1
|
Maiato H, Lince-Faria M. The perpetual movements of anaphase. Cell Mol Life Sci 2010; 67:2251-69. [PMID: 20306325 PMCID: PMC11115923 DOI: 10.1007/s00018-010-0327-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 12/29/2022]
Abstract
One of the most extraordinary events in the lifetime of a cell is the coordinated separation of sister chromatids during cell division. This is truly the essence of the entire mitotic process and the reason for the most profound morphological changes in cytoskeleton and nuclear organization that a cell may ever experience. It all occurs within a very short time window known as "anaphase", as if the cell had spent the rest of its existence getting ready for this moment in an ultimate act of survival. And there is a good reason for this: no space for mistakes. Problems in the distribution of chromosomes during cell division have been correlated with aneuploidy, a common feature observed in cancers and several birth defects, and the main cause of spontaneous abortion in humans. In this paper, we critically review the mechanisms of anaphase chromosome motion that resisted the scrutiny of more than 100 years of research, as part of a tribute to the pioneering work of Miguel Mota.
Collapse
Affiliation(s)
- Helder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | | |
Collapse
|
2
|
McEwen BF, Dong Y, VandenBeldt KJ. Using Electron Microscopy to Understand Functional Mechanisms of Chromosome Alignment on the Mitotic Spindle. Methods Cell Biol 2007; 79:259-93. [PMID: 17327161 DOI: 10.1016/s0091-679x(06)79011-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bruce F McEwen
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
| | | | | |
Collapse
|
3
|
VandenBeldt KJ, Barnard RM, Hergert PJ, Meng X, Maiato H, McEwen BF. Kinetochores use a novel mechanism for coordinating the dynamics of individual microtubules. Curr Biol 2006; 16:1217-23. [PMID: 16782013 PMCID: PMC2906179 DOI: 10.1016/j.cub.2006.04.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 04/05/2006] [Accepted: 04/21/2006] [Indexed: 11/23/2022]
Abstract
Chromosome alignment during mitosis is frequently accompanied by a dynamic switching between elongation and shortening of kinetochore fibers (K-fibers) that connect kinetochores and spindle poles . In higher eukaryotes, mature K-fibers consist of 10-30 kinetochore microtubules (kMTs) whose plus ends are embedded in the kinetochore . A critical and long-standing question is how the dynamics of individual kMTs within the K-fiber are coordinated . We have addressed this question by using electron tomography to determine the polymerization/depolymerization status of individual kMTs in the K-fibers of PtK1 and Drosophila S2 cells. Surprisingly, we find that the plus ends of two-thirds of kMTs are in a depolymerizing state, even when the K-fiber exhibits net tubulin incorporation at the plus end . Furthermore, almost all individual K-fibers examined had a mixture of kMTs in the polymerizing and depolymerizing states. Therefore, although K-fibers elongate and shrink as a unit, the dynamics of individual kMTs within a K-fiber are not coordinated at any given moment. Our results suggest a novel control mechanism through which attachment to the kinetochore outer plate prevents shrinkage of kMTs. We discuss the ramifications of this new model on the regulation of chromosome movement and the stability of K-fibers.
Collapse
Affiliation(s)
| | - Rita M. Barnard
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Polla J. Hergert
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Xing Meng
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Helder Maiato
- Institute for Molecular Cell Biology, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
- Laboratory of Molecular and Cell Biology, Faculdade de Medicine, University Porto, 4050-345 Porto, Portugal
| | - Bruce F. McEwen
- Wadsworth Center, New York State Department of Health, Albany, New York 12201
- Department Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12222
- Correspondence:
| |
Collapse
|
4
|
Pereira AL, Pereira AJ, Maia AR, Drabek K, Sayas CL, Hergert PJ, Lince-Faria M, Matos I, Duque C, Stepanova T, Rieder CL, Earnshaw WC, Galjart N, Maiato H. Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol Biol Cell 2006; 17:4526-42. [PMID: 16914514 PMCID: PMC1635371 DOI: 10.1091/mbc.e06-07-0579] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CLASPs are widely conserved microtubule plus-end-tracking proteins with essential roles in the local regulation of microtubule dynamics. In yeast, Drosophila, and Xenopus, a single CLASP orthologue is present, which is required for mitotic spindle assembly by regulating microtubule dynamics at the kinetochore. In mammals, however, only CLASP1 has been directly implicated in cell division, despite the existence of a second paralogue, CLASP2, whose mitotic roles remain unknown. Here, we show that CLASP2 localization at kinetochores, centrosomes, and spindle throughout mitosis is remarkably similar to CLASP1, both showing fast microtubule-independent turnover rates. Strikingly, primary fibroblasts from Clasp2 knockout mice show numerous spindle and chromosome segregation defects that can be partially rescued by ectopic expression of Clasp1 or Clasp2. Moreover, chromosome segregation rates during anaphase A and B are slower in Clasp2 knockout cells, which is consistent with a role of CLASP2 in the regulation of kinetochore and spindle function. Noteworthy, cell viability/proliferation and spindle checkpoint function were not impaired in Clasp2 knockout cells, but the fidelity of mitosis was strongly compromised, leading to severe chromosomal instability in adult cells. Together, our data support that the partial redundancy of CLASPs during mitosis acts as a possible mechanism to prevent aneuploidy in mammals.
Collapse
Affiliation(s)
- Ana L. Pereira
- *Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
- Department of Cell Biology and Genetics, Erasmus Medical Centre, 3000 DR Rotterdam, The Netherlands
| | - António J. Pereira
- *Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Ana R.R. Maia
- *Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Ksenija Drabek
- Department of Cell Biology and Genetics, Erasmus Medical Centre, 3000 DR Rotterdam, The Netherlands
| | - C. Laura Sayas
- Department of Cell Biology and Genetics, Erasmus Medical Centre, 3000 DR Rotterdam, The Netherlands
| | - Polla J. Hergert
- Division of Molecular Medicine, New York State Department of Health, Wadsworth Center, Albany, NY 12201
| | - Mariana Lince-Faria
- *Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Irina Matos
- *Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | - Cristina Duque
- Laboratory of Cell and Molecular Biology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| | - Tatiana Stepanova
- Department of Cell Biology and Genetics, Erasmus Medical Centre, 3000 DR Rotterdam, The Netherlands
| | - Conly L. Rieder
- Division of Molecular Medicine, New York State Department of Health, Wadsworth Center, Albany, NY 12201
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, EH9 3JR Edinburgh, United Kingdom; and
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus Medical Centre, 3000 DR Rotterdam, The Netherlands
| | - Helder Maiato
- *Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
- Laboratory of Cell and Molecular Biology, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal
| |
Collapse
|
5
|
Compton DA. Mitosis: disorderly conduct at the kinetochore. Curr Biol 2006; 16:R494-6. [PMID: 16824907 DOI: 10.1016/j.cub.2006.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Conventional models posit that microtubules bound to kinetochores act coordinately during chromosome movement. Such models need to be revised in the light of new data demonstrating uncoordinated behavior among kinetochore-associated microtubules.
Collapse
Affiliation(s)
- Duane A Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
6
|
Abstract
Chromosome segregation during mitosis and meiosis is driven by a complex superstructure called the spindle. Microtubules are the primary structural component of spindles, and spindle assembly and function are intimately linked to the intrinsic dynamics of microtubules. This review summarizes spindle structure and highlights recent findings regarding the mechanisms and molecules involved in organizing microtubules into spindles. In addition, mechanisms for chromosome movement and segregation are discussed.
Collapse
Affiliation(s)
- D A Compton
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
7
|
Pidoux AL, Uzawa S, Perry PE, Cande WZ, Allshire RC. Live analysis of lagging chromosomes during anaphase and their effect on spindle elongation rate in fission yeast. J Cell Sci 2000; 113 Pt 23:4177-91. [PMID: 11069763 DOI: 10.1242/jcs.113.23.4177] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is widely used as a model system for studies of the cell cycle and chromosome biology. To enhance these studies we have fused GFP to the chromodomain protein Swi6p, thus allowing nuclear and chromosome behaviour to be followed in living cells using time-lapse fluorescence microscopy. Like endogenous Swi6p, GFP-Swi6p localises to the nucleus and is concentrated at the heterochromatic centromeres and telomeres. The nucleus is highly dynamic during interphase: the clustered centromeres, in particular, are highly mobile. By expressing GFP-(α)2-tubulin and GFP-Swi6p in the same cells we observe that the clustered centromeres move in concert with the cytoplasmic microtubules, which is likely to reflect their association with the spindle pole body. Drug treatment indicates that this movement is dependent on intact cytoplasmic microtubules. We have also used GFP-Swi6p to investigate the properties of lagging chromosomes observed in mutants with defects in chromosome segregation. Lagging chromosomes display a variety of behaviours on anaphase spindles, most surprisingly, chromosomes appear to initiate microtubule interactions and move to the poles late in anaphase B. Interestingly, in cells displaying lagging chromosomes, the rate of spindle elongation is slowed by a factor of two. This suggests that cells are able to sense the presence of a lagging chromosome and slow anaphase B in order to allow it extra time to reach the pole. However, this mechanism is not dependent on the spindle checkpoint proteins Bub1p or Dma1p, raising the possibility that a novel checkpoint mechanism operates to retard spindle elongation if lagging chromosomes are detected. An alternative model is also discussed in which single defective kinetochores on lagging chromatids are able to interact simultaneously with microtubules emanating from both poles and affect spindle dynamics by counteracting the spindle elongation force.
Collapse
Affiliation(s)
- A L Pidoux
- Chromosome Biology Section, Medical Research Council Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| | | | | | | | | |
Collapse
|
8
|
Rieder CL, Cassels G. Correlative light and electron microscopy of mitotic cells in monolayer cultures. Methods Cell Biol 1999; 61:297-315. [PMID: 9891321 DOI: 10.1016/s0091-679x(08)61987-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- C L Rieder
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, New York 12201-0509, USA
| | | |
Collapse
|
9
|
Affiliation(s)
- P Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst 01003, USA
| |
Collapse
|
10
|
Jordan MA, Wilson L. Use of drugs to study role of microtubule assembly dynamics in living cells. Methods Enzymol 1998; 298:252-76. [PMID: 9751887 DOI: 10.1016/s0076-6879(98)98024-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- M A Jordan
- Department of Molecular, Cellular, and Development Biology, University of California, Santa Barbara 93106-9610, USA
| | | |
Collapse
|
11
|
Panda D, Himes RH, Moore RE, Wilson L, Jordan MA. Mechanism of action of the unusually potent microtubule inhibitor cryptophycin 1. Biochemistry 1997; 36:12948-53. [PMID: 9335554 DOI: 10.1021/bi971302p] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cryptophycin 1 is a remarkably potent antiproliferative compound that shows excellent antitumor activity against mammary, colon, and pancreatic adenocarcinomas in mouse xenographs. At picomolar concentrations, cryptophycin 1 blocks cells in the G2/M phase of the cell cycle by an apparent action on microtubules. The compound binds to tubulin, inhibits microtubule polymerization, and depolymerizes preformed microtubules in vitro. Its exceptionally powerful antitumor activity (many-fold greater than paclitaxel or the vinca alkaloids) raises important questions about its mechanism of action. By quantitative video microscopy, we examined the effects of cryptophycin 1 on the dynamics of individual microtubules assembled to steady state from bovine brain tubulin. At low nanomolar concentrations, in the absence of net microtubule depolymerization, cryptophycin 1 potently stabilized microtubule dynamics. It reduced the rate and extent of microtubule shortening and growing and increased the frequency of rescue. The results suggest that cryptophycin 1 exerts its antiproliferative and antimitotic activity by binding reversibly and with high affinity to the ends of microtubules, perhaps in the form of a tubulin-cryptophycin 1 complex, resulting in the most potent suppression of microtubule dynamics yet described.
Collapse
Affiliation(s)
- D Panda
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | |
Collapse
|
12
|
McEwen BF, Heagle AB, Cassels GO, Buttle KF, Rieder CL. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J Cell Biol 1997; 137:1567-80. [PMID: 9199171 PMCID: PMC2137823 DOI: 10.1083/jcb.137.7.1567] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kinetochore microtubules (kMts) are a subset of spindle microtubules that bind directly to the kinetochore to form the kinetochore fiber (K-fiber). The K-fiber in turn interacts with the kinetochore to produce chromosome motion toward the attached spindle pole. We have examined K-fiber maturation in PtK1 cells using same-cell video light microscopy/serial section EM. During congression, the kinetochore moving away from its spindle pole (i.e., the trailing kinetochore) and its leading, poleward moving sister both have variable numbers of kMts, but the trailing kinetochore always has at least twice as many kMts as the leading kinetochore. A comparison of Mt numbers on sister kinetochores of congressing chromosomes with their direction of motion, as well as distance from their associated spindle poles, reveals that the direction of motion is not determined by kMt number or total kMt length. The same result was observed for oscillating metaphase chromosomes. These data demonstrate that the tendency of a kinetochore to move poleward is not positively correlated with the kMt number. At late prometaphase, the average number of Mts on fully congressed kinetochores is 19.7 +/- 6.7 (n = 94), at late metaphase 24.3 +/- 4.9 (n = 62), and at early anaphase 27.8 +/- 6.3 (n = 65). Differences between these distributions are statistically significant. The increased kMt number during early anaphase, relative to late metaphase, reflects the increased kMt stability at anaphase onset. Treatment of late metaphase cells with 1 microM taxol inhibits anaphase onset, but produces the same kMt distribution as in early anaphase: 28.7 +/- 7. 4 (n = 54). Thus, a full complement of kMts is not sufficient to induce anaphase onset. We also measured the time course for kMt acquisition and determined an initial rate of 1.9 kMts/min. This rate accelerates up to 10-fold during the course of K-fiber maturation, suggesting an increased concentration of Mt plus ends in the vicinity of the kinetochore at late metaphase and/or cooperativity for kMt acquisition.
Collapse
Affiliation(s)
- B F McEwen
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health, Albany, New York 12201-0509, USA.
| | | | | | | | | |
Collapse
|
13
|
Inoué S, Salmon ED. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 1995; 6:1619-40. [PMID: 8590794 PMCID: PMC301321 DOI: 10.1091/mbc.6.12.1619] [Citation(s) in RCA: 451] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this article, we review the dynamic nature of the filaments (microtubules) that make up the labile fibers of the mitotic spindle and asters, we discuss the roles that assembly and disassembly of microtubules play in mitosis, and we consider how such assembling and disassembling polymer filaments can generate forces that are utilized by the living cell in mitosis and related movements.
Collapse
Affiliation(s)
- S Inoué
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | |
Collapse
|
14
|
Zhai Y, Kronebusch PJ, Borisy GG. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 1995; 131:721-34. [PMID: 7593192 PMCID: PMC2120628 DOI: 10.1083/jcb.131.3.721] [Citation(s) in RCA: 234] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have quantitatively studied the dynamic behavior of kinetochore fiber microtubules (kMTs); both turnover and poleward transport (flux) in metaphase and anaphase mammalian cells by fluorescence photoactivation. Tubulin derivatized with photoactivatable fluorescein was microinjected into prometaphase LLC-PK and PtK1 cells and allowed to incorporate to steady-state. A fluorescent bar was generated across the MTs in a half-spindle of the mitotic cells using laser irradiation and the kinetics of fluorescence redistribution were determined in terms of a double exponential decay process. The movement of the activated zone was also measured along with chromosome movement and spindle elongation. To investigate the possible regulation of MT transport at the metaphase-anaphase transition, we performed double photoactivation analyses on the same spindles as the cell advanced from metaphase to anaphase. We determined values for the turnover of kMTs (t1/2 = 7.1 +/- 2.4 min at 30 degrees C) and demonstrated that the turnover of kMTs in metaphase is approximately an order of magnitude slower than that for non-kMTs. In anaphase, kMTs become dramatically more stable as evidenced by a fivefold increase in the fluorescence redistribution half-time (t1/2 = 37.5 +/- 8.5 min at 30 degrees C). Our results also indicate that MT transport slows abruptly at anaphase onset to one-half the metaphase value. In early anaphase, MT depolymerization at the kinetochore accounted, on average, for 84% of the rate of chromosome movement toward the pole whereas the relative contribution of MT transport and depolymerization at the pole contributed 16%. These properties reflect a dramatic shift in the dynamic behavior of kMTs at the metaphase-anaphase transition. A release-capture model is presented in which the stability of kMTs is increased at the onset of anaphase through a reduction in the probability of MT release from the kinetochore. The reduction in MT transport at the metaphase-anaphase transition suggests that motor activity and/or subunit dynamics at the centrosome are subject to modulation at this key cell cycle point.
Collapse
Affiliation(s)
- Y Zhai
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
15
|
Wilson PJ, Forer A, Leggiadro C. Evidence that kinetochore microtubules in crane-fly spermatocytes disassemble during anaphase primarily at the poleward end. J Cell Sci 1994; 107 ( Pt 11):3015-27. [PMID: 7699001 DOI: 10.1242/jcs.107.11.3015] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anaphase chromosome motion involves the disassembly of kinetochore microtubules. We wished to determine the site of kinetochore microtubule disassembly during anaphase in crane-fly spermatocytes. In crane-fly spermatocyte spindles, monoclonal antibody 6–11B-1 to acetylated alpha-tubulin labels kinetochore microtubules almost exclusively, with an area immediately adjacent to the kinetochore being weakly or not labelled. This ‘gap’ in acetylation at the kinetochore serves as a natural marker of kinetochore microtubules in the kinetochore fibre. We measured the length of the gap on kinetochore fibres in metaphase and anaphase in order to deduce the fate of the gap during anaphase; we used this information to determine where kinetochore microtubules disassemble in anaphase. Gap lengths were measured from confocal microscope images of fixed spermatocytes dual labelled with 6–11B-1 to acetylated alpha-tubulin and YL1/2 to tyrosinated alpha-tubulin, the latter being used to determine the positions of kinetochores. In metaphase the average gap length was 1.7 microns. In anaphase, the gap appeared to decrease in length abruptly by about 0.4 microns, after which it decreased in length by about 0.2 microns for every 1 microns that the chromosome moved poleward. PacMan models of chromosome movement predict that this ‘gap’ in staining should disappear in anaphase at a rate equal to that of chromosome movement. Thus, our results do not support theories of chromosome motion that require disassembly solely at the kinetochore; rather, in crane-fly spermatocytes kinetochore microtubule disassembly in anaphase seems to take place primarily at the poles.
Collapse
Affiliation(s)
- P J Wilson
- Biology Department, York University, North York, Ontario, Canada
| | | | | |
Collapse
|
16
|
Shelden E, Wadsworth P. Observation and quantification of individual microtubule behavior in vivo: microtubule dynamics are cell-type specific. J Cell Biol 1993; 120:935-45. [PMID: 8432733 PMCID: PMC2200071 DOI: 10.1083/jcb.120.4.935] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Recent experiments have demonstrated that the behavior of the interphase microtubule array is cell-type specific: microtubules in epithelial cells are less dynamic than microtubules in fibroblasts (Pepper-kok et al., 1990; Wadsworth and McGrail, 1990). To determine which parameters of microtubule dynamic instability behavior are responsible for this difference, we have examined the behavior of individual microtubules in both cell types after injection with rhodamine-labeled tubulin subunits. Individual microtubules in both cell types were observed to grow, shorten, and pause, as expected. The average amount of time microtubules remained within the lamellae of CHO fibroblasts, measured from images acquired at 10-s intervals, was significantly shorter than the average amount of time microtubules remained within lamellae of PtK1 epithelial cells. Further analysis of individual microtubule behavior from images acquired at 2-s intervals reveals that microtubules in PtK1 cells undergo multiple brief episodes of growth and shortening, resulting in little overall change in the microtubule network. In contrast, microtubules in lamellae of CHO fibroblasts are observed to undergo fewer transitions which are of longer average duration, resulting in substantial changes in the microtubule network over time. A small subset of more stable microtubules was also detected in CHO fibroblasts. Quantification of the various parameters of dynamic instability behavior from these sequences demonstrates that the average rates of both growth and shortening are significantly greater for the majority of microtubules in fibroblasts than for microtubules in epithelial cells (19.8 +/- 10.8 microns/min, 32.2 +/- 17.7 microns/min, 11.9 +/- 6.5 microns/min, and 19.7 +/- 8.1 microns/min, respectively). The frequency of catastrophe events (1/interval between catastrophe events) was similar in both cell types, but the frequency of rescue events (1/time spent shrinking) was significantly higher in PtK1 cells. Thus, individual microtubules in PtK1 lamellae undergo frequent excursions of short duration and extent, whereas most microtubules in CHO lamellae undergo more extensive excursions often resulting in the appearance or disappearance of microtubules within the field of view. These observations provide the first direct demonstration of cell-type specific behavior of individual microtubules in living cells, and indicate that these differences can be brought about by modulation of the frequency of rescue. These results directly support the view that microtubule dynamic instability behavior is regulated in a cell-type specific manner.
Collapse
Affiliation(s)
- E Shelden
- Department of Biology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
17
|
Abstract
New studies on mitosis demonstrate the complexity of interactions that contribute to chromosome motion and spindle assembly. Genetic and immunological approaches reveal the requirement for kinesin-related proteins during cell division in diverse cells. Observations of the dynamic behavior of microtubules demonstrate that their disassembly can produce sufficient force to move chromosomes in vitro, that their poleward movement, or flux, contributes to anaphase motion, and that the direction of anaphase motion can be reversed by induction of kinetochore microtubule elongation.
Collapse
Affiliation(s)
- P Wadsworth
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst 01003
| |
Collapse
|
18
|
Wendell KL, Wilson L, Jordan MA. Mitotic block in HeLa cells by vinblastine: ultrastructural changes in kinetochore-microtubule attachment and in centrosomes. J Cell Sci 1993; 104 ( Pt 2):261-74. [PMID: 8505360 DOI: 10.1242/jcs.104.2.261] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work from this laboratory has indicated that very low concentrations of vinblastine block HeLa cells at mitosis in the presence of a full complement of microtubules and without major disruption of spindle organization. In the present study we analyzed the structural organization of mitotic spindle microtubules, chromosomes and centrosomes by electron microscopy after incubating HeLa cells for one cell cycle with 2 nM vinblastine. We found that mitotic block of HeLa cells by vinblastine was associated with alterations of the fine structure of the spindle that were subtle but profound in their apparent consequences. The cell cycle was blocked in a stage that resembled prometaphase or metaphase; chromosomes had not undergone anaphase segregation. Neither the structure of the microtubules nor the structure of the kinetochores was detectably altered by the drug. However, the number of microtubules attached to kinetochores was decreased significantly. In addition, the centrosomes were altered; the normal close association of mother and daughter centriole was lost, numerous membranous vesicles were found in the centrosomal region, and many centrioles exhibited abnormal ultrastructure and had microtubules coursing through their interiors. These findings are consistent with our previous results and indicate that inhibition of the polymerization dynamics of mitotic spindle microtubules and perhaps of centriole microtubules, rather than microtubule depolymerization, is responsible for the mitotic inhibition by vinblastine.
Collapse
Affiliation(s)
- K L Wendell
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | |
Collapse
|
19
|
Mitchison TJ, Salmon ED. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Biophys Biochem Cytol 1992; 119:569-82. [PMID: 1400593 PMCID: PMC2289668 DOI: 10.1083/jcb.119.3.569] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubules in the mitotic spindles of newt lung cells were marked using local photoactivation of fluorescence. The movement of marked segments on kinetochore fibers was tracked by digital fluorescence microscopy in metaphase and anaphase and compared to the rate of chromosome movement. In metaphase, kinetochore oscillations toward and away from the poles were coupled to kinetochore fiber shortening and growth. Marked zones on the kinetochore microtubules, meanwhile, moved slowly polewards at a rate of approximately 0.5 micron/min, which identifies a slow polewards movement, or "flux," of kinetochore microtubules accompanied by depolymerization at the pole, as previously found in PtK2 cells (Mitchison, 1989b). Marks were never seen moving away from the pole, indicating that growth of the kinetochore microtubules occurs only at their kinetochore ends. In anaphase, marked zones on kinetochore microtubules also moved polewards, though at a rate slower than overall kinetochore-to-pole movement. Early in anaphase-A, microtubule depolymerization at kinetochores accounted on average for 75% of the rate of chromosome-to-pole movement, and depolymerization at the pole accounted for 25%. When chromosome-to-pole movement slowed in late anaphase, the contribution of depolymerization at the kinetochores lessened, and flux became the dominant component in some cells. Over the whole course of anaphase-A, depolymerization at kinetochores accounted on average for 63% of kinetochore fiber shortening, and flux for 37%. In some anaphase cells up to 45% of shortening resulted from the action of flux. We conclude that kinetochore microtubules change length predominantly through polymerization and depolymerization at the kinetochores during both metaphase and anaphase as the kinetochores move away from and towards the poles. Depolymerization, though not polymerization, also occurs at the pole during metaphase and anaphase, so that flux contributes to polewards chromosome movements throughout mitosis. Poleward force production for chromosome movements is thus likely to be generated by at least two distinct molecular mechanisms.
Collapse
Affiliation(s)
- T J Mitchison
- Department of Pharmacology, University of California, San Francisco 94143-0450
| | | |
Collapse
|
20
|
Shelden E, Wadsworth P. Microinjection of biotin-tubulin into anaphase cells induces transient elongation of kinetochore microtubules and reversal of chromosome-to-pole motion. J Cell Biol 1992; 116:1409-20. [PMID: 1541637 PMCID: PMC2289371 DOI: 10.1083/jcb.116.6.1409] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During prometaphase and metaphase of mitosis, tubulin subunit incorporation into kinetochore microtubules occurs proximal to the kinetochore, at the plus-ends of kinetochore microtubules. During anaphase, subunit loss from kinetochore fiber microtubules is also thought to occur mainly from microtubule plus-ends, proximal to the kinetochore. Thus, the kinetochore can mediate both subunit addition and loss while maintaining an attachment to kinetochore microtubules. To examine the relationship between chromosome motion and tubulin subunit assembly in anaphase, we have injected anaphase cells with biotin-labeled tubulin subunits. The pattern of biotin-tubulin incorporation was revealed using immunoelectron and confocal fluorescence microscopy of cells fixed after injection; chromosome motion was analyzed using video records of living injected cells. When anaphase cells are examined approximately 30 s after injection with biotin-tubulin, bright "tufts" of fluorescence are detected proximal to the kinetochores. Electron microscopic immunocytochemistry further reveals that these tufts of biotin-tubulin-containing microtubules are continuous with unlabeled kinetochore fiber microtubules. Biotin-tubulin incorporation proximal to the kinetochore in anaphase cells is detected after injection of 3-30 mg/ml biotin-tubulin, but not in cells injected with 0.3 mg/ml biotin-tubulin. At intermediate concentrations of biotin-tubulin (3-5 mg/ml), incorporation at the kinetochore can be detected within 15 s after injection; by approximately 1 min after injection discrete tufts of fluorescence are no longer detected, although some incorporation throughout the kinetochore fiber and into nonkinetochore microtubules is observed. At higher concentrations of injected biotin-tubulin (13 mg/ml), incorporation at the kinetochore is more extensive and occurs for longer periods of time than at intermediate concentrations. Incorporation of biotin-tubulin proximal to the kinetochore can be detected in cells injected during anaphase A, but not during anaphase B. Analysis of video records of microinjection experiments reveals that kinetochore proximal incorporation of biotin-tubulin is accompanied by a transient reversal of chromosome-to-pole motion. Chromosome motion is not altered after injection of 0.3 mg/ml biotin-tubulin or 5 mg/ml BSA. These results demonstrate that kinetochore microtubules in anaphase cells can elongate in response to the elevation of the tubulin concentration and that kinetochores retain the ability to mediate plus-end-dependent assembly of KMTs and plus-end-directed chromosome motion after anaphase onset.
Collapse
Affiliation(s)
- E Shelden
- Department of Zoology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
21
|
Abstract
The past year has seen important contributions made to resolving how chromosomes attach to and move on the mitotic spindle of animal cells. These include the findings that: kinetochore microtubules are derived from the asters (i.e. centrosomes); poleward chromosome motion need not be coupled to kinetochore microtubules disassembly; the motor for poleward chromosome motion is associated with the kinetochore; and immunological evidence that this motor is cytoplasmic dynein.
Collapse
Affiliation(s)
- C L Rieder
- Wadsworth Center for Laboratory Research, New York State Department of Health, Albany
| |
Collapse
|
22
|
Abstract
Two major polymers of the cytoskeleton, actin filaments and microtubules, are assembled with expenditure of energy: the ATP/GTP tightly bound to actin/tubulin is irreversibly hydrolyzed to ADP/GTP during the assembly process, and liberation of Pi in the medium occurs subsequent to the incorporation of subunits in the polymer. Pi release acts as a switch, causing the destabilization of protein-protein interactions in the polymer, therefore regulating the dynamics of these fibres. An understanding of this regulation in vivo requires that progress be made in four areas: the chemistry of the NTPase reaction; the structure of the intermediates in nucleotide hydrolysis and the nature of the conformational switch; the regulation of parameters involved in dynamic instability of microtubules; and the possible involvement of nucleotide hydrolysis in the macroscopic organization of these polymers in highly concentrated solutions, compared with the simple case of a equilibrium polymers. Progress made along these lines will define trends for future investigation.
Collapse
Affiliation(s)
- M F Carlier
- Laboratoire d'Enzymologie, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
23
|
Tousson A, Zeng C, Brinkley BR, Valdivia MM. Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation. J Cell Biol 1991; 112:427-40. [PMID: 1991791 PMCID: PMC2288835 DOI: 10.1083/jcb.112.3.427] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A novel protein has been identified which may serve a key function in nucleating spindle microtubule growth in mitosis. This protein, called centrophilin, is sequentially relocated from the centromeres to the centrosomes to the midbody in a manner dependent on the mitotic phase. Centrophilin was initially detected by immunofluorescence with a monoclonal, primate-specific antibody (2D3) raised against kinetochore-enriched chromosome extract from HeLa cells (Valdivia, M. M., and B. R. Brinkley. 1985. J. Cell Biol. 101:1124-1134). Centrophilin forms prominent crescents at the poles of the metaphase spindle, gradually diminishes during anaphase, and bands the equatorial ends of midbody microtubules in telophase. The formation and breakdown of the spindle and midbody correlates in time and space with the aggregation and disaggregation of centrophilin foci. Immunogold EM reveals that centrophilin is a major component of pericentriolar material in metaphase. During recovery from microtubule inhibition, centrophilin foci act as nucleation sites for the assembly of spindle tubules. The 2D3 probe recognizes two high molecular mass polypeptides, 180 and 210 kD, on immunoblots of whole HeLa cell extract. Taken together, these data and the available literature on microtubule dynamics point inevitably to a singular model for control of spindle tubule turnover.
Collapse
Affiliation(s)
- A Tousson
- Department of Cell Biology, University of Alabama, Birmingham, 35294
| | | | | | | |
Collapse
|
24
|
Palazzo RE, Lutz DA, Rebhun LI. Reactivation of isolated mitotic apparatus: metaphase versus anaphase spindles. CELL MOTILITY AND THE CYTOSKELETON 1991; 18:304-18. [PMID: 2049791 DOI: 10.1002/cm.970180407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitotic spindles isolated from sea urchin eggs can be reactivated to undergo mitotic processes in vitro. Spindles incubated in reactivation media containing sea urchin tubulin and nucleotides undergo pole-pole elongation similar to that observed in living cells during anaphase-B. The in vitro behavior of spindles isolated during metaphase and anaphase are compared. Both metaphase and anaphase spindles undergo pole-pole elongation with similar rates, but only in the presence of added tubulin. In contrast, metaphase but not anaphase spindles increase chromosome-pole distance in the presence of exogenous tubulin, suggesting that in vitro, tubulin can be incorporated at the kinetochores of metaphase but not anaphase chromosomes. The rate of spindle elongation, ultimate length achieved, and the increase in chromosome-pole distance for isolated metaphase spindles is related to the concentration of available tubulin. Pole-pole elongation and chromosome-pole elongation does not require added adenosine triphosphate (ATP). Guanosine triphosphate (GTP) will support all activities observed. Thus, the force generation mechanism for anaphase-B in isolated sea urchin spindles is independent of added ATP, but dependent on the availability of tubulin. These results support the hypothesis that the mechanism of force generation for anaphase-B is linked to the incorporation of tubulin into the mitotic apparatus. (If, in addition, a microtubule-dependent motor-protein(s) is acting to generate force, it does not appear to be dependent on ATP as the exclusive energy source.
Collapse
Affiliation(s)
- R E Palazzo
- Department of Biology, University of Virginia, Charlottesville
| | | | | |
Collapse
|
25
|
|
26
|
Abstract
The interface between kinetochores and microtubules in the mitotic spindle is known to be dynamic. Kinetochore microtubules can both polymerize and depolymerize, and their dynamic behavior is intimately related to chromosome movement. In this paper we investigate the influence of kinetochores on the inherent dynamic behavior of microtubules using an in vitro assay. The dynamics of microtubule plus ends attached to kinetochores are compared to those of free plus ends in the same solution. We show that microtubules attached to kinetochores exhibit the full range of dynamic instability behavior, but at altered transition rates. Surprisingly, we find that kinetochores increase the rate at which microtubule ends transit from growing to shrinking. This result contradicts our previous findings (Mitchison, T. J., and M. W. Kirschner, 1985b) for technical reasons which are discussed. We suggest that catalysis of the growing to shrinking transition by kinetochores may account for selective depolymerization of kinetochore microtubules during anaphase in vivo. We also investigate the effects of a nonhydrolyzable ATP analogue on kinetochore microtubule dynamics. We find that 5' adenylylimido diphosphate induces a rigor state at the kinetochore-microtubule interface, which prevents depolymerization of the microtubule.
Collapse
Affiliation(s)
- A A Hyman
- Department of Pharmacology, University of California, San Francisco 94143-0450
| | | |
Collapse
|
27
|
Affiliation(s)
- G Sluder
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts
| |
Collapse
|
28
|
Rieder CL, Alexander SP. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J Cell Biol 1990; 110:81-95. [PMID: 2295685 PMCID: PMC2115982 DOI: 10.1083/jcb.110.1.81] [Citation(s) in RCA: 353] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During mitosis in cultured newt pneumocytes, one or more chromosomes may become positioned well removed (greater than 50 microns) from the polar regions during early prometaphase. As a result, these chromosomes are delayed for up to 5 h in forming an attachment to the spindle. The spatial separation of these chromosomes from the polar microtubule-nucleating centers provides a unique opportunity to study the initial stages of kinetochore fiber formation in living cells. Time-lapse Nomarski-differential interference contrast videomicroscopic observations reveal that late-attaching chromosomes always move, upon attachment, into a single polar region (usually the one closest to the chromosome). During this attachment, the kinetochore region of the chromosome undergoes a variable number of transient poleward tugs that are followed, shortly thereafter, by rapid movement of the chromosome towards the pole. Anti-tubulin immunofluorescence and serial section EM reveal that the kinetochores and kinetochore regions of nonattached chromosomes lack associated microtubules. By contrast, these methods reveal that the attachment and subsequent poleward movement of a chromosome correlates with the association of a single long microtubule with one of the kinetochores of the chromosome. This microtubule traverses the entire distance between the spindle pole and the kinetochore and often extends well past the kinetochore. From these results, we conclude that the initial attachment of a chromosome to the newt pneumocyte spindle results from an interaction between a single polar-nucleated microtubule and one of the kinetochores on the chromosome. Once this association is established, the kinetochore is rapidly transported poleward along the surface of the microtubule by a mechanism that is not dependent on microtubule depolymerization. Our results further demonstrate that the motors for prometaphase chromosome movement must be either on the surface of the kinetochore (i.e., within the corona but not the plate), distributed along the surface of the kinetochore microtubules, or both.
Collapse
Affiliation(s)
- C L Rieder
- Wadsworth Center for Laboratories and Research, Albany, New York 12201-0509
| | | |
Collapse
|