1
|
De Priester W. Techniques for the visualisation of cytoskeletal components in Dictyostelium discoideum. ELECTRON MICROSCOPY REVIEWS 1991; 4:343-76. [PMID: 1932587 DOI: 10.1016/0892-0354(91)90009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A general description is given of the various techniques that may be used in ultrastructural studies of the cytoskeleton. Electron microscopy of the cytoskeleton of Dictyostelium discoideum serves as a source of examples illustrating the general effects of detergent treatment and fixation techniques. A concise review is given of the structure and function of the actin microfilament system and the cytoplasmic microtubules in Dictyostelium, based on electron microscopical, light microscopical and biochemical studies. Special attention is paid to their involvement in cell movement and chemotaxis. Conventional thin sectioning, fast freezing freeze substitution, whole mounts, freeze fracturing and freeze etching and negative staining techniques are discussed and their respective advantages and limitations are mentioned. A recently developed technique, wet-cleaving, is described which gives promising results in experiments in which the inside of the plasma membrane with the adhering cortical cytoskeleton is studied. This technique may turn out to be useful in high-resolution scanning electron microscopy. A description is given of protocols that proved to be successful in the author's and other laboratories. In a few cases the feasibility of immunogold labelling (illustrated by anti-tubulin labelling of cytoplasmic microtubules) is also dealt with.
Collapse
Affiliation(s)
- W De Priester
- Department of Biology, Leiden University, The Netherlands
| |
Collapse
|
2
|
Chia CP, Hitt AL, Luna EJ. Direct binding of F-actin to ponticulin, an integral plasma membrane glycoprotein. CELL MOTILITY AND THE CYTOSKELETON 1991; 18:164-79. [PMID: 2060029 DOI: 10.1002/cm.970180303] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have developed an 125I-labeled F-actin blot overlay assay for the identification of F-actin-binding proteins after transfer to nitrocellulose from SDS-polyacrylamide gels. Two major F-actin-binding proteins from Dictyostelium discoideum, a cytoplasmic 30 kDa protein and a 17 kDa integral membrane protein, and two minor membrane polypeptides of 19 kDa and 15 kDa were detected by this method. Using F-actin affinity and immunoaffinity chromatography, the 17 kDa polypeptide was identified as ponticulin, a previously described actin-binding glycoprotein from D. discoideum plasma membranes (Wuestehube, L.J., and Luna, E.J., [1987]: J. Cell Biol. 105:1741-1751). The binding of F-actin to ponticulin on blots is specific because unlabeled F-actin competes with 125I-labeled F-actin and because G-actin does not bind. Nitrocellulose-bound ponticulin displays binding characteristics similar to those of purified plasma membranes in solution, e.g., F-actin binding is sensitive to high salt and to elevated temperatures. Under optimal conditions, 125-I-labeled F-actin blot overlays are at least as sensitive as are immunoblots with an antibody specific for ponticulin. When blotted onto nitrocellulose after 2-D gel electrophoresis, all isoforms of ponticulin and of the 19 kDa and 15 kDa polypeptides appear to bind F-actin in proportion to their abundance. Thus the actin-binding activies of these proteins do not appear to be regulated by modifications that affect isoelectric point. However, the actin-binding activity of nitrocellulose-bound ponticulin is diminished when the protein is exposed to reducing agents, suggesting an involvement of disulfide bond(s) in ponticulin function. The 125I-labeled F-actin blot overlay assay also may enable us to identify F-actin-binding proteins in other cell types and should provide a convenient method for monitoring the purification of these proteins.
Collapse
Affiliation(s)
- C P Chia
- Cell Biology Group, Worchester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | |
Collapse
|
3
|
Rosiere TK, Marrs JA, Bouck GB. A 39-kD plasma membrane protein (IP39) is an anchor for the unusual membrane skeleton of Euglena gracilis. J Cell Biol 1990; 110:1077-88. [PMID: 2108968 PMCID: PMC2116094 DOI: 10.1083/jcb.110.4.1077] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The major integral plasma membrane protein (IP39) of Euglena gracilis was radiolabeled, peptide mapped, and dissected with proteases to identify cytoplasmic domains that bind and anchor proteins of the cell surface. When plasma membranes were radioiodinated and extracted with octyl glucoside, 98% of the extracted label was found in IP39 or the 68- and 110-kD oligomers of IP39. The octyl glucoside extracts were incubated with unlabeled cell surface proteins immobilized on nitrocellulose (overlays). Radiolabel from the membrane extract bound one (80 kD) of the two (80 and 86 kD) major membrane skeletal protein bands. Resolubilization of the bound label yielded a radiolabeled polypeptide identical in Mr to IP39. Intact plasma membranes were also digested with papain before or after radioiodination, thereby producing a cytoplasmically truncated IP39. The octyl glucoside extract of truncated IP39 no longer bound to the 80-kD membrane skeletal protein in the nitrocellulose overlays. EM of intact or trypsin digested plasma membranes incubated with membrane skeletal proteins under stringent conditions similar to those used in the nitrocellulose overlays revealed a partially reformed membrane skeletal layer. Little evidence of a membrane skeletal layer was found, however, when plasma membranes were predigested with papain before reassociation. A candidate 80-kD binding domain of IP39 has been tentatively identified as a peptide fragment that was present after trypsin digestion of plasma membranes, but was absent after papain digestion in two-dimensional peptide maps of IP39. Together, these data suggest that the unique peripheral membrane skeleton of Euglena binds to the plasma membrane through noncovalent interactions between the major 80-kD membrane skeletal protein and a small, papain sensitive cytoplasmic domain of IP39. Other (62, 51, and 25 kD) quantitatively minor peripheral proteins also interact with IP39 on the nitrocellulose overlays, and the possible significance of this binding is discussed.
Collapse
Affiliation(s)
- T K Rosiere
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | |
Collapse
|
4
|
Shariff A, Luna EJ. Dictyostelium discoideum plasma membranes contain an actin-nucleating activity that requires ponticulin, an integral membrane glycoprotein. J Biophys Biochem Cytol 1990; 110:681-92. [PMID: 2307703 PMCID: PMC2116041 DOI: 10.1083/jcb.110.3.681] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In previous equilibrium binding studies, Dictyostelium discoideum plasma membranes have been shown to bind actin and to recruit actin into filaments at the membrane surface. However, little is known about the kinetic pathway(s) through which actin assembles at these, or other, membranes. We have used actin fluorescently labeled with N-(1-pyrenyl)iodoacetamide to examine the kinetics of actin assembly in the presence of D. discoideum plasma membranes. We find that these membranes increase the rate of actin polymerization. The rate of membrane-mediated actin polymerization is linearly dependent on membrane protein concentrations up to 20 micrograms/ml. Nucleation (the association of activated actin monomers into oligomers) appears to be the primary step of polymerization that is accelerated. A sole effect on the initial salt-induced actin conformational change (activation) is ruled out because membranes accelerate the polymerization of pre-activated actin as well as actin activated in the presence of membranes. Elongation of preexisting filaments also is not the major step of polymerization facilitated by membranes since membranes stripped of all peripheral components, including actin, increase the rate of actin assembly to about the same extent as do membranes containing small amounts of endogenous actin. Acceleration of the nucleation step by membranes also is supported by an analysis of the dependence of polymerization lag time on actin concentration. The barbed ends of membrane-induced actin nuclei are not obstructed by the membranes because the barbed end blocking agent, cytochalasin D, reduces the rate of membrane-mediated actin nucleation. Similarly, the pointed ends of the nuclei are not blocked by membranes since the depolymerization rate of gelsolin-capped actin is unchanged in the presence of membranes. These results are consistent with previous observations of lateral interactions between membranes and actin filaments. These results also are consistent with two predictions from a model based on equilibrium binding studies; i.e., that plasma membranes should nucleate actin assembly and that membrane-bound actin nuclei should have both ends free (Schwartz, M. A., and E. J. Luna. 1988. J. Cell Biol. 107:201-209). Integral membrane proteins mediate the actin nucleation activity because activity is eliminated by heat denaturation, treatment with reducing agents, or proteolysis of membranes. Activity also is abolished by solubilization with octylglucoside but is reconstituted upon removal or dilution of the detergent. Ponticulin, the major actin-binding protein in plasma membranes, appears to be necessary for nucleation activity since activity is not reconstituted from detergent extracts depleted of ponticulin.
Collapse
Affiliation(s)
- A Shariff
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | |
Collapse
|
5
|
Ingalls HM, Barcelo G, Wuestehube LJ, Luna EJ. Developmental changes in protein composition and the actin-binding protein ponticulin in Dictyostelium discoideum plasma membranes purified by an improved method. Differentiation 1989; 41:87-98. [PMID: 2612766 DOI: 10.1111/j.1432-0436.1989.tb00736.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have used a new combination of previously-described methods to obtain a 29-fold purification of plasma membranes from Dictyostelium discoideum. In this procedure, the pellet from a cell lysate is centrifuged through a high-pH sucrose gradient and then through a Renografin gradient. Electron microscopy shows that the resultant "Renografin membranes" are essentially homogeneous. As measured by enzymatic marker assays, contamination with mitochondria, lysosomes, and endoplasmic reticulum is minimal. As assayed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the protein composition of Renografin membranes is similar to that of highly purified membranes isolated using concanavalin A stabilization and detergent extraction. Using Renografin membranes, we have examined developmental changes in the membrane protein composition. In agreement with previous investigations, we observe major changes in lectin-binding glycoproteins and cell-surface-labeled proteins during the first 18 h of D. discoideum development. In contrast to most previous work, which may have employed plasma membranes of lesser purity, we also observe major changes in silver-stained membrane proteins. We conclude that many developmentally regulated proteins, previously thought to be minor membrane constituents, are a larger proportion of the plasma membrane than originally believed. The observed changes in membrane protein composition may correlate with changes in plasma membrane functions during development. For instance, ponticulin, the major salt-sensitive F-actin-binding protein in plasma membranes from vegetative cells, increases at least twofold in plasma membranes during early development when the cells are chemotaxing into large aggregates. The amount of plasma membrane ponticulin then decreases during the pseudoplasmodial stage.
Collapse
Affiliation(s)
- H M Ingalls
- Department of Biology, Princeton University, NJ 08544
| | | | | | | |
Collapse
|
6
|
Shiozawa JA, Brandts JF, Jacobson BS. Binding of plasma membrane glycoproteins to the cytoskeleton during patching and capping is consistent with an entropy-enhancement model. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 980:361-6. [PMID: 2713412 DOI: 10.1016/0005-2736(89)90325-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Concentrations of concanavalin A that induced patching and capping of cell surface receptors on Dictyostelium discoideum also induce binding of the receptors to the cortical cytoskeleton, which was isolated by density-gradient centrifugation. The receptors were solubilized by deoxycholate, purified by affinity chromatography, and used to determine whether the receptors bound directly to the cytoskeletal protein, actin. As the concentration of actin was increased, many of the receptors became bound to purified filamentous rabbit muscle actin, even in the absence of concanavalin A. As in the ligation-induced binding of receptors to the cortical cytoskeleton in cells, concanavalin A induced much stronger binding of the purified receptors to filamentous actin. The results were consistent with a previously stated hypothesis that induction of receptor binding to the cytoskeleton during their patching and capping is driven by clustering the receptors, which reduces their translational entropy and by doing so enhances their avidity for the cytoskeleton.
Collapse
Affiliation(s)
- J A Shiozawa
- Department of Biochemistry, University of Massachusetts, Amherst 01003
| | | | | |
Collapse
|
7
|
Urushihara H, Habata Y, Yanagisawa K. A membrane protein with possible relevance to sexual cell fusion in Dictyostelium discoideum. CELL DIFFERENTIATION AND DEVELOPMENT : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF DEVELOPMENTAL BIOLOGISTS 1988; 25:81-7. [PMID: 3208193 DOI: 10.1016/0922-3371(88)90001-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The molecular mechanism of sexual cell fusion in Dictyostelium discoideum was studied using the heterothallic strains HM1 and NC4. Monovalent antibodies (Fab) prepared from rabbit antiserum against a crude membrane preparation of fusion-competent HM1 cells inhibited fusion between HM1 and NC4 cells. Six out of 43 antigenic proteins were found in fusion-competent HM1 cells but not in fusion-incompetent cells. Among them, only one protein with a molecular mass of 70 kDa was able to neutralize the fusion-inhibiting activity of Fab, suggesting its possible participation in sexual cell fusion.
Collapse
Affiliation(s)
- H Urushihara
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
8
|
Dubreuil RR, Rosiere TK, Rosner MC, Bouck GB. Properties and topography of the major integral plasma membrane protein of a unicellular organism. J Cell Biol 1988; 107:191-200. [PMID: 3134363 PMCID: PMC2115185 DOI: 10.1083/jcb.107.1.191] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cellular distribution, membrane orientation, and biochemical properties of the two major NaOH-insoluble (integral) plasma membrane proteins of Euglena are detailed. We present evidence which suggests that these two polypeptides (Mr 68 and 39 kD) are dimer and monomer of the same protein: (a) Antibodies directed against either the 68- or the 39-kD polypeptide bind to both 68- and 39-kD bands in Western blots. (b) Trypsin digests of the 68- and 39-kD polypeptides yield similar peptide fragments. (c) The 68- and 39-kD polypeptides interconvert during successive electrophoresis runs in the presence of SDS and beta-mercaptoethanol. (d) The 39-kD band is the only major integral membrane protein evident after isoelectric focusing in acrylamide gels. The apparent shift from 68 to 39 kD in focusing gels has been duplicated in denaturing SDS gels by adding ampholyte solutions directly to the protein samples. The membrane orientation of the 39-kD protein and its 68-kD dimer has been assessed by radioiodination in situ using intact cells or purified plasma membranes. Putative monomers and dimers are labeled only when the cytoplasmic side of the membrane is exposed. These results together with trypsin digestion data suggest that the 39-kD protein and its dimer have an asymmetric membrane orientation with a substantial cytoplasmic domain but with no detectable extracellular region. Immunolabeling of sectioned cells indicates that the plasma membrane is the only cellular membrane with significant amounts of 39-kD protein. No major 68- or 39-kD polypeptide bands are evident in SDS acrylamide gels or immunoblots of electrophoresed whole flagella or preparations enriched in flagellar membrane vesicles, nor is there a detectable shift in any flagellar polypeptide in the presence of ampholyte solutions. These findings are considered with respect to the well-known internal crystalline organization of the euglenoid plasma membrane and to the potential for these proteins to serve as anchors for membrane skeletal proteins.
Collapse
Affiliation(s)
- R R Dubreuil
- Department of Biological Sciences, University of Illinois, Chicago 60680
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- V Niggli
- Department of Biochemistry, Biocenter of the University of Basel, Switzerland
| | | |
Collapse
|
10
|
Wuestehube LJ, Luna EJ. F-actin binds to the cytoplasmic surface of ponticulin, a 17-kD integral glycoprotein from Dictyostelium discoideum plasma membranes. J Biophys Biochem Cytol 1987; 105:1741-51. [PMID: 3312238 PMCID: PMC2114643 DOI: 10.1083/jcb.105.4.1741] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.
Collapse
Affiliation(s)
- L J Wuestehube
- Department of Biology, Princeton University, New Jersey 08544
| | | |
Collapse
|