1
|
Welte T, Kudva R, Kuhn P, Sturm L, Braig D, Müller M, Warscheid B, Drepper F, Koch HG. Promiscuous targeting of polytopic membrane proteins to SecYEG or YidC by the Escherichia coli signal recognition particle. Mol Biol Cell 2011; 23:464-79. [PMID: 22160593 PMCID: PMC3268725 DOI: 10.1091/mbc.e11-07-0590] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The YidC insertase also integrates multispanning membrane proteins that had been considered to be exclusively SecYEG dependent. Only membrane proteins that require SecA can be inserted only via SecYEG. Targeting to YidC is SRP dependent, and the C-terminus of YidC cross-links to SRP, FtsY, and ribosomal subunits. Protein insertion into the bacterial inner membrane is facilitated by SecYEG or YidC. Although SecYEG most likely constitutes the major integration site, small membrane proteins have been shown to integrate via YidC. We show that YidC can also integrate multispanning membrane proteins such as mannitol permease or TatC, which had been considered to be exclusively integrated by SecYEG. Only SecA-dependent multispanning membrane proteins strictly require SecYEG for integration, which suggests that SecA can only interact with the SecYEG translocon, but not with the YidC insertase. Targeting of multispanning membrane proteins to YidC is mediated by signal recognition particle (SRP), and we show by site-directed cross-linking that the C-terminus of YidC is in contact with SRP, the SRP receptor, and ribosomal proteins. These findings indicate that SRP recognizes membrane proteins independent of the downstream integration site and that many membrane proteins can probably use either SecYEG or YidC for integration. Because protein synthesis is much slower than protein transport, the use of YidC as an additional integration site for multispanning membrane proteins may prevent a situation in which the majority of SecYEG complexes are occupied by translating ribosomes during cotranslational insertion, impeding the translocation of secretory proteins.
Collapse
Affiliation(s)
- Thomas Welte
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
McDevitt CA, Buchanan G, Sargent F, Palmer T, Berks BC. Subunit composition and in vivo substrate-binding characteristics of Escherichia coli Tat protein complexes expressed at native levels. FEBS J 2006; 273:5656-68. [PMID: 17212781 DOI: 10.1111/j.1742-4658.2006.05554.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tat system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. Substrates are targeted to the Tat pathway by signal peptides containing a pair of consecutive arginine residues. The membrane proteins TatA, TatB and TatC are the essential components of this pathway in Escherichia coli. The complexes that these proteins form at native levels of expression have been investigated by the use of affinity tag-coding sequences fused to chromosomal tat genes. Distinct TatA and TatBC complexes were identified using size-exclusion chromatography and shown to have apparent molecular masses of approximately 700 and 500 kDa, respectively. Following in vivo expression, the Tat substrate protein SufI was found to copurify with the TatBC, but not the TatA, complex. This binding required the SufI signal peptide. Substitution of the twin-arginine residues in the SufI signal peptide by either twin lysine or twin alanine residues abolished export. However, both variant SufI proteins still copurified with the TatBC complex. These data show that the twin-arginine residues of the Tat consensus motif are not essential for binding of precursor to the TatBC complex but are required for the successful entry of the precursor into the transport cycle. The effect on substrate binding of single amino acid substitutions in TatC that affect Tat transport were studied using TatC variants Phe94Ala, Glu103Ala, Glu103Arg and Asp211Ala. Only variant Glu103Arg showed reduced copurification of SufI with TatBC. The transport defects associated with the other TatC variants do not, therefore, arise from an inability to bind substrate proteins.
Collapse
|
3
|
Facey SJ, Kuhn A. Membrane integration of E. coli model membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1694:55-66. [PMID: 15546657 DOI: 10.1016/j.bbamcr.2004.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/18/2004] [Accepted: 03/01/2004] [Indexed: 11/30/2022]
Abstract
The molecular events of membrane translocation and insertion have been investigated using a number of different model proteins. Each of these proteins has specific features that allow interaction with the membrane components which ensure that the proteins reach their specific local destination and final conformation. This review will give an overview on the best-characterized proteins studied in the bacterial system and emphasize the distinct aspects of the pathways.
Collapse
Affiliation(s)
- Sandra J Facey
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | | |
Collapse
|
4
|
Abstract
YidC of Echerichia coli, a member of the conserved Alb3/Oxa1/YidC family, is postulated to be important for biogenesis of membrane proteins. Here, we use as a model the lactose permease (LacY), a membrane transport protein with a known three-dimensional structure, to determine whether YidC plays a role in polytopic membrane protein insertion and/or folding. Experiments in vivo and with an in vitro transcription/translation/insertion system demonstrate that YidC is not necessary for insertion per se, but plays an important role in folding of LacY. By using the in vitro system and two monoclonal antibodies directed against conformational epitopes, LacY is shown to bind the antibodies poorly in YidC-depleted membranes. Moreover, LacY also folds improperly in proteoliposomes prepared without YidC. However, when the proteoliposomes are supplemented with purified YidC, LacY folds correctly. The results indicate that YidC plays a primary role in folding of LacY into its final tertiary conformation via an interaction that likely occurs transiently during insertion into the lipid phase of the membrane.
Collapse
Affiliation(s)
- Shushi Nagamori
- 5-748 Macdonald Research Laboratories, Rm. 6720, P.O. Box 951662, Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095-1662, USA
| | | | | |
Collapse
|
5
|
Alami M, Lüke I, Deitermann S, Eisner G, Koch HG, Brunner J, Müller M. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 2003; 12:937-46. [PMID: 14580344 DOI: 10.1016/s1097-2765(03)00398-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The twin-arginine translocation (Tat) machinery of the Escherichia coli inner membrane is dedicated to the export of proteins harboring a conserved SRRxFLK motif in their signal sequence. TatA, TatB, and TatC are the functionally essential constituents of the Tat machinery, but their precise function is unknown. Using site-specific crosslinking, we have analyzed interactions of the twin-arginine precursor preSufI with the Tat proteins upon targeting to inner membrane vesicles. TatA association is observed only in the presence of a transmembrane H(+) gradient. TatB is found in contact with the entire signal sequence and adjacent parts of mature SufI. Interaction of TatC with preSufI is, however, restricted to a discrete area around the consensus motif. The results reveal a hierarchy in targeting of a Tat substrate such that for the primary interaction, TatC is both necessary and sufficient while a subsequent association with TatB likely mediates transfer from TatC to the actual Tat pore.
Collapse
Affiliation(s)
- Meriem Alami
- Institut für Biochemie und Molekularbiologie and Universität Freiburg, Hermann-Herder-Strasse 7, D-79104, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Nagamori S, Vázquez-Ibar JL, Weinglass AB, Kaback HR. In vitro synthesis of lactose permease to probe the mechanism of membrane insertion and folding. J Biol Chem 2003; 278:14820-6. [PMID: 12590141 DOI: 10.1074/jbc.m300332200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insertion and folding of polytopic membrane proteins is an important unsolved biological problem. To study this issue, lactose permease, a membrane transport protein from Escherichia coli, is transcribed, translated, and inserted into inside-out membrane vesicles in vitro. The protein is in a native conformation as judged by sensitivity to protease, binding of a monoclonal antibody directed against a conformational epitope, and importantly, by functional assays. By exploiting this system it is possible to express the N-terminal six helices of the permease (N(6)) and probe changes in conformation during insertion into the membrane. Specifically, when N(6) remains attached to the ribosome it is readily extracted from the membrane with urea, whereas after release from the ribosome or translation of additional helices, those polypeptides are not urea extractable. Furthermore, the accessibility of an engineered Factor Xa site to Xa protease is reduced significantly when N(6) is released from the ribosome or more helices are translated. Finally, spontaneous disulfide formation between Cys residues at positions 126 (Helix IV) and 144 (Helix V) is observed when N(6) is released from the ribosome and inserted into the membrane. Moreover, in contrast to full-length permease, N(6) is degraded by FtsH protease in vivo, and N(6) with a single Cys residue at position 148 does not react with N-ethylmaleimide. Taken together, the findings indicate that N(6) remains in a hydrophilic environment until it is released from the ribosome or additional helices are translated and continues to fold into a quasi-native conformation after insertion into the bilayer. Furthermore, there is synergism between N(6) and the C-terminal half of permease during assembly, as opposed to assembly of the two halves as independent domains.
Collapse
Affiliation(s)
- Shushi Nagamori
- Howard Hughes Medical Institute and Departments of Physiology and Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1662, USA
| | | | | | | |
Collapse
|
7
|
Müller M, Koch HG, Beck K, Schäfer U. Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:107-57. [PMID: 11051763 DOI: 10.1016/s0079-6603(00)66028-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteria use several routes to target their exported proteins to the plasma membrane. The majority are exported through pores formed by SecY and SecE. Two different molecular machineries are used to target proteins to the SecYE translocon. Translocated proteins, synthesized as precursors with cleavable signal sequences, require cytoplasmic chaperones, such as SecB, to remain competent for posttranslational transport. In concert with SecB, SecA targets the precursors to SecY and energizes their translocation by its ATPase activity. The latter function involves a partial insertion of SecA itself into the SecYE translocon, a process that is strongly assisted by a couple of membrane proteins, SecG, SecD, SecF, YajC, and the proton gradient across the membrane. Integral membrane proteins, however, are specifically recognized by a direct interaction between their noncleaved signal anchor sequences and the bacterial signal recognition particle (SRP) consisting of Ffh and 4.5S RNA. Recognition occurs during synthesis at the ribosome and leads to a cotranslational targeting to SecYE that is mediated by FtsY and the hydrolysis of GTP. No other Sec protein is required for integration unless the membrane protein also contains long translocated domains that engage the SecA machinery. Discrimination between SecA/SecB- and SRP-dependent targeting involves the specificity of SRP for hydrophobic signal anchor sequences and the exclusion of SRP from nascent chains of translocated proteins by trigger factor, a ribosome-associated chaperone. The SecYE pore accepts only unfolded proteins. In contrast, a class of redox factor-containing proteins leaves the cell only as completely folded proteins. They are distinguished by a twin arginine motif of their signal sequences that by an unknown mechanism targets them to specific pores. A few membrane proteins insert spontaneously into the bacterial plasma membrane without the need for targeting factors and SecYE. Insertion depends only on hydrophobic interactions between their transmembrane segments and the lipid bilayer and on the transmembrane potential. Finally, outer membrane proteins of Gram-negative bacteria after having crossed the plasma membrane are released into the periplasm, where they undergo distinct folding events until they insert as trimers into the outer membrane. These folding processes require distinct molecular chaperones of the periplasm, such as Skp, SurA, and PpiD.
Collapse
Affiliation(s)
- M Müller
- Institute of Biochemistry and Molecular Biology, University of Freiburg, Germany
| | | | | | | |
Collapse
|
8
|
Koch HG, Müller M. Dissecting the translocase and integrase functions of the Escherichia coli SecYEG translocon. J Cell Biol 2000; 150:689-94. [PMID: 10931878 PMCID: PMC2175189 DOI: 10.1083/jcb.150.3.689] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent evidence suggests that in Escherichia coli, SecA/SecB and signal recognition particle (SRP) are constituents of two different pathways targeting secretory and inner membrane proteins to the SecYEG translocon of the plasma membrane. We now show that a secY mutation, which compromises a functional SecY-SecA interaction, does not impair the SRP-mediated integration of polytopic inner membrane proteins. Furthermore, under conditions in which the translocation of secretory proteins is strictly dependent on SecG for assisting SecA, the absence of SecG still allows polytopic membrane proteins to integrate at the wild-type level. These results indicate that SRP-dependent integration and SecA/SecB-mediated translocation do not only represent two independent protein delivery systems, but also remain mechanistically distinct processes even at the level of the membrane where they engage different domains of SecY and different components of the translocon. In addition, the experimental setup used here enabled us to demonstrate that SRP-dependent integration of a multispanning protein into membrane vesicles leads to a biologically active enzyme.
Collapse
Affiliation(s)
- H G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, 79104 Freiburg, Germany.
| | | |
Collapse
|
9
|
Schäfer U, Beck K, Müller M. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J Biol Chem 1999; 274:24567-74. [PMID: 10455120 DOI: 10.1074/jbc.274.35.24567] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using a cross-linking approach, we have analyzed the function of Skp, a presumed molecular chaperone of the periplasmic space of Escherichia coli, during the biogenesis of an outer membrane protein (OmpA). Following its transmembrane translocation, OmpA interacts with Skp in close vicinity to the plasma membrane. In vitro, Skp was also found to bind strongly and specifically to pOmpA nascent chains after their release from the ribosome suggesting the ability of Skp to recognize early folding intermediates of outer membrane proteins. Pulse labeling of OmpA in spheroplasts prepared from an skp null mutant revealed a specific requirement of Skp for the release of newly translocated outer membrane proteins from the plasma membrane. Deltaskp mutant cells are viable and show only slight changes in the physiology of their outer membranes. In contrast, double mutants deficient both in Skp and the periplasmic protease DegP (HtrA) do not grow at 37 degrees C in rich medium. We show that in the absence of an active DegP, a lack of Skp leads to the accumulation of protein aggregates in the periplasm. Collectively, our data demonstrate that Skp is a molecular chaperone involved in generating and maintaining the solubility of early folding intermediates of outer membrane proteins in the periplasmic space of Gram-negative bacteria.
Collapse
Affiliation(s)
- U Schäfer
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herderstrasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
10
|
Koch HG, Hengelage T, Neumann-Haefelin C, MacFarlane J, Hoffschulte HK, Schimz KL, Mechler B, Müller M. In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol Biol Cell 1999; 10:2163-73. [PMID: 10397756 PMCID: PMC25430 DOI: 10.1091/mbc.10.7.2163] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular requirements for the translocation of secretory proteins across, and the integration of membrane proteins into, the plasma membrane of Escherichia coli were compared. This was achieved in a novel cell-free system from E. coli which, by extensive subfractionation, was simultaneously rendered deficient in SecA/SecB and the signal recognition particle (SRP) components, Ffh (P48), 4. 5S RNA, and FtsY. The integration of two membrane proteins into inside-out plasma membrane vesicles of E. coli required all three SRP components and could not be driven by SecA, SecB, and DeltamicroH+. In contrast, these were the only components required for the translocation of secretory proteins into membrane vesicles, a process in which the SRP components were completely inactive. Our results, while confirming previous in vivo studies, provide the first in vitro evidence for the dependence of the integration of polytopic inner membrane proteins on SRP in E. coli. Furthermore, they suggest that SRP and SecA/SecB have different substrate specificities resulting in two separate targeting mechanisms for membrane and secretory proteins in E. coli. Both targeting pathways intersect at the translocation pore because they are equally affected by a blocked translocation channel.
Collapse
Affiliation(s)
- H G Koch
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
De Cock H, Schäfer U, Potgeter M, Demel R, Müller M, Tommassen J. Affinity of the periplasmic chaperone Skp of Escherichia coli for phospholipids, lipopolysaccharides and non-native outer membrane proteins. Role of Skp in the biogenesis of outer membrane protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 259:96-103. [PMID: 9914480 DOI: 10.1046/j.1432-1327.1999.00010.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Skp protein of Escherichia coli has been proposed to be a periplasmic molecular chaperone involved in the biogenesis of outer membrane proteins. In this study, evidence is obtained that Skp exists in two different states characterized by their different sensitivity to proteases. The conversion between these states can be modulated in vitro by phospholipids, lipopolysaccharides and bivalent cations. Skp is able to associate with and insert into phospholipid membranes in vitro, indicating that it may associate with phospholipids in the inner and/or outer membrane in vivo. In addition, it interacts specifically with outer membrane proteins that are in their non-native state. We propose that Skp is required in vivo for the efficient targeting of unfolded outer membrane proteins to the membrane.
Collapse
Affiliation(s)
- H De Cock
- Department of Molecular Cell Biology, Utrecht University, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Bogdanov M, Dowhan W. Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J 1998; 17:5255-64. [PMID: 9736605 PMCID: PMC1170853 DOI: 10.1093/emboj/17.18.5255] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously we presented evidence that phosphatidylethanolamine (PE) acts as a molecular chaperone in the folding of the polytopic membrane protein lactose permease (LacY) of Escherichia coli. Here we provide more definitive evidence supporting the chaperone properties of PE. Membrane insertion of LacY prevents its irreversible aggregation, and PE participates in a late step of conformational maturation. The temporal requirement for PE was demonstrated in vitro using a coupled translation-membrane insertion assay that allowed the separation of membrane insertion from phospholipid-assisted folding. LacY was folded properly, as assessed by recognition with conformation-specific monoclonal antibodies, when synthesized in the presence of PE-containing inside-out membrane vesicles (IOVs) or in the presence of IOVs initially lacking PE but supplemented with PE synthesized in vitro either co- or post-translationally. The presence of IOVs lacking PE and containing anionic phospholipids or no addition of IOVs resulted in misfolded or aggregated LacY, respectively. Therefore, critical folding steps occur after membrane insertion dependent on the interaction of LacY with PE to prevent illicit interactions which lead to misfolding of LacY.
Collapse
Affiliation(s)
- M Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas-Houston, Medical School, Houston, TX 77225, USA
| | | |
Collapse
|
13
|
Gwizdek C, Leblanc G, Bassilana M. Proteolytic mapping and substrate protection of the Escherichia coli melibiose permease. Biochemistry 1997; 36:8522-9. [PMID: 9214297 DOI: 10.1021/bi970312n] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The topology and substrate-induced conformational change(s) of the Na+ (Li+ or H+)-melibiose cotransporter (MelB) of Escherichia coli were investigated by limited protease digestion. To facilitate these analyses, MelB was epitope-tagged both at its carboxyl-terminus and at its amino-terminus. Limited digestion with different proteases indicates that the cytoplasmic loops connecting transmembrane domains 4-5, 6-7, and 10-11 together with the carboxyl-terminus of MelB are exposed in the cytoplasm. In contrast, periplasmic loops are highly resistant to all the proteases examined, including nonspecific proteases such as proteinase K and thermolysin. The effect of Na+ or Li+ and/or melibiose on the rate of protease digestion of the cytoplasmic loops was also analyzed. The rate of protease digestion of loop 4-5 is specifically reduced, by approximately 3-fold, by the presence of Na+ or Li+. These results suggest that loop 4-5 is near or part of the cation binding site. Moreover, the presence of both melibiose and either Na+ or Li+ further reduced the rate of protease digestion of this loop 4-5 by up to 9-fold, although no protection from protease digestion was observed when melibiose was added alone. The increase in resistance to proteases observed in the presence of the cation alone or the cation plus melibiose suggests that the interaction of the two cosubstrate with MelB results in change(s) of MelB conformation.
Collapse
Affiliation(s)
- C Gwizdek
- Laboratoire J. Maetz, Département de Biologie cellulaire et moléculaire du Commissariat à l'Energie Atomique, B.P. 68, 06238 Villefranche-sur-mer, France
| | | | | |
Collapse
|
14
|
Helde R, Wiesler B, Wachter E, Neubüser A, Hoffschulte HK, Hengelage T, Schimz KL, Stuart RA, Müller M. Comparative characterization of SecA from the alpha-subclass purple bacterium Rhodobacter capsulatus and Escherichia coli reveals differences in membrane and precursor specificity. J Bacteriol 1997; 179:4003-12. [PMID: 9190818 PMCID: PMC179211 DOI: 10.1128/jb.179.12.4003-4012.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have cloned the secA gene of the alpha-subclass purple bacterium Rhodobacter capsulatus, a close relative to the mitochondrial ancestor, and purified the protein after expression in Escherichia coli. R. capsulatus SecA contains 904 amino acids with 53% identity to E. coli and 54% identity to Caulobacter crescentus SecA. In contrast to the nearly equal partitioning of E. coli SecA between the cytosol and plasma membrane, R. capsulatus SecA is recovered predominantly from the membrane fraction. A SecA-deficient, cell-free synthesis-translocation system prepared from R. capsulatus is used to demonstrate translocation activity of the purified R. capsulatus SecA. This translocation activity is then compared to that of the E. coli counterpart by using various precursor proteins and inside-out membrane vesicles prepared from both bacteria. We find a preference of the R. capsulatus SecA for the homologous membrane vesicles whereas E. coli SecA is active with either type of membrane. Furthermore, the two SecA proteins clearly select between distinct precursor proteins. In addition, we show here for the first time that a bacterial c-type cytochrome utilizes the canonical, Sec-dependent export pathway.
Collapse
Affiliation(s)
- R Helde
- Adolf Butenandt Institut für Physikalische Biochemie, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bassilana M, Gwizdek C. In vivo membrane assembly of the E.coli polytopic protein, melibiose permease, occurs via a Sec-independent process which requires the protonmotive force. EMBO J 1996; 15:5202-8. [PMID: 8895565 PMCID: PMC452264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To investigate the mechanism of polytopic membrane protein insertion in Escherichia coli, we have examined the protein and energy requirements for in vivo membrane assembly of the prototypic 12 transmembrane domain sugar co-transporter, melibiose permease (MelB). MelB membrane assembly was analyzed both kinetically, by pulse labeling experiments, and functionally by measuring the activity of the inserted permease. Strikingly, the rate of MelB membrane assembly is decreased approximately 4-fold upon dissipation of the transmembrane electrochemical proton gradient, delta(mu)H+, indicative of a strong requirement for delta(mu)H+. Interestingly, selective dissipation of either the electrical (delta(psi)) or the chemical (delta(pH)) component of delta(mu)H+ demonstrates that either form of energy is required for MelB membrane assembly. In contrast, MelB membrane assembly does not require SecA, SecY or SecE, all three proteins which are strictly required for protein translocation. Neither the rate of MelB membrane assembly nor the amount of functional permease is affected by inactivation or depletion of these Sec proteins. These results strongly suggest that polytopic membrane proteins such as MelB insert into the cytoplasmic membrane by a mechanism fundamentally different from protein translocation.
Collapse
Affiliation(s)
- M Bassilana
- Laboratoire J.Maetz, Departement de Biologie cellulaire et moléculairedu Commissariat à l'Energie Atomique, Villefranche-sur-mer, France
| | | |
Collapse
|
16
|
Bochkareva E, Seluanov A, Bibi E, Girshovich A. Chaperonin-promoted post-translational membrane insertion of a multispanning membrane protein lactose permease. J Biol Chem 1996; 271:22256-61. [PMID: 8703042 DOI: 10.1074/jbc.271.36.22256] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Using an in vitro membrane-free translation system from Escherichia coli, it is shown that chaperonin GroEL added cotranslationally interacts with newly synthesized lactose permease (LacY), a polytopic membrane protein, thereby preventing aggregation. Subsequently, when the isolated GroEL-LacY complex is incubated with inverted membrane vesicles, the permease is inserted into the membrane in a MgATP-dependent manner. Post-translational membrane insertion is also observed when aggregation of newly synthesized LacY is prevented by addition of the nonionic detergent n-dodecyl-beta,D-maltoside during translation in place of GroEL. No membrane integration occurs with right-side-out vesicles, indicating that LacY interacts specifically only with the cytosolic face of the membrane. Ligand thiodigalactoside protection against alkylation of the Cys-148 residue in the permease shows proper post-translational insertion. Moreover, limited proteolysis of soluble LacY either complexed with GroEL or in detergent indicates that the newly synthesized protein assumes a conformation that is comparable to that of native, membrane-embedded permease prior to insertion into the membrane.
Collapse
Affiliation(s)
- E Bochkareva
- Department of Biochemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
17
|
Macfarlane J, Müller M. The functional integration of a polytopic membrane protein of Escherichia coli is dependent on the bacterial signal-recognition particle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:766-71. [PMID: 8521840 DOI: 10.1111/j.1432-1033.1995.766_3.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In eukaryotes, the cotranslational targeting of proteins to the endoplasmic reticular membrane is initially mediated by the signal-recognition particle (SRP), a ribonucleoprotein complex consisting of the 7SL RNA and six protein subunits. Since the discovery of sequence homology between (a) the Escherichia coli 4.5S RNA (Ffs) and 7SL RNA, and (b) the E. coli P48 (Ffh) and SRP 54-kDa subunit, more evidence has been obtained that E. coli also possesses an SRP-type pathway that acts in the translocation of secreted proteins. Such a pathway could possibly be involved in the cotranslational integration of hydrophobic membrane proteins that cannot be effectively targeted post-translationally due to folding and aggregation. In this study, we report that disruption of the E. coli SRP complex with a dominant lethal 4.5S RNA mutant in vivo prevents functional membrane integration of the E. coli lactose permease (LacY). Likewise, depletion of the P48 (Ffh) protein also results in a decrease in the amount of functional LacY inserted into the E. coli plasma membrane. In direct contrast, inhibition of SecA function does not affect LacY integration. These results suggest a major function of the bacterial SRP in the targeting and subsequent integration of hydrophobic membrane proteins as opposed to SecA mediating the post-translational targeting of secretory proteins.
Collapse
Affiliation(s)
- J Macfarlane
- Institut für Physikalische Biochemie, Universität München, Germany
| | | |
Collapse
|
18
|
Schimz KL, Decker G, Frings E, Meens J, Klein M, Müller M. A cell-free protein translocation system prepared entirely from a gram-positive organism. FEBS Lett 1995; 362:29-33. [PMID: 7698347 DOI: 10.1016/0014-5793(95)00180-h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A cell-free protein translocation system derived exclusively from a Gram-positive bacterium is described here for the first time. Highly efficient in vitro synthesis of plasmid encoded preprolipase of Staphylococcus hyicus is accomplished by coupled transcription/translation using either a cytosolic extract of S. carnosus alone or in combination with T7-RNA-polymerase. Addition of inside-out cytoplasmic membrane vesicles of S. carnosus leads to the partial conversion (processing) of preprolipase to prolipase. In addition, as shown in a protease protection assay, a significant part of preprolipase plus prolipase is translocated in vitro into the lumen of the vesicles. Translocation of preprolipase into the membrane vesicles requires the proton-motive force and the S. carnosus SecA protein.
Collapse
Affiliation(s)
- K L Schimz
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- A J Driessen
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| |
Collapse
|
20
|
Palmen R, Driessen AJ, Hellingwerf KJ. Bioenergetic aspects of the translocation of macromolecules across bacterial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1183:417-51. [PMID: 8286395 DOI: 10.1016/0005-2728(94)90072-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bacteria are extremely versatile in the sense that they have gained the ability to transport all three major classes of biopolymers through their cell envelope: proteins, nucleic acids, and polysaccharides. These macromolecules are translocated across membranes in a large number of cellular processes by specific translocation systems. Members of the ABC (ATP binding cassette) superfamily of transport ATPases are involved in the translocation of all three classes of macromolecules, in addition to unique transport ATPases. An intriguing aspect of these transport processes is that the barrier function of the membrane is preserved despite the fact the dimensions of the translocated molecules by far surpasses the thickness of the membrane. This raises questions like: How are these polar compounds translocated across the hydrophobic interior of the membrane, through a proteinaceous pore or through the lipid phase; what drives these macromolecules across the membrane; which energy sources are used and how is unidirectionality achieved? It is generally believed that macromolecules are translocated in a more or less extended, most likely linear form. A recurring theme in the bioenergetics of these translocation reactions in bacteria is the joint involvement of free energy input in the form of ATP hydrolysis and via proton sym- or antiport, driven by a proton gradient. Important similarities in the bioenergetic mechanisms of the translocation of these biopolymers therefore may exist.
Collapse
Affiliation(s)
- R Palmen
- Department of Microbiology, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Affiliation(s)
- M Müller
- Institut für Physikalische Biochemie, Universität München, Germany
| | | |
Collapse
|
22
|
Affiliation(s)
- V Géli
- Laboratoire d'Ingéniérie et de Dynamique des Systèmes Membranaires, Marseille, France
| | | |
Collapse
|
23
|
Affiliation(s)
- B Poolman
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
24
|
Lynch AS, Wang JC. Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 1993; 175:1645-55. [PMID: 8383663 PMCID: PMC203958 DOI: 10.1128/jb.175.6.1645-1655.1993] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A homologous set of plasmids expressing tet, lacY, and melB, genes encoding integral cytoplasmic membrane proteins, and tolC and ampC, genes encoding proteins for export through the cytoplasmic membrane, was constructed for studying the effects of transcription and translation of such genes on the hypernegative supercoiling of plasmids in Escherichia coli cells deficient in DNA topoisomerase I. The results support the view that intracellular bacterial DNA is anchored to the cytoplasmic membrane at many points through cotranscriptional synthesis of membrane proteins or proteins designated for export across the cytoplasmic membrane; in the latter case, the presence of the signal peptide appears to be unnecessary for cotranscriptional membrane association.
Collapse
Affiliation(s)
- A S Lynch
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | |
Collapse
|
25
|
Wieseler B, Müller M. Translocation of precytochrome c2 into intracytoplasmic membrane vesicles of Rhodobacter capsulatus requires a peripheral membrane protein. Mol Microbiol 1993; 7:167-76. [PMID: 8383274 DOI: 10.1111/j.1365-2958.1993.tb01108.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Rhodobacter capsulatus is a member of the group of alpha-purple bacteria which are closely related to the ancestral endosymbiont that gave rise to mitochondria. It has therefore been hypothesized that the molecular mechanisms governing protein export in alpha-purple bacteria have been conserved during the evolution of mitochondria. To enable analysis of protein export in alpha-purple bacteria we describe here the development of a homologous cell-free synthesis/export system consisting entirely of components of R. capsulatus. Translocation of precytochrome c2 into intracytoplasmic membrane vesicles of this organism was found to require the proton-motive force and proceed at a significantly higher efficiency when membranes were present during protein synthesis. Furthermore, we show that, in this cell-free system, translocation depends on a preparation of peripheral membrane proteins which do not possess detectable SecA- and SecB-like activities.
Collapse
Affiliation(s)
- B Wieseler
- Institute of Biochemistry, University of Freiburg, Germany
| | | |
Collapse
|
26
|
Werner P, Saier M, Müller M. Membrane insertion of the mannitol permease of Escherichia coli occurs under conditions of impaired SecA function. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35796-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
27
|
Swidersky UE, Rienhöfer-Schweer A, Werner PK, Ernst F, Benson SA, Hoffschulte HK, Müller M. Biochemical analysis of the biogenesis and function of the Escherichia coli export factor SecY. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:803-11. [PMID: 1633829 DOI: 10.1111/j.1432-1033.1992.tb17111.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SecY is an integral plasma-membrane protein of Escherichia coli which is essential for the export of periplasmic and outer-membrane proteins containing cleavable signal sequences. We have synthesized SecY in vitro using an E. coli transcription/translation system. In the absence of membranes, SecY remained largely soluble but cosedimented on sucrose gradients with the membrane fraction when inside-out plasma-membrane vesicles (INV) had been added cotranslationally. Membrane association of SecY was unaffected if the endogenous SecY of the INV had been inactivated by either antibodies, a mutation or trypsin treatment. In contrast, inactivation of the INV SecY interfered with membrane targeting and, consequently, the processing of precursors to beta-lactamase and lambda receptor. When SecY-deprived INV were, however, first functionally reconstituted with in-vitro-synthesized SecY, targeting and translocation of the lambda receptor were partially restored. Thus, the assembly of SecY into INV in vitro leads to an active enzyme. In addition, we show that the prlA4 allele of the secY gene suppresses signal-sequence mutations of the lambda receptor in vitro. Collectively, our results demonstrate that SecY, while functioning as a membrane-located receptor for precursors of exported proteins, appears to be virtually independent of pre-existing SecY for its own membrane integration.
Collapse
Affiliation(s)
- U E Swidersky
- Biochemisches Institut, Universität Freiburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Troschel D, Eckhardt S, Hoffschulte HK, Müller M. Cell-free synthesis and membrane-integration of the reaction center subunit H fromRhodobacter capsulatus. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05197.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Abstract
Skp of Escherichia coli (OmpH of Salmonella typhimurium) is a protein whose precise function has been obscured by its ubiquity in a wide range of subcellular fractions such as those containing DNA, ribosomes, and outer membranes. Combining in vitro and in vivo techniques we show that Skp is synthesized as a larger precursor that is processed upon translocation across the plasma membrane. Translocation is dependent on the H(+)-gradient, ATP, SecA, and SecY. Upon cellular subfractionation (avoiding non-specific electrostatic interactions) Skp partitions with beta-lactamase into the fraction of soluble, periplasmic proteins. In the context of the export factor properties of Skp previously demonstrated in vitro it is conceivable that this protein is involved in the later steps of protein translocation across the plasma membrane and/or sorting to the outer membrane.
Collapse
Affiliation(s)
- B M Thome
- Institute of Biochemistry, University of Freiburg, Germany
| | | |
Collapse
|
30
|
Abstract
The in vivo process of membrane protein integration was studied by pulse-labelling Escherichia coli cells, and assessing integral anchoring of labelled proteins to the lipid bilayer based on their resistance to alkali extraction. To conduct this experiment, conditions for extracting E. coli proteins with alkali were refined, and the immunoprecipitation procedures were improved to allow effective detection of integral membrane proteins. Examination of pulse-labelled, integral membrane proteins, including lactose permease (LacY), SecY, cytochrome omicron subunit II and leader peptidase revealed that all were in the alkali-insoluble fraction, indicating that membrane integration of these proteins takes place rapidly in wild-type cells. However, when LacY was synthesized in excess from a multicopy plasmid, significant proportions were found in the alkali-soluble fraction, indicating that the solubility in alkali is not an intrinsic property of the protein, and suggesting that LacY depends on some limited cellular factor for membrane integration. The unintegrated species of LacY sedimented slowly through an alkaline sucrose gradient. The secY24 mutant cells accumulated higher proportions of unintegrated LacY molecules at lower levels of overproduction than the sec+ cells. LacY overproduction in wild-type cells was found to inhibit processing (export) of beta-lactamase but not of OmpA and OmpF. These results are interpreted to mean that integration of LacY depends on multiple cellular components, one of which is also involved in export of beta-lactamase.
Collapse
Affiliation(s)
- K Ito
- Institute for Virus Research, Kyoto University, Japan
| | | |
Collapse
|
31
|
Thome BM, Hoffschulte HK, Schiltz E, Müller M. A protein with sequence identity to Skp (FirA) supports protein translocation into plasma membrane vesicles of Escherichia coli. FEBS Lett 1990; 269:113-6. [PMID: 2167239 DOI: 10.1016/0014-5793(90)81132-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have purified to homogeneity a 15 kDa-protein from a ribosomal salt extract of Escherichia coli that compensates in vitro a defect of SecA but not of SecB. Removal of this protein from a cell-free transcription/translation system impairs translocation into plasma membrane vesicles of the precursors of LamB and to a lesser degree also of OmpA. These results suggest a role of the 15 kDa-protein in bacterial protein export. The NH2-terminal 35 amino acids were found to be identical to those of the skp (firA) gene product, to which several putative functions have previously been attributed.
Collapse
Affiliation(s)
- B M Thome
- Institute of Biochemistry, University of Freiburg, FRG
| | | | | | | |
Collapse
|
32
|
Troschel D, Müller M. Development of a cell-free system to study the membrane assembly of photosynthetic proteins of Rhodobacter capsulatus. J Cell Biol 1990; 111:87-94. [PMID: 2195040 PMCID: PMC2116174 DOI: 10.1083/jcb.111.1.87] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A cell-free translation system from the facultatively photoheterotrophic bacterium Rhodobacter capsulatus is described. Synthesis of two proteins of the bacterium's photosynthetic apparatus (light-harvesting complex B870 alpha and beta) was performed by SP6 polymerase transcription of the subcloned genes, isolation of the mRNA and translation in vitro using a cell-free extract of R. capsulatus cells. The integration of these proteins in vitro into added intracytoplasmic membrane vesicles (ICM) is demonstrated. Without addition of ICM approximately 70% of the synthesized B870 proteins were soluble. If, however, ICM were present during synthesis, the majority of the soluble protein was found to associate with the membranes. The membrane-associated polypeptides could be solubilized only by detergent treatment but could not be extracted by treatment at alkaline pH (Na2CO3), suggesting that the proteins had been firmly inserted into the lipid bilayer. Moreover, the B870 alpha and beta proteins that integrated in vitro into ICM were also found to associate with pigment ligands and to assemble into a native reaction center/B870 complex. The native conformation of this complex isolated from ICM by Triton fractionation was demonstrated by microspectral analysis of the bound pigments.
Collapse
Affiliation(s)
- D Troschel
- Biochemisches Institut, Universität, Freiburg, Federal Republic of Germany
| | | |
Collapse
|
33
|
Saier MH, Werner PK, Müller M. Insertion of proteins into bacterial membranes: mechanism, characteristics, and comparisons with the eucaryotic process. Microbiol Rev 1989; 53:333-66. [PMID: 2677637 PMCID: PMC372740 DOI: 10.1128/mr.53.3.333-366.1989] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|