized epithelium when they reach confluence in tissue culture. We have previously shown that concomitantly with the establishment of intercellular junctions, centrioles separate and microtubules lose their radial organization (Bacallao, R., C. Antony, C. Dotti, E. Karsenti, E.H.K. Stelzer, and K. Simons. 1989. J. Cell Biol. 109:2817-2832. Buendia, B., M.H. Bré, G. Griffiths, and E. Karsenti. 1990. 110:1123-1136). In this work, we have examined the pattern of microtubule nucleation before and after the establishment of intercellular contacts. We analyzed the elongation rate and stability of microtubules in single and confluent cells. This was achieved by microinjection of Paramecium axonemal tubulin and detection of the newly incorporated subunits by an antibody directed specifically against the Paramecium axonemal tubulin. The determination of newly nucleated microtubule localization has been made possible by the use of advanced double-immunofluorescence confocal microscopy. We have shown that in single cells, newly nucleated microtubules originate from several sites concentrated in a region localized close to the nucleus and not from a single spot that could correspond to a pair of centrioles. In confluent cells, newly nucleated microtubules were still more dispersed. The microtubule elongation rate of individual microtubules was not different in single and confluent cells (4 microns/min). However, in confluent cells, the population of long lived microtubules was strongly increased. In single or subconfluent cells most microtubules showed a t1/2 of less than 30 min, whereas in confluent monolayers, a large population of microtubules had a t1/2 of greater than 2 h. These results, together with previous observations cited above, indicate that during the establishment of polarity in MDCK cells, microtubule reorganization involves both a relocalization of microtubule-nucleating activity and increased microtubule stabilization.
Collapse
Affiliation(s)
- M H Bré
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|