1
|
Herrmann D, Hanson HM, Zhou LW, Addabbo R, Willkomm NA, Angert I, Mueller JD, Mansky LM, Saad JS. Molecular Determinants of Human T-cell Leukemia Virus Type 1 Gag Targeting to the Plasma Membrane for Assembly. J Mol Biol 2022; 434:167609. [PMID: 35490898 PMCID: PMC10557380 DOI: 10.1016/j.jmb.2022.167609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/10/2023]
Abstract
Assembly of human T-cell leukemia virus type 1 (HTLV-1) particles is initiated by the trafficking of virally encoded Gag polyproteins to the inner leaflet of the plasma membrane (PM). Gag-PM interactions are mediated by the matrix (MA) domain, which contains a myristoyl group (myr) and a basic patch formed by lysine and arginine residues. For many retroviruses, Gag-PM interactions are mediated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]; however, previous studies suggested that HTLV-1 Gag-PM interactions and therefore virus assembly are less dependent on PI(4,5)P2. We have recently shown that PI(4,5)P2 binds directly to HTLV-1 unmyristoylated MA [myr(-)MA] and that myr(-)MA binding to membranes is significantly enhanced by inclusion of phosphatidylserine (PS) and PI(4,5)P2. Herein, we employed structural, biophysical, biochemical, mutagenesis, and cell-based assays to identify residues involved in MA-membrane interactions. Our data revealed that the lysine-rich motif (Lys47, Lys48, and Lys51) constitutes the primary PI(4,5)P2-binding site. Furthermore, we show that arginine residues 3, 7, 14 and 17 located in the unstructured N-terminus are essential for MA binding to membranes containing PS and/or PI(4,5)P2. Substitution of lysine and arginine residues severely attenuated virus-like particle production, but only the lysine residues could be clearly correlated with reduced PM binding. These results support a mechanism by which HTLV-1 Gag targeting to the PM is mediated by a trio engagement of the myr group, Arg-rich and Lys-rich motifs. These findings advance our understanding of a key step in retroviral particle assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Heather M Hanson
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| | - Lynne W Zhou
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Rayna Addabbo
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Nora A Willkomm
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States
| | - Isaac Angert
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Joachim D Mueller
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, United States.
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
2
|
Preferential Budding of Vesicular Stomatitis Virus from the Basolateral Surface of Polarized Epithelial Cells Is Not Solely Directed by Matrix Protein or Glycoprotein. J Virol 2015; 89:11718-22. [PMID: 26339064 PMCID: PMC4645653 DOI: 10.1128/jvi.01658-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022] Open
Abstract
Vesicular stomatitis virus has been shown to bud basolaterally, and the matrix protein, but not glycoprotein, was proposed to mediate this asymmetry. Using polarized T84 monolayers, we demonstrate that no single viral protein is sufficient for polarized budding. Particles are released from the apical and basolateral surfaces and are indistinguishable, indicating that there is no apical assembly defect. We propose that aspects of host cell polarity create a more efficient budding process at the basolateral surface.
Collapse
|
3
|
Characterization of the Interaction between the Matrix Protein of Vesicular Stomatitis Virus and the Immunoproteasome Subunit LMP2. J Virol 2015; 89:11019-29. [PMID: 26311888 DOI: 10.1128/jvi.01753-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/17/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The matrix protein (M) of vesicular stomatitis virus (VSV) is involved in virus assembly, budding, gene regulation, and cellular pathogenesis. Using a yeast two-hybrid system, the M globular domain was shown to interact with LMP2, a catalytic subunit of the immunoproteasome (which replaces the standard proteasome catalytic subunit PSMB6). The interaction was validated by coimmunoprecipitation of M and LMP2 in VSV-infected cells. The sites of interaction were characterized. A single mutation of M (I96A) which significantly impairs the interaction between M and LMP2 was identified. We also show that M preferentially binds to the inactive precursor of LMP2 (bearing an N-terminal propeptide which is cleaved upon LMP2 maturation). Furthermore, taking advantage of a sequence alignment between LMP2 and its proteasome homolog, PSMB6 (which does not bind to M), we identified a mutation (L45R) in the S1 pocket where the protein substrate binds prior to cleavage and a second one (D17A) of a conserved residue essential for the catalytic activity, resulting in a reduction of the level of binding to M. The combination of both mutations abolishes the interaction. Taken together, our data indicate that M binds to LMP2 before its incorporation into the immunoproteasome. As the immunoproteasome promotes the generation of major histocompatibility complex (MHC) class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells, we suggest that M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. IMPORTANCE The immunoproteasome promotes the generation of MHC class I-compatible peptides, a feature which favors the recognition and the elimination of infected cells by CD8 T cells. Here, we report on the association of vesicular stomatitis virus (VSV) matrix protein (M) with LMP2, one of the immunoproteasome-specific catalytic subunits. M preferentially binds to the LMP2 inactive precursor. The M-binding site on LMP2 is facing inwards in the immunoproteasome and is therefore not accessible to M after its assembly. Hence, M binds to LMP2 before its incorporation into the immunoproteasome. We suggest that VSV M, by interfering with the immunoproteasome assembly, has evolved a mechanism that allows infected cells to escape detection and elimination by the immune system. Modulating this M-induced immunoproteasome impairment might be relevant in order to optimize VSV for oncolytic virotherapy.
Collapse
|
4
|
The yeast eukaryotic translation initiation factor 2B translation initiation complex interacts with the fatty acid synthesis enzyme YBR159W and endoplasmic reticulum membranes. Mol Cell Biol 2012; 33:1041-56. [PMID: 23263984 DOI: 10.1128/mcb.00811-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Using affinity purifications coupled with mass spectrometry and yeast two-hybrid assays, we show the Saccharomyces cerevisiae translation initiation factor complex eukaryotic translation initiation factor 2B (eIF2B) and the very-long-chain fatty acid (VLCFA) synthesis keto-reductase enzyme YBR159W physically interact. The data show that the interaction is specifically between YBR159W and eIF2B and not between other members of the translation initiation or VLCFA pathways. A ybr159wΔ null strain has a slow-growth phenotype and a reduced translation rate but a normal GCN4 response to amino acid starvation. Although YBR159W localizes to the endoplasmic reticulum membrane, subcellular fractionation experiments show that a fraction of eIF2B cofractionates with lipid membranes in a YBR159W-independent manner. We show that a ybr159wΔ yeast strain and other strains with null mutations in the VLCFA pathway cause eIF2B to appear as numerous foci throughout the cytoplasm.
Collapse
|
5
|
Obiang L, Raux H, Ouldali M, Blondel D, Gaudin Y. Phenotypes of vesicular stomatitis virus mutants with mutations in the PSAP motif of the matrix protein. J Gen Virol 2012; 93:857-865. [DOI: 10.1099/vir.0.039800-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vesicular stomatitis virus (VSV) matrix protein (M) has a flexible amino-terminal part that recruits cellular partners. It contains a dynamin-binding site that is required for efficient virus assembly, and two motifs, 24PPPY27 and 37PSAP40, that constitute potential late domains. Late domains are present in proteins of several enveloped viruses and are involved in the ultimate step of the budding process (i.e. fission between viral and cellular membranes). In baby hamster kidney (BHK)-21 cells, it has been demonstrated that the 24PPPY27 motif binds the Nedd4 (neuronal precursor cell-expressed developmentally downregulated 4) E3 ubiquitin ligase for efficient virus budding and that the 37PSAP40 motif, although conserved among M proteins of vesiculoviruses, does not possess late-domain activity. In this study, we have re-examined the contribution of the PSAP motif to VSV budding. First, we demonstrate that VSV M indeed binds TSG101 [tumour susceptibility gene 101; a component of the ESCRT1 (endosomal sorting complex required for transport 1)] through its PSAP motif. Second, we analysed the phenotype of several recombinant mutants. We show that a double mutant with point mutations in both the PSAP and the PPPY motifs is impaired compared with a single mutant in the PPPY motif, indicating that the PSAP motif partially compensates for the lack of the PPPY motif. Mutants’ phenotypes depend on cell lines: in CERA (chicken embryo-related, Alger clone) cells, a recombinant virus with a single mutation in the PSAP motif was impaired compared with the wild type, and a mutant with a single mutation in the dynamin-binding motif was much less impaired in Vero cells than in BSR (clones of BHK-21) cells. These results have implications for the VSV budding pathway that will be discussed.
Collapse
Affiliation(s)
- Linda Obiang
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Hélène Raux
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Malika Ouldali
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Danielle Blondel
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| | - Yves Gaudin
- Centre de Recherche de Gif, Laboratoire de Virologie Moléculaire et Structurale, CNRS (UPR 3296), 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
6
|
Zhang Y, Yang J, Bao R, Chen Y, Zhou D, He B, Zhong M, Li Y, Liu F, Li Q, Yang Y, Han C, Sun Y, Cao Y, Yan H. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses. PLoS One 2011; 6:e24296. [PMID: 21935396 PMCID: PMC3174162 DOI: 10.1371/journal.pone.0024296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol) in mucosal epithelial cells (specifically Caco-2 cell layers) and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingyi Yang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rong Bao
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaoqing Chen
- The State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dihan Zhou
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Benxia He
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaoming Li
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fang Liu
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiaoli Li
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Yang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chen Han
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Sun
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Cao
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huimin Yan
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
7
|
The matrix protein of vesicular stomatitis virus binds dynamin for efficient viral assembly. J Virol 2010; 84:12609-18. [PMID: 20943988 DOI: 10.1128/jvi.01400-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Matrix proteins (M) direct the process of assembly and budding of viruses belonging to the Mononegavirales order. Using the two-hybrid system, the amino-terminal part of vesicular stomatitis virus (VSV) M was shown to interact with dynamin pleckstrin homology domain. This interaction was confirmed by coimmunoprecipitation of both proteins in cells transfected by a plasmid encoding a c-myc-tagged dynamin and infected by VSV. A role for dynamin in the viral cycle (in addition to its role in virion endocytosis) was suggested by the fact that a late stage of the viral cycle was sensitive to dynasore. By alanine scanning, we identified a single mutation of M protein that abolished this interaction and reduced virus yield. The adaptation of mutant virus (M.L4A) occurred rapidly, allowing the isolation of revertants, among which the M protein, despite having an amino acid sequence distinct from that of the wild type, recovered a significant level of interaction with dynamin. This proved that the mutant phenotype was due to the loss of interaction between M and dynamin. The infectious cycle of the mutant virus M.L4A was blocked at a late stage, resulting in a quasi-absence of bullet-shaped viruses in the process of budding at the cell membrane. This was associated with an accumulation of nucleocapsids at the periphery of the cell and a different pattern of VSV glycoprotein localization. Finally, we showed that M-dynamin interaction affects clathrin-dependent endocytosis. Our study suggests that hijacking the endocytic pathway might be an important feature for enveloped virus assembly and budding at the plasma membrane.
Collapse
|
8
|
Bhattacharya B, Roy P. Role of lipids on entry and exit of bluetongue virus, a complex non-enveloped virus. Viruses 2010; 2:1218-1235. [PMID: 21994677 PMCID: PMC3187602 DOI: 10.3390/v2051218] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/04/2010] [Accepted: 05/11/2010] [Indexed: 11/16/2022] Open
Abstract
Non-enveloped viruses such as members of Picornaviridae and Reoviridae are assembled in the cytoplasm and are generally released by cell lysis. However, recent evidence suggests that some non-enveloped viruses exit from infected cells without lysis, indicating that these viruses may also utilize alternate means for egress. Moreover, it appears that complex, non-enveloped viruses such as bluetongue virus (BTV) and rotavirus interact with lipids during their entry process as well as with lipid rafts during the trafficking of newly synthesized progeny viruses. This review will discuss the role of lipids in the entry, maturation and release of non-enveloped viruses, focusing mainly on BTV.
Collapse
Affiliation(s)
| | - Polly Roy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44 (0)20 7927 2324; Fax: +44 (0)20 7927 2324
| |
Collapse
|
9
|
Biarsenical labeling of vesicular stomatitis virus encoding tetracysteine-tagged m protein allows dynamic imaging of m protein and virus uncoating in infected cells. J Virol 2009; 83:2611-22. [PMID: 19153240 DOI: 10.1128/jvi.01668-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A recombinant vesicular stomatitis virus (VSV-PeGFP-M-MmRFP) encoding enhanced green fluorescent protein fused in frame with P (PeGFP) in place of P and a fusion matrix protein (monomeric red fluorescent protein fused in frame at the carboxy terminus of M [MmRFP]) at the G-L gene junction, in addition to wild-type (wt) M protein in its normal location, was recovered, but the MmRFP was not incorporated into the virions. Subsequently, we generated recombinant viruses (VSV-PeGFP-DeltaM-Mtc and VSV-DeltaM-Mtc) encoding M protein with a carboxy-terminal tetracysteine tag (Mtc) in place of the M protein. These recombinant viruses incorporated Mtc at levels similar to M in wt VSV, demonstrating recovery of infectious rhabdoviruses encoding and incorporating a tagged M protein. Virions released from cells infected with VSV-PeGFP-DeltaM-Mtc and labeled with the biarsenical red dye (ReAsH) were dually fluorescent, fluorescing green due to incorporation of PeGFP in the nucleocapsids and red due to incorporation of ReAsH-labeled Mtc in the viral envelope. Transport and subsequent association of M protein with the plasma membrane were shown to be independent of microtubules. Sequential labeling of VSV-DeltaM-Mtc-infected cells with the biarsenical dyes ReAsH and FlAsH (green) revealed that newly synthesized M protein reaches the plasma membrane in less than 30 min and continues to accumulate there for up to 2 1/2 hours. Using dually fluorescent VSV, we determined that following adsorption at the plasma membrane, the time taken by one-half of the virus particles to enter cells and to uncoat their nucleocapsids in the cytoplasm is approximately 28 min.
Collapse
|
10
|
Plasma membrane microdomains containing vesicular stomatitis virus M protein are separate from microdomains containing G protein and nucleocapsids. J Virol 2008; 82:5536-47. [PMID: 18367537 DOI: 10.1128/jvi.02407-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunogold electron microscopy and analysis were used to determine the organization of the major structural proteins of vesicular stomatitis virus (VSV) during virus assembly. We determined that matrix protein (M protein) partitions into plasma membrane microdomains in VSV-infected cells as well as in transfected cells expressing M protein. The sizes of the M-protein-containing microdomains outside the virus budding sites (50 to 100 nm) were smaller than those at sites of virus budding (approximately 560 nm). Glycoprotein (G protein) and M protein microdomains were not colocalized in the plasma membrane outside the virus budding sites, nor was M protein colocalized with microdomains containing the host protein CD4, which efficiently forms pseudotypes with VSV envelopes. These results suggest that separate membrane microdomains containing either viral or host proteins cluster or merge to form virus budding sites. We also determined whether G protein or M protein was colocalized with VSV nucleocapsid protein (N protein) outside the budding sites. Viral nucleocapsids were observed to cluster in regions of the cytoplasm close to the plasma membrane. Membrane-associated N protein was colocalized with G protein in regions of plasma membrane of approximately 600 nm. In contrast to the case for G protein, M protein was not colocalized with these areas of nucleocapsid accumulation. These results suggest a new model of virus assembly in which an interaction of VSV nucleocapsids with G-protein-containing microdomains is a precursor to the formation of viral budding sites.
Collapse
|
11
|
Kolesnikova L, Ryabchikova E, Shestopalov A, Becker S. Basolateral Budding of Marburg Virus: VP40 Retargets Viral Glycoprotein GP to the Basolateral Surface. J Infect Dis 2007; 196 Suppl 2:S232-6. [DOI: 10.1086/520584] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
12
|
Haller O, Staeheli P, Kochs G. Interferon-induced Mx proteins in antiviral host defense. Biochimie 2007; 89:812-8. [PMID: 17570575 DOI: 10.1016/j.biochi.2007.04.015] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Accepted: 04/27/2007] [Indexed: 12/13/2022]
Abstract
Mx proteins are key components of the antiviral state induced by interferons in many species. They belong to the class of dynamin-like large guanosine triphosphatases (GTPases) known to be involved in intracellular vesicle trafficking and organelle homeostasis. Mx GTPases share structural and functional properties with dynamin, such as self-assembly and association with intracellular membranes. A unique property of some Mx GTPases is their antiviral activity against a wide range of RNA viruses, including influenza viruses and members of the bunyavirus family. These viruses are inhibited at an early stage in their life cycle, soon after host cell entry and before genome amplification. The mouse Mx1 GTPase accumulates in the cell nucleus where it associates with components of the PML nuclear bodies and inhibits influenza and Thogoto viruses known to replicate in the nucleus. The human MxA GTPase accumulates in the cytoplasm and is partly associated with a COP-I-positive subcompartment of the endoplasmic reticulum. This membrane compartment seems to provide an interaction platform that facilitates viral target recognition. In the case of bunyaviruses, MxA recognizes the viral nucleocapsid protein and interferes with its role in viral genome replication. In the case of Thogoto virus, MxA recognizes the viral nucleoprotein and prevents the incoming viral nucleocapsids from being transported into the nucleus, the site of viral transcription and replication. In both cases, GTP-binding and carboxy-terminal effector functions of MxA are required for target recognition. In general, Mx GTPases appear to detect viral infection by sensing nucleocapsid-like structures. As a consequence, these viral components are trapped and sorted to locations where they become unavailable for the generation of new virus particles.
Collapse
Affiliation(s)
- Otto Haller
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | | | |
Collapse
|
13
|
Subhashri R, Shaila MS. Characterization of membrane association of Rinderpest virus matrix protein. Biochem Biophys Res Commun 2007; 355:1096-101. [PMID: 17336269 DOI: 10.1016/j.bbrc.2007.02.088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 11/30/2022]
Abstract
Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M protein gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein.
Collapse
Affiliation(s)
- R Subhashri
- Department of Microbiology and Cell biology, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | |
Collapse
|
14
|
Stertz S, Reichelt M, Krijnse-Locker J, Mackenzie J, Simpson JC, Haller O, Kochs G. Interferon-Induced, Antiviral Human MxA Protein Localizes to a Distinct Subcompartment of the Smooth Endoplasmic Reticulum. J Interferon Cytokine Res 2006; 26:650-60. [PMID: 16978069 DOI: 10.1089/jir.2006.26.650] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human MxA protein belongs to the superfamily of dynamin-like large GTPases that are involved in intracellular membrane trafficking. MxA is induced by interferons-alpha/beta (IFN-alpha/beta) and is a key component of the antiviral response against RNA viruses. Here, we show that MxA localizes to membranes that are positive for specific markers of the smooth endoplasmic reticulum, such as Syntaxin17, but is excluded from other membrane compartments. Overexpression of MxA leads to a characteristic reorganization of the associated membranes. Interestingly, Hook3, mannose-6-phosphate receptor, and Lamp-1, which normally accumulate in cis- Golgi, endosomes, and lysosomes, respectively, also colocalized with MxA, indicating that these markers were redistributed to the MxA-positive compartment. Functional assays, however, did not show any effect of MxA on endocytosis or the secretory pathway. The present results demonstrate that MxA is an IFN-induced antiviral effector protein that resembles the constitutively expressed large GTPase family members in its capacity to localize to and reorganize intracellular membranes.
Collapse
Affiliation(s)
- Silke Stertz
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Bamberg S, Kolesnikova L, Möller P, Klenk HD, Becker S. VP24 of Marburg virus influences formation of infectious particles. J Virol 2005; 79:13421-33. [PMID: 16227263 PMCID: PMC1262563 DOI: 10.1128/jvi.79.21.13421-13433.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly pathogenic enveloped Marburg virus (MARV) is composed of seven structural proteins and the nonsegmented negative-sense viral RNA genome. Four proteins (NP, VP35, VP30, and L) make up the helical nucleocapsid, which is surrounded by a matrix that is composed of the viral proteins VP40 and VP24. VP40 is functionally homologous to the matrix proteins of other nonsegmented negative-strand RNA viruses. As yet, the function of VP24 remains elusive. In the present study we found that VP24 colocalized with inclusions in MARV-infected cells that contain preformed nucleocapsids and with nucleocapsids outside the inclusions. Coexpression studies revealed that VP24 is recruited into the inclusions by the presence of NP. Furthermore, VP24 displayed membrane-binding properties and was recruited into filamentous virus-like particles (VLPs) that are induced by VP40. The incorporation of VP24 altered neither the morphology of VLPs nor the budding efficiency of VLPs. When VP24 was silenced in MARV-infected cells by small interfering RNA technology, the release of viral particles was significantly reduced while viral transcription and replication were unimpaired. Our data support the idea that VP24 is essential for a process that takes place after replication and transcription and before budding of virus progeny. It is presumed that VP24 is necessary for the formation of transport-competent nucleocapsids and/or the interaction between the nucleocapsids and the budding sites at the plasma membrane.
Collapse
Affiliation(s)
- Sandra Bamberg
- Institut für Virologie der Philipps-Universität Marburg, Robert-Koch-Strasse 17, D-35037 Marburg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Rhabdoviruses are a diverse, widely-distributed group of enveloped viruses that assemble and bud from the plasma membrane of host cells. Recent advances in the identification of domains on both the envelope glycoprotein and the matrix protein of rhabdoviruses that contribute to virus assembly and release have allowed us to refine current models of rhabdovirus budding and to describe in better detail the interplay between both viral and cellular components involved in the budding process. In this review we discuss the steps involved in rhabdovirus assembly beginning with genome encapsidation and the association of nucleocapsid-matrix protein pre-assembly complexes with the inner leaflet of the plasma membrane, how condensation of these complexes may occur, how microdomains containing the envelope glycoprotein facilitate bud site formation, and how multiple forms of the matrix protein may participate in virion extrusion and release.
Collapse
Affiliation(s)
- Himangi R Jayakar
- GTx Inc., 3 N. Dunlap, Van Vleet Research Building, Memphis, TN 38163, USA
| | | | | |
Collapse
|
17
|
Kolesnikova L, Bamberg S, Berghöfer B, Becker S. The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 2004; 78:2382-93. [PMID: 14963134 PMCID: PMC369247 DOI: 10.1128/jvi.78.5.2382-2393.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VP40, the matrix protein of Marburg virus, is a peripheral membrane protein that has been shown to associate with membranes of multivesicular bodies (MVBs) (L. Kolesnikova, H. Bugany, H.-D. Klenk, and S. Becker, J. Virol. 76:1825-1838, 2002). The present study revealed that VP40 is bound to cellular membranes rapidly after synthesis. Time course studies were performed to trace the distribution of VP40 during the course of expression. First, VP40 was homogenously distributed throughout the cytoplasm, although the majority of protein (70%) was already membrane associated. Next, VP40 accumulated in MVBs and in tubular protrusions emerging from MVBs. Finally, VP40 appeared in a patch-like pattern beneath the plasma membrane. These morphological results were supported by iodixanol density gradient analyses. The majority of VP40-positive membranes were first detected comigrating with small vesicles. VP40 was then shifted to fractions containing endosomal marker proteins, and later, to fractions containing plasma membrane marker proteins. Blocking of protein synthesis by use of cycloheximide at the time when VP40 was mainly associated with the small vesicles did not prevent the redistribution of VP40 to the late endosomes and further to the plasma membrane. The inhibition of intracellular vesicular trafficking by monensin significantly reduced the appearance of VP40 at the plasma membrane. In conclusion, we suggest that the transport of the Marburg virus matrix protein VP40 involves its accumulation in MVBs followed by the redistribution of VP40-enriched membrane clusters to the plasma membrane.
Collapse
Affiliation(s)
- Larissa Kolesnikova
- Institut für Virologie der Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
18
|
Schmitt AP, Lamb RA. Escaping from the cell: assembly and budding of negative-strand RNA viruses. Curr Top Microbiol Immunol 2004; 283:145-96. [PMID: 15298170 DOI: 10.1007/978-3-662-06099-5_5] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Negative-strand RNA virus particles are formed by a process that includes the assembly of viral components at the plasma membranes of infected cells and the subsequent release of particles by budding. Here, we review recent progress that has been made in understanding the mechanisms of negative-strand RNA virus assembly and bud- ding. Important topics for discussion include the key role played by the viral matrix proteins in assembly of viruses and viruslike particles, as well as roles played by additional viral components such as the viral glycoproteins. Various interactions that contribute to virus assembly are discussed, including interactions between matrix proteins and membranes, interactions between matrix proteins and glycoproteins, interactions between matrix proteins and nucleocapsids, and interactions that lead to matrix protein self-assembly. Selection of specific sites on plasma membranes to be used for virus assembly and budding is described, including the asymmetric budding of some viruses in polarized epithelial cells and assembly of viral components in lipid raft microdomains. Evidence for the involvement of cellular proteins in the late stages of rhabdovirus and filovirus budding is discussed as well as the possible involvement of similar host factors in the late stages of budding of other negative-strand RNA viruses.
Collapse
Affiliation(s)
- A P Schmitt
- Department of Biochemistry, Molecular Biology, and Cell Biology, Howard Hughes Medical Institute, Northwestern University, Evanston, IL, 60208-3500, USA
| | | |
Collapse
|
19
|
Chu JJH, Ng ML. Infection of polarized epithelial cells with flavivirus West Nile: polarized entry and egress of virus occur through the apical surface. J Gen Virol 2002; 83:2427-2435. [PMID: 12237424 DOI: 10.1099/0022-1317-83-10-2427] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both polarized epithelial Vero (C1008) and non-polarized Vero (control) cells were grown on permeable cell culture inserts and infected either apically or basolaterally with West Nile (WN) or Kunjin (KUN) virus. KUN virus (closely related to WN virus) was used as a comparison. Using indirect immunofluorescence and plaque assays of productive virus titres, entry of WN and KUN viruses was confined to the apical surface of polarized epithelial cells. For the first time, these results provided evidence on the distribution of flavivirus-specific receptor(s) in polarized epithelial cells; that is to say that receptor expression was shown to be predominant at the apical surface. In addition, the release of these viruses from polarized Vero C1008 epithelial cells was also examined. Egress of WN virus strain Sarafend (S) was observed to occur predominantly at the apical surface of Vero C1008 cells. In contrast, the release of KUN virus was bi-directional from polarized Vero C1008 cells. Furthermore, disruption of the cellular microtubule network was shown to inhibit the apical release of WN (S) virus but had no effect on the release of KUN virus. Hence, the difference in the release of these closely related viruses suggested the involvement of a microtubule-dependent, polarized sorting mechanism for WN virus proteins but not for KUN virus proteins in polarized epithelial cells.
Collapse
Affiliation(s)
- J J H Chu
- Department of Microbiology, 5 Science Drive 2, National University of Singapore, 117597, Singapore1
| | - M L Ng
- Department of Microbiology, 5 Science Drive 2, National University of Singapore, 117597, Singapore1
| |
Collapse
|
20
|
Gaudier M, Gaudin Y, Knossow M. Crystal structure of vesicular stomatitis virus matrix protein. EMBO J 2002; 21:2886-92. [PMID: 12065402 PMCID: PMC126044 DOI: 10.1093/emboj/cdf284] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Revised: 04/17/2002] [Accepted: 04/17/2002] [Indexed: 11/13/2022] Open
Abstract
The vesicular stomatitis virus (VSV) matrix protein (M) interacts with cellular membranes, self-associates and plays a major role in virus assembly and budding. We present the crystallographic structure, determined at 1.96 A resolution, of a soluble thermolysin resistant core of VSV M. The fold is a new fold shared by the other vesiculovirus matrix proteins. The structure accounts for the loss of stability of M temperature-sensitive mutants deficient in budding, and reveals a flexible loop protruding from the globular core that is important for self-assembly. Membrane floatation shows that, together with the M lysine-rich N-terminal peptide, a second domain of the protein is involved in membrane binding. Indeed, the structure reveals a hydrophobic surface located close to the hydrophobic loop and surrounded by conserved basic residues that may constitute this domain. Lastly, comparison of the negative-stranded virus matrix proteins with retrovirus Gag proteins suggests that the flexible link between their major membrane binding domain and the rest of the structure is a common feature shared by these proteins involved in budding and virus assembly.
Collapse
Affiliation(s)
| | - Yves Gaudin
- Laboratoire d’Enzymologie et Biochimie Structurales and
Laboratoire de Génétique des Virus, CNRS, 91198 Gif sur Yvette Cedex, France Corresponding author e-mail:
| | - Marcel Knossow
- Laboratoire d’Enzymologie et Biochimie Structurales and
Laboratoire de Génétique des Virus, CNRS, 91198 Gif sur Yvette Cedex, France Corresponding author e-mail:
| |
Collapse
|
21
|
Zimmer G, Zimmer KP, Trotz I, Herrler G. Vesicular stomatitis virus glycoprotein does not determine the site of virus release in polarized epithelial cells. J Virol 2002; 76:4103-7. [PMID: 11907250 PMCID: PMC136080 DOI: 10.1128/jvi.76.8.4103-4107.2002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In polarized epithelial cells, the vesicular stomatitis virus glycoprotein is segregated to the basolateral plasma membrane, where budding of the virus takes place. We have generated recombinant viruses expressing mutant glycoproteins without the basolateral-membrane-targeting signal in the cytoplasmic domain. Though about 50% of the mutant glycoproteins were found at the apical plasma membranes of infected MDCK cells, the virus was still predominantly released at the basolateral membranes, indicating that factors other than the glycoprotein determine the site of virus budding.
Collapse
Affiliation(s)
- Gert Zimmer
- Institut für Virologie, Tierärztliche Hochschule, Hannover, Germany.
| | | | | | | |
Collapse
|
22
|
Riedl P, Moll M, Klenk HD, Maisner A. Measles virus matrix protein is not cotransported with the viral glycoproteins but requires virus infection for efficient surface targeting. Virus Res 2002; 83:1-12. [PMID: 11864737 DOI: 10.1016/s0168-1702(01)00379-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
As we have shown earlier, the measles virus (MV) glycoproteins H and F are expressed on both, the apical and the basolateral membrane of polarized Madin-Darby canine kidney cells. In contrast to the glycoproteins, we found the viral matrix protein (M) to accumulate selectively at the apical plasma membrane of MV-infected cells. M did not colocalize with the glycoproteins at basolateral membranes of polarized cells indicating an independent surface transport mechanism. Analysis of infected cells treated with monensin supported this view. When H and F were retained in the medial Golgi by monensin treatment, M did not accumulate in this cellular compartment. To elucidate the subcellular transport mechanism of the cytosolic M protein, M was expressed in the absence of other viral proteins. Flotation analysis demonstrated that most of the M protein coflotated in infected or in M-transfected cells with cellular membranes. Thus, the M protein possesses the intrinsic ability to bind to lipid membranes. Unexpectedly, plasmid-encoded M protein was rarely found to accumulate at surface membranes. Although cotransport with the viral glycoproteins was not needed, M transport to the plasma membrane required a component only provided in MV-infected cells.
Collapse
Affiliation(s)
- Petra Riedl
- Institute of Virology, Philipps University of Marburg, Robert-Koch-Strasse 17, 35037 Marburg, Germany
| | | | | | | |
Collapse
|
23
|
Kolesnikova L, Bugany H, Klenk HD, Becker S. VP40, the matrix protein of Marburg virus, is associated with membranes of the late endosomal compartment. J Virol 2002; 76:1825-38. [PMID: 11799178 PMCID: PMC135914 DOI: 10.1128/jvi.76.4.1825-1838.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Localization of VP40 in Marburg virus (MBGV)-infected cells was studied by using immunofluorescence and immunoelectron microscopic analysis. VP40 was detected in association with nucleocapsid structures, present in viral inclusions and at sites of virus budding. Additionally, VP40 was identified in the foci of virus-induced membrane proliferation and in intracellular membrane clusters which had the appearance of multivesicular bodies (MVBs). VP40-containing MVBs were free of nucleocapsids. When analyzed by immunogold labeling, the concentration of VP40 in MVBs was six times higher than in nucleocapsid structures. Biochemical studies showed that recombinant VP40 represented a peripheral membrane protein that was stably associated with membranes by hydrophobic interaction. Recombinant VP40 was also found in association with membranes of MVBs and in filopodia- or lamellipodia-like protrusions at the cell surface. Antibodies against marker proteins of various cellular compartments showed that VP40-positive membranes contained Lamp-1 and the transferrin receptor, confirming that they belong to the late endosomal compartment. VP40-positive membranes were also associated with actin. Western blot analysis of purified MBGV structural proteins demonstrated trace amounts of actin, Lamp-1, and Rab11 (markers of recycling endosomes), while markers for other cellular compartments were absent. Our data indicate that MBGV VP40 was able to interact with membranes of late endosomes in the course of viral infection. This capability was independent of other MBGV proteins.
Collapse
Affiliation(s)
- Larissa Kolesnikova
- Institut für Virologie der Philipps-Universität Marburg, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
24
|
Gaudier M, Gaudin Y, Knossow M. Cleavage of vesicular stomatitis virus matrix protein prevents self-association and leads to crystallization. Virology 2001; 288:308-14. [PMID: 11601902 DOI: 10.1006/viro.2001.1062] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The matrix protein (M) of vesicular stomatitis virus is responsible for the budding of newly formed virions out of host cells. In vitro, it has been shown to self-associate, a property that may be related to the role of M in virus assembly but also prevents crystallization. Using limited proteolysis by thermolysin, we have isolated and characterized two soluble fragments of the protein that remain noncovalently associated. The digestion product does not self-associate nor is it recruited in aggregates formed by intact M molecules. These results identify a peptide, located at the surface of the protein and disorganized by thermolysin cleavage, responsible for M self-association. The thermolysin-resistant core of M has been crystallized and the crystals diffract to 2-A resolution.
Collapse
Affiliation(s)
- M Gaudier
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif sur Yvette Cedex, France
| | | | | |
Collapse
|
25
|
Jasenosky LD, Neumann G, Lukashevich I, Kawaoka Y. Ebola virus VP40-induced particle formation and association with the lipid bilayer. J Virol 2001; 75:5205-14. [PMID: 11333902 PMCID: PMC114926 DOI: 10.1128/jvi.75.11.5205-5214.2001] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral protein 40 (VP40) of Ebola virus appears equivalent to matrix proteins of other viruses, yet little is known about its role in the viral life cycle. To elucidate the functions of VP40, we investigated its ability to induce the formation of membrane-bound particles when it was expressed apart from other viral proteins. We found that VP40 is indeed able to induce particle formation when it is expressed in mammalian cells, and this process appeared to rely on a conserved N-terminal PPXY motif, as mutation or loss of this motif resulted in markedly reduced particle formation. These findings demonstrate that VP40 alone possesses the information necessary to induce particle formation, and this process most likely requires cellular WW domain-containing proteins that interact with the PPXY motif of VP40. The ability of VP40 to bind cellular membranes was also studied. Flotation gradient analysis indicated that VP40 binds to membranes in a hydrophobic manner, as NaCl at 1 M did not release the protein from the lipid bilayer. Triton X-114 phase-partitioning analysis suggested that VP40 possesses only minor features of an integral membrane protein. We confirmed previous findings that truncation of the 50 C-terminal amino acids of VP40 results in decreased association with cellular membranes and demonstrated that this deletion disrupts hydrophobic interactions of VP40 with the lipid bilayer, as well as abolishing particle formation. Truncation of the 150 C-terminal amino acids or 100 N-terminal amino acids of VP40 enhanced the protein's hydrophobic association with cellular membranes. These data suggest that VP40 binds the lipid bilayer in an efficient yet structurally complex fashion.
Collapse
Affiliation(s)
- L D Jasenosky
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
26
|
Mabit H, Schaller H. Intracellular hepadnavirus nucleocapsids are selected for secretion by envelope protein-independent membrane binding. J Virol 2000; 74:11472-8. [PMID: 11090143 PMCID: PMC112426 DOI: 10.1128/jvi.74.24.11472-11478.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hepadnaviruses are DNA viruses but, as pararetroviruses, their morphogenesis initiates with the encapsidation of an RNA pregenome, and these viruses have therefore evolved mechanisms to exclude nucleocapsids that contain incompletely matured genomes from participating in budding and secretion. We provide here evidence that binding of hepadnavirus core particles from the cytosol to their target membranes is a distinct step in morphogenesis, discriminating among different populations of intracellular capsids. Using the duck hepatitis B virus (DHBV) and a flotation assay, we found about half of the intracellular capsids to be membrane associated due to an intrinsic membrane-binding affinity. In contrast to free cytosolic capsids, this subpopulation contained largely mature, double-stranded DNA genomes and lacked core protein hyperphosphorylation, both features characteristic for secreted virions. Against expectation, however, the selective membrane attachment observed did not require the presence of the large DHBV envelope protein, which has been considered to be crucial for nucleocapsid-membrane interaction. Furthermore, removal of surface-exposed phosphate residues from nonfloating capsids by itself did not suffice to confer membrane affinity and, finally, hyperphosphorylation was absent from nonenveloped nucleocapsids that were released from DHBV-transfected cells. Collectively, these observations argue for a model in which nucleocapsid maturation, involving the viral genome, capsid structure, and capsid dephosphorylation, leads to the exposure of a membrane-binding signal as a step crucial for selecting the matured nucleocapsid to be incorporated into the capsid-independent budding of virus particles.
Collapse
Affiliation(s)
- H Mabit
- Zentrum für Molekulare Biologie Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
27
|
Jayakar HR, Murti KG, Whitt MA. Mutations in the PPPY motif of vesicular stomatitis virus matrix protein reduce virus budding by inhibiting a late step in virion release. J Virol 2000; 74:9818-27. [PMID: 11024108 PMCID: PMC102018 DOI: 10.1128/jvi.74.21.9818-9827.2000] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2000] [Accepted: 07/25/2000] [Indexed: 11/20/2022] Open
Abstract
The N terminus of the matrix (M) protein of vesicular stomatitis virus (VSV) and of other rhabdoviruses contains a highly conserved PPPY sequence (or PY motif) similar to the late (L) domains in the Gag proteins of some retroviruses. These L domains in retroviral Gag proteins are required for efficient release of virus particles. In this report, we show that mutations in the PPPY sequence of the VSV M protein reduce virus yield by blocking a late stage in virus budding. We also observed a delay in the ability of mutant viruses to cause inhibition of host gene expression compared to wild-type (WT) VSV. The effect of PY mutations on virus budding appears to be due to a block at a stage just prior to virion release, since electron microscopic examination of PPPA mutant-infected cells showed a large number of assembled virions at the plasma membrane trapped in the process of budding. Deletion of the glycoprotein (G) in addition to these mutations further reduced the virus yield to less than 1% of WT levels, and very few particles were assembled at the cell surface. This observation suggested that G protein aids in the initial stage of budding, presumably during the formation of the bud site. Overall, our results confirm that the PPPY sequence of the VSV M protein possesses L domain activity analogous to that of the retroviral Gag proteins.
Collapse
Affiliation(s)
- H R Jayakar
- Department of Microbiology and Immunology, University of Tennessee-Memphis, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
28
|
Chiou PP, Kim CH, Ormonde P, Leong JA. Infectious hematopoietic necrosis virus matrix protein inhibits host-directed gene expression and induces morphological changes of apoptosis in cell cultures. J Virol 2000; 74:7619-27. [PMID: 10906216 PMCID: PMC112283 DOI: 10.1128/jvi.74.16.7619-7627.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) infection in tissue culture cells has previously been shown to result in the shutdown of host protein synthesis, cell rounding, and cell death. We report here an investigation of the cytopathogenicity of the viral phosphoprotein (P or M1), matrix (M or M2), and nonvirion (NV) proteins in cultured fish cells. The expression of M alone potently inhibited reporter gene expression from a viral and an interferon (IFN)-inducible promoter, whereas P and NV did not produce a similar effect. Northern blot analysis further revealed a reduction in the steady-state level of reporter mRNA when the M gene was cotransfected into cells; conversely, M mRNA was not drastically reduced in the same cells. By immunofluorescence confocal microscopy, fragmented nuclei were found in some cells expressing M protein but not in cells expressing P, NV, or beta-galactosidase protein. Electron microscopy revealed the morphological changes associated with apoptosis in the M-transfected cells. Furthermore, IHNV infection was shown to produce DNA "laddering" in cultured cells. Taken together, these data suggested at least two functions for M protein in an IHNV infection: down regulation of host transcription and the induction of programmed cell death. In the course of these experiments, we also discovered that NV expression was associated with cell rounding, the first biological effect on cells to be attributed to the NV gene.
Collapse
Affiliation(s)
- P P Chiou
- Department of Microbiology and Center for Salmon Disease Research, Oregon State University, Corvallis, Oregon 97331-3804, USA
| | | | | | | |
Collapse
|
29
|
Kiernan RE, Ono A, Freed EO. Reversion of a human immunodeficiency virus type 1 matrix mutation affecting Gag membrane binding, endogenous reverse transcriptase activity, and virus infectivity. J Virol 1999; 73:4728-37. [PMID: 10233933 PMCID: PMC112515 DOI: 10.1128/jvi.73.6.4728-4737.1999] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously characterized mutations in the human immunodeficiency virus type 1 matrix (MA) protein that displayed reduced infectivity in single-round assays, defects in the stable synthesis of viral DNA in infected cells, and impaired endogenous reverse transcriptase activity. The mutants, which contained substitutions in a highly conserved Leu at MA amino acid 20, also increased binding of Gag to membrane. To elucidate further the role of MA in the virus replication cycle, we have characterized a viral revertant of an amino acid 20 mutant (20LK). The revertant virus, which replicates with essentially wild-type kinetics in H9 cells, contains second-site compensatory changes at MA amino acids 73 (E-->K) and 82 (A-->T), while retaining the original 20LK mutation. Single-cycle infectivity assays, performed with luciferase-expressing viruses, show that the 20LK/73EK/82AT triple mutant displays markedly improved infectivity relative to the original 20LK mutant. The stable synthesis of viral DNA in infected cells is also significantly increased compared with that of 20LK DNA. Furthermore, activity of revertant virions in endogenous reverse transcriptase assays is restored to near-wild-type-levels. Interestingly, although 20LK/73EK/82AT reverses the defects in replication kinetics, postentry events, and endogenous reverse transcriptase activity induced by the 20LK mutation, the reversion does not affect the 20LK-imposed increase in Gag membrane binding. Mutants containing single and double amino acid substitutions were constructed, and their growth kinetics were examined. Only virus containing all three changes (20LK/73EK/82AT) grew with significantly accelerated kinetics; 73EK, 73EK/82AT, and 20LK/82AT mutants displayed pronounced defects in virus particle production. Viral core-like complexes were isolated by sucrose density gradient centrifugation of detergent-treated virions. Intriguingly, the protein composition of wild-type and mutant detergent-resistant complexes differed markedly. In wild-type and 20LK complexes, MA was removed following detergent solubilization of the viral membrane. In contrast, in revertant preparations, the majority of MA cosedimented with the detergent-resistant complex. These results suggest that the 20LK/73EK/82AT mutations induced a significant alteration in MA-MA or MA-core interactions.
Collapse
Affiliation(s)
- R E Kiernan
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
30
|
Nakahara K, Ohnuma H, Sugita S, Yasuoka K, Nakahara T, Tochikura TS, Kawai A. Intracellular behavior of rabies virus matrix protein (M) is determined by the viral glycoprotein (G). Microbiol Immunol 1999; 43:259-70. [PMID: 10338196 DOI: 10.1111/j.1348-0421.1999.tb02402.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To investigate the nature and intracellular behavior of the matrix (M) protein of an avirulent strain (HEP-Flury) of rabies virus, we cloned and sequenced the cDNA of the protein. Using expression vectors pZIP-NeoSV(X)1 and pCDM8, the cDNA was transfected to animal cells (BHK-21 and COS-7) with or without coexpression of viral glycoprotein (G). When M protein alone was expressed in the cells, it displayed homogeneous distribution in the whole cell including the nucleus. In contrast, coexpression with G protein resulted in the abolishment of nuclear distribution of M antigen, and both of the antigens displayed a colocalized distribution in the cell, especially at the cellular membrane as seen in the virus-infected cells, while the distribution of G antigen was not affected by coexpressed M antigen. Immunoprecipitation studies revealed that M protein was coprecipitated with G protein by anti-G antibody, and vice versa, although cross-linking with dithiobis(succinimidyl propionate) was necessary for coprecipitation because of their easier dissociation in the presence of sodium deoxycholate. These results suggest that M protein intimately associates with G protein, which may affect or regulate the behavior (e.g., intracellular localization) of M protein. Studies with deletion mutants of M protein indicate that an internal region around the amino acids from 115 to 151 is essential for the M protein to preserve its binding ability to G protein.
Collapse
Affiliation(s)
- K Nakahara
- Department of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Ono A, Freed EO. Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. J Virol 1999; 73:4136-44. [PMID: 10196310 PMCID: PMC104193 DOI: 10.1128/jvi.73.5.4136-4144.1999] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Binding of the human immunodeficiency virus type 1 (HIV-1) Gag protein precursor, Pr55(Gag), to membrane is an indispensable step in virus assembly. Previously, we reported that a matrix (MA) residue 6 substitution (6VR) imposed a virus assembly defect similar to that observed with myristylation-defective mutants, suggesting that the 6VR change impaired membrane binding. Intriguingly, the 6VR mutation had no effect on Gag myristylation. The defective phenotype imposed by 6VR was reversed by changes at other positions in MA, including residue 97. In this study, we use several biochemical methods to demonstrate that the residue 6 mutation, as well as additional substitutions in MA amino acids 7 and 8, reduce membrane binding without affecting N-terminal myristylation. This effect is observed in the context of Pr55(Gag), a truncated Gag containing only MA and CA, and in MA itself. The membrane binding defect imposed by the 6VR mutation is reversed by second-site changes in MA residues 20 and 97, both of which, when present alone, increase membrane binding to levels greater than those for the wild type. Both reduced and enhanced membrane binding imposed by the MA substitutions depend upon the presence of the N-terminal myristate. The results support the myristyl switch model recently proposed for the regulation of Gag membrane binding, according to which membrane binding is determined by the degree of exposure or sequestration of the N-terminal myristate moiety. Alternatively, insertion of the myristate into the lipid bilayer might be a prerequisite event for the function of other distinct MA-encoded membrane binding domains.
Collapse
Affiliation(s)
- A Ono
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | |
Collapse
|
32
|
Gaudin Y, Sturgis J, Doumith M, Barge A, Robert B, Ruigrok RW. Conformational flexibility and polymerization of vesicular stomatitis virus matrix protein. J Mol Biol 1997; 274:816-25. [PMID: 9405160 DOI: 10.1006/jmbi.1997.1439] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The matrix protein of vesicular stomatitis virus (VSV) plays a pivotal role in viral assembly. We previously demonstrated the ability of M protein to self-associate at low salt concentrations. Now, we show the ability of M protein to polymerize in the presence of ZnCl2 in a nucleation-dependent manner. Analysis of kinetics revealed that the nuclei are probably made of three or four molecules of M. These results are consistent with the idea that in vitro self association of M protein is not due to amorphous aggregation but rather reflects an intrinsic ability of M to polymerize. Using attenuated total reflectance Fourier transform infrared spectroscopy, we showed that M polymerization is associated with an increase in the beta-sheet content of the protein. We propose a model explaining both the apparent M protein solubility in infected cells and how M polymerization could promote viral assembly. Data available for other negative strand viruses suggest that M polymerization may be the general basis of viral assembly.
Collapse
Affiliation(s)
- Y Gaudin
- Laboratoire de génétique des virus du CNRS, 91198 Gif sur Yvette cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Ito Y, Nishizono A, Mannen K, Hiramatsu K, Mifune K. Rabies virus M protein expressed in Escherichia coli and its regulatory role in virion-associated transcriptase activity. Arch Virol 1996; 141:671-83. [PMID: 8645103 DOI: 10.1007/bf01718325] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rabies virus M protein was expressed in Escherichia coli in the form of a fusion protein with maltose binding protein (MBP) and purified by amylose affinity column chromatography after extraction. In order to investigate the possible regulatory role of M protein in viral transcription, an assay system for rabies virion-associated transcriptase activity was established by using the ribonucleoprotein (RNP) cores prepared from purified virions. Analysis of the products of the transcription assay system showed that the products are sensitive to RNase and are positive-strand RNA. Addition of the fusion protein to the system after cleavage with a proteinase Factor Xa (FXa), which cleaves the fusion protein into the M protein and MBP, resulted in an efficient and dose-dependent inhibition of the transcription. Furthermore, addition to the system of anti-M protein monoclonal antibody significantly restored the transcription. Control experiments with the same transcription assaying system using rabies virus nucleoprotein expressed as a fusion protein with MBP and cleaved with FXa did not result in an inhibition of the transcription. These results suggest that the M protein of rabies virus has the property to down-regulate virion-associated transcription.
Collapse
Affiliation(s)
- Y Ito
- Department of Microbiology, Oita Medical University, Japan
| | | | | | | | | |
Collapse
|
34
|
Gaudin Y, Barge A, Ebel C, Ruigrok RW. Aggregation of VSV M protein is reversible and mediated by nucleation sites: implications for viral assembly. Virology 1995; 206:28-37. [PMID: 7831783 DOI: 10.1016/s0042-6822(95)80016-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Purified M protein of VSV has been reported to aggregate at low NaCl concentration. Using light scattering, analytical centrifugation, and electron microscopy (EM), we have studied this phenomenon. Our results demonstrate that self aggregation of M protein can be reversed by increasing the salt concentration. Below 250 mM NaCl, there is an equilibrium between aggregates and monomeric M protein. Most importantly, we demonstrate that aggregation only occurs in the presence of nucleation sites and that these sites are sensitive to trypsin. We have found conditions under which these nucleation sites can be eliminated, after which M remains soluble even at low salt concentration. Finally, using EM, we show that the aggregates of purified M protein share common structural aspects with the previously described internal "cigar" around which the nucleocapsid is wrapped. These new results help to explain why M is a soluble protein in the cytoplasm of the infected cell just up to the moment that it is integrated into the budding virion.
Collapse
Affiliation(s)
- Y Gaudin
- Laboratoire de génétique des virus du CNRS, Gif sur Yvette, France
| | | | | | | |
Collapse
|
35
|
Ye Z, Sun W, Suryanarayana K, Justice P, Robinson D, Wagner RR. Membrane-binding domains and cytopathogenesis of the matrix protein of vesicular stomatitis virus. J Virol 1994; 68:7386-96. [PMID: 7933122 PMCID: PMC237181 DOI: 10.1128/jvi.68.11.7386-7396.1994] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The membrane-binding affinity of the matrix (M) protein of vesicular stomatitis virus (VSV) was examined by comparing the cellular distribution of wild-type (wt) virus M protein with that of temperature-sensitive (ts) and deletion mutants probed by indirect fluorescent-antibody staining and fractionation of infected or plasmid-transfected CV1 cells. The M-gene mutant tsO23 caused cytopathic rounding of cells infected at permissive temperature but not of cells at the nonpermissive temperature; wt VSV also causes rounding, which prohibits study of M protein distribution by fluorescent-antibody staining. Little or no M protein can be detected in the plasma membrane of cells infected with tsO23 at the nonpermissive temperature, whereas approximately 20% of the M protein colocalized with the membrane fraction of cells infected with tsO23 at the permissive temperature. Cells transfected with a plasmid expressing intact 229-amino-acid wt M protein (M1-229) exhibited cytopathic cell rounding and actin filament dissolution, whereas cells retained normal polygonal morphology and actin filaments when transfected with plasmids expressing M proteins truncated to the first 74 N-terminal amino acids (M1-74) or deleted of the first 50 amino acids (M51-229) or amino acids 1 to 50 and 75 to 106 (M51-74/107-229). Truncated proteins M1-74 and M51-229 were readily detectable in the plasma membrane and cytosol of transfected cells as determined by both fluorescent-antibody staining and cell fractionation, as was the plasmid-expressed intact wt M protein. However, the expressed doubly deleted protein M51-74/107-229 could not be detected in plasma membrane by fluorescent-antibody staining or by cell fractionation, suggesting the presence of two membrane-binding sites spanning the region of amino acids 1 to 50 and amino acids 75 to 106 of the VSV M protein. These in vivo data were confirmed by an in vitro binding assay in which intact M protein and its deletion mutants were reconstituted in high- or low-ionic-strength buffers with synthetic membranes in the form of sonicated unilammelar vesicles. The results of these experiments appear to confirm the presence of two membrane-binding sites on the VSV M protein, one binding peripherally by electrostatic forces at the highly charged NH2 terminus and the other stably binding membrane integration of hydrophobic amino acids and located by a hydropathy plot between amino acids 88 and 119.
Collapse
Affiliation(s)
- Z Ye
- Department of Microbiology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|
36
|
Chong LD, Rose JK. Interactions of normal and mutant vesicular stomatitis virus matrix proteins with the plasma membrane and nucleocapsids. J Virol 1994; 68:441-7. [PMID: 8254754 PMCID: PMC236304 DOI: 10.1128/jvi.68.1.441-447.1994] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We demonstrated recently that a fraction of the matrix (M) protein of vesicular stomatitis virus (VSV) binds tightly to cellular membranes in vivo when expressed in the absence of other VSV proteins. This membrane-associated M protein was functional in binding purified VSV nucleocapsids in vitro. Here we show that the membrane-associated M protein is largely associated with a membrane fraction having the density of plasma membranes, indicating membrane specificity in the binding. In addition, we analyzed truncated forms of M protein to identify regions responsible for membrane association and nucleocapsid binding. Truncated M protein lacking the amino-terminal basic domain still associated with cellular membranes, although not as tightly as wild-type M protein, and could not bind nucleocapsids. In contrast, deletion of the carboxy-terminal 14 amino acids did not disrupt stable membrane association or nucleocapsid interaction. These results suggest that the amino terminus of M protein either interacts directly with membranes and nucleocapsids or stabilizes a conformation that is required for M protein to mediate both of these interactions.
Collapse
Affiliation(s)
- L D Chong
- Department of Pathology and Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
37
|
Affiliation(s)
- A Kawai
- Department of Molecular Microbiology, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | |
Collapse
|
38
|
Tashiro M, Seto JT, Klenk HD, Rott R. Possible involvement of microtubule disruption in bipolar budding of a Sendai virus mutant, F1-R, in epithelial MDCK cells. J Virol 1993; 67:5902-10. [PMID: 8396659 PMCID: PMC238010 DOI: 10.1128/jvi.67.10.5902-5910.1993] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Envelope glycoproteins F and HN of wild-type Sendai virus are transported to the apical plasma membrane domain of polarized epithelial MDCK cells, where budding of progeny virus occurs. On the other hand, a pantropic mutant, F1-R, buds bipolarly at both the apical and basolateral domains, and the viral glycoproteins have also been shown to be transported to both of these domains (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J.T. Seto, J. Virol. 64:4672-4677, 1990). MDCK cells were infected with wild-type virus and treated with the microtubule-depolymerizing drugs colchicine and nocodazole. Budding of the virus and surface expression of the glycoproteins were found to occur in a nonpolarized fashion similar to that found in cells infected with F1-R. In uninfected cells, the drugs were shown to interfere with apical transport of a secretory cellular glycoprotein, gp80, and basolateral uptake of [35S]methionine as well as to disrupt microtubule structure, indicating that cellular polarity of MDCK cells depends on the presence of intact microtubules. Infection by the F1-R mutant partially affected the transport of gp80, uptake of [35S]methionine, and the microtubule network, whereas wild-type virus had a marginal effect. These results suggest that apical transport of the glycoproteins of wild-type Sendai virus in MDCK cells depends on intact microtubules and that bipolar budding by F1-R is possibly due, at least in part, to the disruption of microtubules. Nucleotide sequence analyses of the viral genes suggest that the mutated M protein of F1-R might be involved in the alteration of microtubules.
Collapse
Affiliation(s)
- M Tashiro
- Department of Virology, Jichi Medical School, Tochigi-ken, Japan
| | | | | | | |
Collapse
|
39
|
Owens RJ, Rose JK. Cytoplasmic domain requirement for incorporation of a foreign envelope protein into vesicular stomatitis virus. J Virol 1993; 67:360-5. [PMID: 8093220 PMCID: PMC237371 DOI: 10.1128/jvi.67.1.360-365.1993] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Incorporation of human immunodeficiency virus type 1 (HIV-1) envelope proteins into vesicular stomatitis virus (VSV) particles was studied in a system that allows expressed envelope proteins to rescue phenotypically a temperature-sensitive mutant of VSV (tsO45). This mutant exhibits defective transport of its own envelope glycoprotein (G) and can be rescued by simultaneous expression of wild-type G protein from cDNA. We report here that a hybrid HIV-1-VSV protein containing the extracellular and transmembrane domains of the HIV-1 envelope protein fused to the cytoplasmic domain of VSV G protein was able to rescue the tsO45 mutant lacking the G protein, while the wild-type HIV-1 envelope protein was not. The VSV(HIV) pseudotypes obtained infected only CD4+ cells and were neutralized specifically by anti-HIV-1 sera. Our results indicate that the cytoplasmic tail of the VSV glycoprotein contains an independent signal capable of directing a foreign protein into VSV particles. The VSV(HIV) pseudotypes generated here were prepared in the absence of HIV-1 and should be useful for identifying molecules that block HIV-1 entry.
Collapse
Affiliation(s)
- R J Owens
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510-8023
| | | |
Collapse
|
40
|
Abstract
This chapter focuses on the interaction of viruses with epithelial cells. The role of specific pathways of virus entry and release in the pathogenesis of viral infection is examined together with the mechanisms utilized by viruses to circumvent the epithelial barrier. Polarized epithelial cells in culture, which can be grown on permeable supports, provide excellent systems for investigating the events in virus entry and release at the cellular level, and much information is being obtained using such systems. Much remains to be learned about the precise routes by which many viruses traverse the epithelial barrier to initiate their natural infection processes, although important information has been obtained in some systems. Another area of great interest for future investigation is the process of virus entry and release from other polarized cell types, including neuronal cells.
Collapse
Affiliation(s)
- S P Tucker
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
41
|
Abstract
The matrix (M) protein of vesicular stomatitis virus (VSV) is a major structural component of the virion which is generally believed to bridge between the membrane envelope and the ribonucleocapsid (RNP) core. To investigate the interaction of M protein with cellular membranes in the absence of other VSV proteins, we examined its distribution by subcellular fractionation after expression in HeLa cells. Approximately 90% of M protein, expressed without other viral proteins, was soluble, whereas the remaining 10% was tightly associated with membranes. A similar distribution in VSV-infected cells has been observed previously. Conditions known to release peripherally associated membrane proteins did not detach M protein from isolated membranes. Membrane-associated M protein was soluble in the detergent Triton X-114, whereas soluble M protein was not, suggesting a chemical or conformational difference between the two forms. Membranes containing associated M protein were able to bind RNP cores, whereas membranes lacking M protein were not. We suggest that this membrane-bound M fraction constitutes a functional subset of M protein molecules required for the attachment of RNP cores to membranes during normal virus budding.
Collapse
Affiliation(s)
- L D Chong
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510-8023
| | | |
Collapse
|
42
|
Schubert M, Joshi B, Blondel D, Harmison GG. Insertion of the human immunodeficiency virus CD4 receptor into the envelope of vesicular stomatitis virus particles. J Virol 1992; 66:1579-89. [PMID: 1310767 PMCID: PMC240885 DOI: 10.1128/jvi.66.3.1579-1589.1992] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant. To determine whether the transmembrane and cytoplasmic portions of the VSV G protein were required for insertion of the HIV receptor, a chimeric CD4/G glycoprotein gene was constructed and a vaccinia virus recombinant which expresses the fused CD4/G gene was isolated. The chimeric CD4/G protein was functional as shown in a syncytium-forming assay in HeLa cells as demonstrated by coexpression with a vaccinia virus recombinant expressing the HIV envelope protein. The CD4/G protein was efficiently inserted into the envelope of VSV, and the virus particles retained their infectivity even after specific immunoprecipitation experiments with monoclonal anti-CD4 antibodies. Expression of the normal CD4 protein also led to insertion of the receptor into the envelope of VSV particles. The efficiency of CD4 insertion was similar to that of CD4/G, with approximately 60 molecules of CD4/G or CD4 per virus particle compared with 1,200 molecules of VSV G protein. Considering that (i) the amount of VSV G protein in the cell extract was fivefold higher than for either CD4 or CD4/G and (ii) VSV G protein is inserted as a trimer (CD4 is a monomer), the insertion of VSV G protein was not significantly preferred over CD4 or CD4/G, if at all. We conclude that the efficiency of CD4 or CD4/G insertion appears dependent on the concentration of the glycoprotein rather than on specific selection of these glycoproteins during viral assembly.
Collapse
Affiliation(s)
- M Schubert
- Laboratory of Viral and Molecular Pathogenesis, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
43
|
Aponte GW, Keddie A, Halldén G, Hess R, Link P. Polarized intestinal hybrid cell lines derived from primary culture: establishment and characterization. Proc Natl Acad Sci U S A 1991; 88:5282-6. [PMID: 1711225 PMCID: PMC51856 DOI: 10.1073/pnas.88.12.5282] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A cell culture system has been developed that produces stable gastrointestinal (GI) polarized cell lines capable of maintaining hormone secretion. A spontaneously transformed rat mucosal epithelial cell was selected for hypoxanthine/guanine phosphoribosyltransferase deficiency and transfected with a plasmid conferring hygromycin resistance (BRIE 291 cells). Fusion of these cells with dispersed small intestinal epithelia cells resulted in hybrid cell lines that retained characteristic properties of the native GI cell more effectively than the transformed tumorigenic parental cell line. Hybrid hBRIE 380 cells are uniformly cuboidal with microvilli, contain villin, are contact inhibited, are anchorage dependent, require serum supplementation for growth, and are more sensitive to virus infection than the parental BRIE 291 cells. Fusion of BRIE 291 with dispersed pancreatic islet cells has resulted in a variety of pancreatic-hormone-producing cell lines. One of these, hybrid hBRIE 291-i2, forms confluent monolayers capable of synthesizing insulin-like immunoreactivity. These studies demonstrate that functionally polarized GI cells can be generated from primary cultures of nondividing committed epithelial cells by somatic cell hybridization and make feasible the selection and maintenance of specific GI epithelial cell types in confluent monolayer cultures.
Collapse
Affiliation(s)
- G W Aponte
- Department of Nutritional Sciences, University of California, Berkeley 94720
| | | | | | | | | |
Collapse
|
44
|
Owens RJ, Dubay JW, Hunter E, Compans RW. Human immunodeficiency virus envelope protein determines the site of virus release in polarized epithelial cells. Proc Natl Acad Sci U S A 1991; 88:3987-91. [PMID: 2023946 PMCID: PMC51578 DOI: 10.1073/pnas.88.9.3987] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In polarized epithelial cells, the release of enveloped viruses by budding at the cell surface is restricted to a specific cell membrane domain, either the apical or basolateral domain. To investigate the role of the envelope glycoprotein and the capsid proteins of human immunodeficiency virus type 1 (HIV-1) in determining the site of virus assembly, we analyzed virus maturation in a polarized monkey kidney cell line. A line of cells harboring the HIV-1 provirus (VERO-pFN) was found to differentiate into polarized epithelial cell monolayers upon reaching confluency. By electron microscopy, virus maturation was observed predominantly at the basolateral membranes of VERO-pFN cells. Analysis of HIV-1 proteins revealed that virtually all of glycoprotein gp120 and capsid protein p24 were found in the basolateral medium, while no HIV-1 proteins were detected apically. A recombinant vaccinia virus (VV) expressing the HIV-1 gag polyprotein (VVgag) was used to determine the site of release of HIV-1 core particles in polarized epithelial cells in the presence or absence of envelope glycoproteins. When cells were infected with VVgag in the absence of envelope proteins, similar amounts of the p24 capsid protein were released into virus particles at the apical or basolateral surface. In contrast, when cells were doubly infected with VVgag and a recombinant VV expressing the HIV-1 envelope glycoprotein (VVenv), 94% of p24 and all of gp120 were found to be associated with particles released into the basolateral medium. These results indicate that the HIV-1 envelope glycoprotein directly influences the site of release of virus particles containing the gag protein, probably via a specific interaction between the envelope protein and the gag protein.
Collapse
Affiliation(s)
- R J Owens
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- R W Compans
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | |
Collapse
|
46
|
Tashiro M, Yamakawa M, Tobita K, Seto JT, Klenk HD, Rott R. Altered budding site of a pantropic mutant of Sendai virus, F1-R, in polarized epithelial cells. J Virol 1990; 64:4672-7. [PMID: 2168957 PMCID: PMC247951 DOI: 10.1128/jvi.64.10.4672-4677.1990] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A protease activation mutant of Sendai virus, F1-R, causes a systemic infection in mice, whereas wild-type virus is exclusively pneumotropic (M. Tashiro, E. Pritzer, M. A. Khoshnan, M. Yamakawa, K. Kuroda, H.-D. Klenk, R. Rott, and J. T. Seto, Virology 165:577-583, 1988). Budding of F1-R has been observed bidirectionally at the apical and basolateral surfaces of the bronchial epithelium of mice and of MDCK cells, whereas wild-type virus buds apically (M. Tashiro, M. Yamakawa, K. Tobita, H.-D. Klenk, R. Rott, and J. T. Seto, J. Virol. 64:3627-3634, 1990). In this study, wild-type virus was shown to be produced primarily from the apical site of polarized MDCK cells grown on permeable membrane filters. Surface immunofluorescence and immunoprecipitation analyses revealed that transmembrane glycoproteins HN and F were expressed predominantly at the apical domain of the plasma membrane. On the other hand, infectious progeny of F1-R was released from the apical and basolateral surfaces, and HN and F were expressed at both regions of the cells. Since F1-R has amino acid substitutions in F and M proteins but none in HN, the altered budding of the virus and transport of the envelope glycoproteins might be attributed to interactions by F and M proteins. These findings suggest that in addition to proteolytic activation of the F glycoprotein, the differential site of budding, at the primary target of infection, is a determinant for organ tropism of Sendai virus in mice.
Collapse
Affiliation(s)
- M Tashiro
- Department of Virology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
47
|
McCreedy BJ, Lyles DS. Distribution of M protein and nucleocapsid protein of vesicular stomatitis virus in infected cell plasma membranes. Virus Res 1989; 14:189-205. [PMID: 2560291 DOI: 10.1016/0168-1702(89)90001-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The association of M protein and the nucleocapsid (N) protein of vesicular stomatitis virus (VSV) with the cytoplasmic surface of plasma membranes prepared from infected cells was examined by double label immunofluorescence. M protein in association with the cytoplasmic surface of the plasma membrane was distributed in two distinct labeling patterns. Punctate labeling of M protein in the plasma membrane was observed in association with corresponding labeling for the nucleocapsid protein. Diffusely labeled M protein was distributed in areas of the plasma membrane that were devoid of any detectable labeling for the nucleocapsid protein. Similar results were obtained with two different cell types at 4 h and later times postinfection. The diffuse label for M protein was present in membranes prepared from cells infected with a temperature-sensitive M protein mutant at the nonpermissive temperature, but neither the punctate label for M protein nor labeling for the nucleocapsid protein was observed. Upon shift to permissive temperature, both the punctate label for M protein and labeling for the nucleocapsid protein began to reappear in membranes prepared from cells infected with the M protein mutant. These results indicate that M protein can associate with the plasma membrane without prior binding to nucleocapsids and that association of functional M protein with the plasma membrane is required for the stable association of nucleocapsids with the membrane during the process of viral budding.
Collapse
Affiliation(s)
- B J McCreedy
- Department of Microbiology and Immunology, Bowman Gray School of Medicine of Wake Forest University, Winston-Salem, NC 27103
| | | |
Collapse
|
48
|
Whitt MA, Chong L, Rose JK. Glycoprotein cytoplasmic domain sequences required for rescue of a vesicular stomatitis virus glycoprotein mutant. J Virol 1989; 63:3569-78. [PMID: 2547986 PMCID: PMC250946 DOI: 10.1128/jvi.63.9.3569-3578.1989] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have used transient expression of the wild-type vesicular stomatitis virus (VSV) glycoprotein (G protein) from cloned cDNA to rescue a temperature-sensitive G protein mutant of VSV in cells at the nonpermissive temperature. Using cDNAs encoding G proteins with deletions in the normal 29-amino-acid cytoplasmic domain, we determined that the presence of either the membrane-proximal 9 amino acids or the membrane-distal 12 amino acids was sufficient for rescue of the temperature-sensitive mutant. G proteins with cytoplasmic domains derived from other cellular or viral G proteins did not rescue the mutant, nor did G proteins with one or three amino acids of the normal cytoplasmic domain. Rescue correlated directly with the ability of the G proteins to be incorporated into virus particles. This was shown by analysis of radiolabeled particles separated on sucrose gradients as well as by electron microscopy of rescued virus after immunogold labeling. Quantitation of surface expression showed that all of the mutated G proteins were expressed less efficiently on the cell surface than was wild-type G protein. However, we were able to correct for differences in rescue efficiency resulting from differences in the level of surface expression by reducing wild-type G protein expression to levels equivalent to those observed for the mutated G proteins. Our results provide evidence that at least a portion of the cytoplasmic domain is required for efficient assembly of the VSV G protein into virions during virus budding.
Collapse
Affiliation(s)
- M A Whitt
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510
| | | | | |
Collapse
|
49
|
Bergmann JE. Using temperature-sensitive mutants of VSV to study membrane protein biogenesis. Methods Cell Biol 1989; 32:85-110. [PMID: 2558277 DOI: 10.1016/s0091-679x(08)61168-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- J E Bergmann
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|