1
|
Harrison A, Evans G, Blanco G. Expanding science skills: teaching tissue culture, data analysis, and reporting through imaging the actin cytoskeleton. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0019023. [PMID: 38722163 PMCID: PMC11360407 DOI: 10.1128/jmbe.00190-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/13/2024] [Indexed: 08/30/2024]
Abstract
Within the eukaryotic cell, the actin cytoskeleton is a crucial structural framework that maintains cellular form, regulates cell movement and division, and facilitates the internal transportation of proteins and organelles. External cues induce alterations in the actin cytoskeleton primarily through the activation of Rho GTPases, which then bind to a diverse array of effector proteins to promote the local assembly or disassembly of actin. We have harnessed the extensively studied functions of RhoA in the dynamics of the actin cytoskeleton to craft a practical series for Stage 2 Biology students. This series not only imparts essential tissue culture laboratory skills but also reinforces them through repetition. These activities are presented in a scenario designed for students to explore the function of a hypothetical RhoA family member. Students produce slides from transfected cells, undertake fluorescence microscopy, process the images using ImageJ, and compile their findings in a comprehensive scientific report. The composition of the report requires independent acquisition of new knowledge and synoptic learning. According to student feedback, this early experience greatly aids in solidifying and honing the skills required to report on more extensive and intricate research projects, such as capstone projects.
Collapse
Affiliation(s)
- Adrian Harrison
- Department of Biology, University of York, York, United Kingdom
| | - Gareth Evans
- Department of Biology, University of York, York, United Kingdom
| | - Gonzalo Blanco
- Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
2
|
Li X, Du H, Zhou H, Huang Y, Tang S, Yu C, Guo Y, Luo W, Gong Y. FOXL2 regulates RhoA expression to change actin cytoskeleton rearrangement in granulosa cells of chicken pre-ovulatory follicles†. Biol Reprod 2024; 111:391-405. [PMID: 38832713 DOI: 10.1093/biolre/ioae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/04/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024] Open
Abstract
Forkhead box L2 (FOXL2) is an indispensable key regulator of female follicular development, and it plays important roles in the morphogenesis, proliferation, and differentiation of follicle granulosa cells, such as establishing normal estradiol signaling and regulating steroid hormone synthesis. Nevertheless, the effects of FOXL2 on granulosa cell morphology and the underlying mechanism remain unknown. Using FOXL2 ChIP-seq analysis, we found that FOXL2 target genes were significantly enriched in the actin cytoskeleton-related pathways. We confirmed that FOXL2 inhibited the expression of RhoA, a key gene for actin cytoskeleton rearrangement, by binding to TCATCCATCTCT in RhoA promoter region. In addition, FOXL2 overexpression in granulosa cells induced the depolymerization of F-actin and disordered the actin filaments, resulting in a slowdown in the expansion of granulosa cells, while FOXL2 silencing inhibited F-actin depolymerization and stabilized the actin filaments, thereby accelerating granulosa cell expansion. RhoA/ROCK pathway inhibitor Y-27632 exhibited similar effects to FOXL2 overexpression, even reversed the actin polymerization in FOXL2 silencing granulosa cells. This study revealed for the first time that FOXL2 regulated granulosa cell actin cytoskeleton by RhoA/ROCK pathway, thus affecting granulosa cell expansion. Our findings provide new insights for constructing the regulatory network of FOXL2 and propose a potential mechanism for facilitating rapid follicle expansion, thereby laying a foundation for further understanding follicular development.
Collapse
Affiliation(s)
- Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Hongting Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Haobo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Ying Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Shuixin Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Chengzhi Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yan Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Wei Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Wuhan, Hubei, PR China
- College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
3
|
Schneider S, Wirth C, Jank T, Hunte C, Aktories K. Tyrosine-modifying glycosylation by Yersinia effectors. J Biol Chem 2024; 300:107331. [PMID: 38703997 PMCID: PMC11152714 DOI: 10.1016/j.jbc.2024.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.
Collapse
Affiliation(s)
- Silvia Schneider
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Christophe Wirth
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany.
| | - Thomas Jank
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Carola Hunte
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Faculty of Medicine, Institute for Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany; Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Morel C, Lemerle E, Tsai FC, Obadia T, Srivastava N, Marechal M, Salles A, Albert M, Stefani C, Benito Y, Vandenesch F, Lamaze C, Vassilopoulos S, Piel M, Bassereau P, Gonzalez-Rodriguez D, Leduc C, Lemichez E. Caveolin-1 protects endothelial cells from extensive expansion of transcellular tunnel by stiffening the plasma membrane. eLife 2024; 12:RP92078. [PMID: 38517935 PMCID: PMC10959525 DOI: 10.7554/elife.92078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Large transcellular pores elicited by bacterial mono-ADP-ribosyltransferase (mART) exotoxins inhibiting the small RhoA GTPase compromise the endothelial barrier. Recent advances in biophysical modeling point toward membrane tension and bending rigidity as the minimal set of mechanical parameters determining the nucleation and maximal size of transendothelial cell macroaperture (TEM) tunnels induced by bacterial RhoA-targeting mART exotoxins. We report that cellular depletion of caveolin-1, the membrane-embedded building block of caveolae, and depletion of cavin-1, the master regulator of caveolae invaginations, increase the number of TEMs per cell. The enhanced occurrence of TEM nucleation events correlates with a reduction in cell height due to the increase in cell spreading and decrease in cell volume, which, together with the disruption of RhoA-driven F-actin meshwork, favor membrane apposition for TEM nucleation. Strikingly, caveolin-1 specifically controls the opening speed of TEMs, leading to their dramatic 5.4-fold larger widening. Consistent with the increase in TEM density and width in siCAV1 cells, we record a higher lethality in CAV1 KO mice subjected to a catalytically active mART exotoxin targeting RhoA during staphylococcal bloodstream infection. Combined theoretical modeling with independent biophysical measurements of plasma membrane bending rigidity points toward a specific contribution of caveolin-1 to membrane stiffening in addition to the role of cavin-1/caveolin-1-dependent caveolae in the control of membrane tension homeostasis.
Collapse
Affiliation(s)
- Camille Morel
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| | - Eline Lemerle
- Sorbonne Université, INSERM UMR974, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Feng-Ching Tsai
- Institut Curie, PSL Research University, CNRS UMR168, Physics of Cells and Cancer LaboratoryParisFrance
| | - Thomas Obadia
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
- Institut Pasteur, Université Paris Cité, G5 Infectious Diseases Epidemiology and AnalyticsParisFrance
| | - Nishit Srivastava
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, Sorbonne UniversityParisFrance
| | - Maud Marechal
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT)ParisFrance
| | - Marvin Albert
- Institut Pasteur, Université Paris Cité, Image Analysis HubParisFrance
| | - Caroline Stefani
- Benaroya Research Institute at Virginia Mason, Department of ImmunologySeattleUnited States
| | - Yvonne Benito
- Centre National de Référence des Staphylocoques, Hospices Civiles de LyonLyonFrance
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, FranceLyonFrance
| | - Christophe Lamaze
- Institut Curie, PSL Research University, INSERM U1143, CNRS UMR3666, Membrane Mechanics and Dynamics of Intracellular Signaling LaboratoryParisFrance
| | - Stéphane Vassilopoulos
- Sorbonne Université, INSERM UMR974, Institut de Myologie, Centre de Recherche en MyologieParisFrance
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, Sorbonne UniversityParisFrance
| | - Patricia Bassereau
- Institut Curie, PSL Research University, CNRS UMR168, Physics of Cells and Cancer LaboratoryParisFrance
| | | | - Cecile Leduc
- Université Paris Cité, Institut Jacques Monod, CNRS UMR7592ParisFrance
| | - Emmanuel Lemichez
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Inserm U1306, Unité des Toxines Bactériennes, Département de MicrobiologieParisFrance
| |
Collapse
|
5
|
Schaefer A, Hodge RG, Zhang H, Hobbs GA, Dilly J, Huynh M, Goodwin CM, Zhang F, Diehl JN, Pierobon M, Baldelli E, Javaid S, Guthrie K, Rashid NU, Petricoin EF, Cox AD, Hahn WC, Aguirre AJ, Bass AJ, Der CJ. RHOA L57V drives the development of diffuse gastric cancer through IGF1R-PAK1-YAP1 signaling. Sci Signal 2023; 16:eadg5289. [PMID: 38113333 PMCID: PMC10791543 DOI: 10.1126/scisignal.adg5289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023]
Abstract
Cancer-associated mutations in the guanosine triphosphatase (GTPase) RHOA are found at different locations from the mutational hotspots in the structurally and biochemically related RAS. Tyr42-to-Cys (Y42C) and Leu57-to-Val (L57V) substitutions are the two most prevalent RHOA mutations in diffuse gastric cancer (DGC). RHOAY42C exhibits a gain-of-function phenotype and is an oncogenic driver in DGC. Here, we determined how RHOAL57V promotes DGC growth. In mouse gastric organoids with deletion of Cdh1, which encodes the cell adhesion protein E-cadherin, the expression of RHOAL57V, but not of wild-type RHOA, induced an abnormal morphology similar to that of patient-derived DGC organoids. RHOAL57V also exhibited a gain-of-function phenotype and promoted F-actin stress fiber formation and cell migration. RHOAL57V retained interaction with effectors but exhibited impaired RHOA-intrinsic and GAP-catalyzed GTP hydrolysis, which favored formation of the active GTP-bound state. Introduction of missense mutations at KRAS residues analogous to Tyr42 and Leu57 in RHOA did not activate KRAS oncogenic potential, indicating distinct functional effects in otherwise highly related GTPases. Both RHOA mutants stimulated the transcriptional co-activator YAP1 through actin dynamics to promote DGC progression; however, RHOAL57V additionally did so by activating the kinases IGF1R and PAK1, distinct from the FAK-mediated mechanism induced by RHOAY42C. Our results reveal that RHOAL57V and RHOAY42C drive the development of DGC through distinct biochemical and signaling mechanisms.
Collapse
Affiliation(s)
- Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Richard G. Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haisheng Zhang
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - G. Aaron Hobbs
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julien Dilly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Minh Huynh
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Feifei Zhang
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Sehrish Javaid
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karson Guthrie
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Naim U. Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C. Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Adam J. Bass
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Herbert Irving Comprehensive Cancer Center at Columbia University, New York, NY 10032, USA
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Program in Oral and Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Zhang H, Lu F, Liu P, Qiu Z, Li J, Wang X, Xu H, Zhao Y, Li X, Wang H, Lu D, Qi R. A direct interaction between RhoGDIα/Tau alleviates hyperphosphorylation of Tau in Alzheimer's disease and vascular dementia. J Neuroimmune Pharmacol 2023; 18:58-71. [PMID: 35080740 DOI: 10.1007/s11481-021-10049-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023]
Abstract
RhoGDIα is an inhibitor of RhoGDP dissociation that involves in Aβ metabolism and NFTs production in Alzheimer's disease (AD) by regulating of RhoGTP enzyme activity. Our previous research revealed that RhoGDIα, as the target of Polygala saponin (Sen), might alleviate apoptosis of the nerve cells caused by hypoxia/reoxygenation (H/R). To further clarify the role of RhoGDIα in the generation of NFTs, we explored the relationship between RhoGDIα and Tau. We found out that RhoGDIα and Tau can bind with each other and interact by using coimmunoprecipitation (Co-IP) and GST pulldown methods in vitro. This RhoGDIα-Tau partnership was further verified by using immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) approaches in PC12 cells. Using the RNA interference (RNAi) technique, we found that the RhoGDIα may be involved in an upstream signaling pathway for Tau. Subsequently, in Aβ25-35- and H/R-induced PC12 cells, forced expression of RhoGDIα via cDNA plasmid transfection was found to reduce the hyperphosphorylation of Tau, augment the expression of bcl-2 protein, and inhibit the expression of Bax protein (reducing the Bax/bcl-2 ratio) and the activity of caspase-3. In mouse AD and VaD models, forced expression of RhoGDIα via injection of a viral vector (pAAV-EGFP-RhoGDIα) into the lateral ventricle of the brain alleviated the pathological symptoms of AD and VaD. Finally, GST pulldown confirmed that the binding sites on RhoGDIα for Tau were located in the range of the ΔC33 fragment (aa 1-33). These results indicate that RhoGDIα is involved in the phosphorylation of Tau and apoptosis in AD and VaD. Overexpression of RhoGDIα can inhibit the generation of NFTs and delay the progress of these two types of dementia.
Collapse
Affiliation(s)
- Heping Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fan Lu
- Department of Emergency, First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Panhong Liu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Zhaohui Qiu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, ShenZhen, 518033, China
| | - Jianling Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Anesthesiology, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiaotong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Xu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yandong Zhao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Xuemin Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Anhui, 230031, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Renbin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
7
|
Aktories K. From signal transduction to protein toxins-a narrative review about milestones on the research route of C. difficile toxins. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:173-190. [PMID: 36203094 PMCID: PMC9831965 DOI: 10.1007/s00210-022-02300-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 01/29/2023]
Abstract
Selected findings about Clostridioides difficile (formerly Clostridium difficile) toxins are presented in a narrative review. Starting with a personal view on research about G proteins, adenylyl cyclase, and ADP-ribosylating toxins in the laboratory of Günter Schultz in Heidelberg, milestones of C. difficile toxin research are presented with the focus on toxin B (TcdB), covering toxin structure, receptor binding, toxin up-take and refolding, the intracellular actions of TcdB, and the treatment of C. difficile infection.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany.
| |
Collapse
|
8
|
Popoff MR, Legout S. Anaerobes and Toxins, a Tradition of the Institut Pasteur. Toxins (Basel) 2023; 15:43. [PMID: 36668863 PMCID: PMC9861305 DOI: 10.3390/toxins15010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Louis Pasteur, one of the eminent pioneers of microbiology, discovered life without oxygen and identified the first anaerobic pathogenic bacterium. Certain bacteria were found to be responsible for specific diseases. Pasteur was mainly interested in the prevention and treatment of infectious diseases with attenuated pathogens. The collaborators of Pasteur investigated the mechanisms of pathogenicity and showed that some bacterial soluble substances, called toxins, induce symptoms and lesions in experimental animals. Anaerobic bacteriology, which requires specific equipment, has emerged as a distinct part of microbiology. The first objectives were the identification and taxonomy of anaerobes. Several anaerobes producing potent toxins were associated with severe diseases. The investigation of toxins including sequencing, mode of action, and enzymatic activity led to a better understanding of toxin-mediated pathogenicity and allowed the development of safe and efficient prevention and treatment (vaccination with anatoxins, specific neutralizing antisera). Moreover, toxins turned out to be powerful tools in exploring cellular mechanisms supporting the concept of cellular microbiology. Pasteurians have made a wide contribution to anaerobic bacteriology and toxinology. The historical steps are summarized in this review.
Collapse
Affiliation(s)
| | - Sandra Legout
- Centre de Ressources en Information Scientifique, Institut Pasteur, 75015 Paris, France
| |
Collapse
|
9
|
Chen S, Zhang Z, Zhang Y, Choi T, Zhao Y. Activation Mechanism of RhoA Caused by Constitutively Activating Mutations G14V and Q63L. Int J Mol Sci 2022; 23:ijms232415458. [PMID: 36555100 PMCID: PMC9778661 DOI: 10.3390/ijms232415458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
RhoA, a member of Rho GTPases, regulates myriad cellular processes. Abnormal expression of RhoA has been implicated in various diseases, including cancers, developmental disorders and bacterial infections. RhoA mutations G14V and Q63L have been reported to constitutively activate RhoA. To figure out the mechanisms, in total, 1.8 μs molecular dynamics (MD) simulations were performed here on RhoAWT and mutants G14V and Q63L in GTP-bound forms, followed by dynamic analysis. Both mutations were found to affect the conformational dynamics of RhoA switch regions, especially switch I, shifting the whole ensemble from the wild type's open inactive state to different active-like states, where T37 and Mg2+ played important roles. In RhoAG14V, both switches underwent thorough state transition, whereas in RhoAQ63L, only switch I was sustained in a much more closed conformation with additional hydrophobic interactions introduced by L63. Moreover, significantly decreased solvent exposure of the GTP-binding site was observed in both mutants with the surrounding hydrophobic regions expanded, which furnished access to water molecules required for hydrolysis more difficult and thereby impaired GTP hydrolysis. These structural and dynamic differences first suggested the potential activation mechanism of RhoAG14V and RhoAQ63L. Together, our findings complemented the understanding of RhoA activation at the atomic level and can be utilized in the development of novel therapies for RhoA-related diseases.
Collapse
|
10
|
Basu A, Paul MK, Weiss S. The actin cytoskeleton: Morphological changes in pre- and fully developed lung cancer. BIOPHYSICS REVIEWS 2022; 3:041304. [PMID: 38505516 PMCID: PMC10903407 DOI: 10.1063/5.0096188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 12/09/2022] [Indexed: 03/21/2024]
Abstract
Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Author to whom correspondence should be addressed:
| |
Collapse
|
11
|
Huynh MV, Hobbs GA, Schaefer A, Pierobon M, Carey LM, Diehl JN, DeLiberty JM, Thurman RD, Cooke AR, Goodwin CM, Cook JH, Lin L, Waters AM, Rashid NU, Petricoin EF, Campbell SL, Haigis KM, Simeone DM, Lyssiotis CA, Cox AD, Der CJ. Functional and biological heterogeneity of KRAS Q61 mutations. Sci Signal 2022; 15:eabn2694. [PMID: 35944066 PMCID: PMC9534304 DOI: 10.1126/scisignal.abn2694] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Missense mutations at the three hotspots in the guanosine triphosphatase (GTPase) RAS-Gly12, Gly13, and Gln61 (commonly known as G12, G13, and Q61, respectively)-occur differentially among the three RAS isoforms. Q61 mutations in KRAS are infrequent and differ markedly in occurrence. Q61H is the predominant mutant (at 57%), followed by Q61R/L/K (collectively 40%), and Q61P and Q61E are the rarest (2 and 1%, respectively). Probability analysis suggested that mutational susceptibility to different DNA base changes cannot account for this distribution. Therefore, we investigated whether these frequencies might be explained by differences in the biochemical, structural, and biological properties of KRASQ61 mutants. Expression of KRASQ61 mutants in NIH 3T3 fibroblasts and RIE-1 epithelial cells caused various alterations in morphology, growth transformation, effector signaling, and metabolism. The relatively rare KRASQ61E mutant stimulated actin stress fiber formation, a phenotype distinct from that of KRASQ61H/R/L/P, which disrupted actin cytoskeletal organization. The crystal structure of KRASQ61E was unexpectedly similar to that of wild-type KRAS, a potential basis for its weak oncogenicity. KRASQ61H/L/R-mutant pancreatic ductal adenocarcinoma (PDAC) cell lines exhibited KRAS-dependent growth and, as observed with KRASG12-mutant PDAC, were susceptible to concurrent inhibition of ERK-MAPK signaling and of autophagy. Our results uncover phenotypic heterogeneity among KRASQ61 mutants and support the potential utility of therapeutic strategies that target KRASQ61 mutant-specific signaling and cellular output.
Collapse
Affiliation(s)
- Minh V. Huynh
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - G. Aaron Hobbs
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Antje Schaefer
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine,
George Mason University, Manassas, VA 20110, USA
| | - Leiah M. Carey
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan M. DeLiberty
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ryan D. Thurman
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adelaide R. Cooke
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua H. Cook
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical
School, Boston, MA 02115, USA
| | - Lin Lin
- Department of Molecular and Integrative Physiology,
University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Andrew M. Waters
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Naim U. Rashid
- Department of Biostatistics, University of North Carolina
at Chapel Hill, NC 27955, USA
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine,
George Mason University, Manassas, VA 20110, USA
| | - Sharon L. Campbell
- Department of Biochemistry & Biophysics, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute,
Boston, MA 02215, USA
- Department of Medicine, Brigham & Women's
Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute, Cambridge, MA 02142, USA
- Harvard Digestive Disease Center, Harvard Medical School,
Boston, MA 02115, USA
| | - Diane M. Simeone
- Perlmutter Cancer Center, New York University, New York,
NY10016, USA
| | - Costas A. Lyssiotis
- Department of Molecular and Integrative Physiology,
University of Michigan Health System, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of
Gastroenterology, University of Michigan, Ann Arbor, MI 48198, USA
- University of Michigan Comprehensive Cancer Center, Ann
Arbor, MI 48109, USA
| | - Adrienne D. Cox
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North
Carolina at Chapel Hill, Chapel Hill, NC 2799, USA
| | - Channing J. Der
- Department of Pharmacology, University of North Carolina at
Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of
North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Bending over backwards: BAR proteins and the actin cytoskeleton in mammalian receptor-mediated endocytosis. Eur J Cell Biol 2022; 101:151257. [PMID: 35863103 DOI: 10.1016/j.ejcb.2022.151257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
The role of the actin cytoskeleton during receptor-mediated endocytosis (RME) has been well characterized in yeast for many years. Only more recently has the interplay between the actin cytoskeleton and RME been extensively explored in mammalian cells. These studies have revealed the central roles of BAR proteins in RME, and have demonstrated significant roles of BAR proteins in linking the actin cytoskeleton to this cellular process. The actin cytoskeleton generates and transmits mechanical force to promote the extension of receptor-bound endocytic vesicles into the cell. Many adaptor proteins link and regulate the actin cytoskeleton at the sites of endocytosis. This review will cover key effectors, adaptors and signalling molecules that help to facilitate the invagination of the cell membrane during receptor-mediated endocytosis, including recent insights gained on the roles of BAR proteins. The final part of this review will explore associations of alterations to genes encoding BAR proteins with cancer.
Collapse
|
13
|
Ju J, Lee HN, Ning L, Ryu H, Zhou XX, Chun H, Lee YW, Lee-Richerson AI, Jeong C, Lin MZ, Seong J. Optical regulation of endogenous RhoA reveals selection of cellular responses by signal amplitude. Cell Rep 2022; 40:111080. [PMID: 35830815 DOI: 10.1016/j.celrep.2022.111080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 11/15/2022] Open
Abstract
How protein signaling networks respond to different input strengths is an important but poorly understood problem in cell biology. For example, RhoA can promote focal adhesion (FA) growth or disassembly, but how RhoA activity mediates these opposite outcomes is not clear. Here, we develop a photoswitchable RhoA guanine nucleotide exchange factor (GEF), psRhoGEF, to precisely control endogenous RhoA activity. Using this optical tool, we discover that peak FA disassembly selectively occurs upon activation of RhoA to submaximal levels. We also find that Src activation at FAs selectively occurs upon submaximal RhoA activation, identifying Src as an amplitude-dependent RhoA effector. Finally, a pharmacological Src inhibitor reverses the direction of the FA response to RhoA activation from disassembly to growth, demonstrating that Src functions to suppress FA growth upon RhoA activation. Thus, rheostatic control of RhoA activation by psRhoGEF reveals that cells can use signal amplitude to produce multiple responses to a single biochemical signal.
Collapse
Affiliation(s)
- Jeongmin Ju
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hae Nim Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Lin Ning
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Hyunjoo Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Xin X Zhou
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Hyeyeon Chun
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yong Woo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | | | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| | - Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; Department of Converging Science and Technology, Kyung Hee University, Seoul 02453, Republic of Korea; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Ebrahimi N, Kharazmi K, Ghanaatian M, Miraghel SA, Amiri Y, Seyedebrahimi SS, Mobarak H, Yazdani E, Parkhideh S, Hamblin MR, Aref AR. Role of the Wnt and GTPase pathways in breast cancer tumorigenesis and treatment. Cytokine Growth Factor Rev 2022; 67:11-24. [DOI: 10.1016/j.cytogfr.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 04/30/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022]
|
15
|
Hurst M, McGarry DJ, Olson MF. Rho GTPases: Non-canonical regulation by cysteine oxidation. Bioessays 2021; 44:e2100152. [PMID: 34889471 DOI: 10.1002/bies.202100152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
Rho GTPases are critically important and are centrally positioned regulators of the actomyosin cytoskeleton. By influencing the organization and architecture of the cytoskeleton, Rho proteins play prominent roles in many cellular processes including adhesion, migration, intra-cellular transportation, and proliferation. The most important method of Rho GTPase regulation is via the GTPase cycle; however, post-translational modifications (PTMs) also play critical roles in Rho protein regulation. Relative to other PTMs such as lipidation or phosphorylation that have been extensively characterized, protein oxidation is a regulatory PTM that has been poorly studied. Protein oxidation primarily occurs from the reaction of reactive oxygen species (ROS), such as hydrogen peroxide (H2 O2 ), with amino acid side chain thiols on cysteine (Cys) and methionine (Met) residues. The versatile redox modifications of cysteine residues exemplify their integral role in cell signalling processes. Here we review prominent members of the Rho GTPase family and discuss how lipidation, phosphorylation, and oxidation on conserved cysteine residues affects their regulation and function.
Collapse
Affiliation(s)
- Mackenzie Hurst
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - David J McGarry
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Michael F Olson
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
16
|
The roles of Cdc42 and Rac1 in the formation of plasma membrane protrusions in cancer epithelial HeLa cells. Mol Biol Rep 2021; 48:4285-4294. [PMID: 34110575 DOI: 10.1007/s11033-021-06443-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The inducible model of clones generated from the cervical cancer epithelial HeLa cell line has shown the role of DOCK10 as a guanine-nucleotide exchange factor for Rho GTPases Cdc42 and Rac1 and as an inducer of filopodia and plasma membrane (PM) ruffles. In this model, constitutively active (CA) mutants of Cdc42 and Rac1 promote filopodia and ruffles, respectively, as in other models. DOCK9 also induces filopodia and ruffles, although ruffling activity is less prominent. By exploiting this model further, the aim of this work is to provide a more complete understanding of the role of Cdc42 and Rac1, and their interactions with DOCK10 and DOCK9, in regulation of PM protrusions. New clones have been generated from HeLa, including single clones expressing one form of wild-type (WT) or dominant negative (DN) Cdc42 or Rac1, and double clones co-expressing one of them together with either DOCK10 or DOCK9. Expression of WT- and DN-Cdc42 induced filopodia. WT-Cdc42 and, especially, DN-Cdc42 also gave rise to veil protrusions, which were neutralized by DOCK10. Moreover, DN-Cdc42 stimulated the emergence of ruffles, further increased by DOCK10, and WT-Cdc42 also augmented ruffles in presence of DOCK9 and DOCK10. WT-Rac1 greatly increased PM blebbing, as did DN-Rac1 more moderately. In both cases, blebs were enhanced by DOCK10. DN-Rac1 and CA-Rac1 moderately raised filopodia, and DOCK10 and DOCK9 had opposed effects on filopodia (up and down, respectively) in presence of WT-Rac1. As conclusions, we highlight that Cdc42 promotes filopodia regardless of its conformational state, and Rac1 induces blebs in conformations other than CA, especially WT-Rac1, in the inducible HeLa clones. The model could be useful to learn more about the mechanisms underlying PM protrusions.
Collapse
|
17
|
Lemichez E, Popoff MR, Satchell KJF. Cellular microbiology: Bacterial toxin interference drives understanding of eukaryotic cell function. Cell Microbiol 2021; 22:e13178. [PMID: 32185903 DOI: 10.1111/cmi.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 11/28/2022]
Abstract
Intimate interactions between the armament of pathogens and their host dictate tissue and host susceptibility to infection also forging specific pathophysiological outcomes. Studying these interactions at the molecular level has provided an invaluable source of knowledge on cellular processes, as ambitioned by the Cellular Microbiology discipline when it emerged in early 90s. Bacterial toxins act on key cell regulators or membranes to produce major diseases and therefore constitute a remarkable toolbox for dissecting basic biological processes. Here, we review selected examples of recent studies on bacterial toxins illustrating how fruitful the discipline of cellular microbiology is in shaping our understanding of eukaryote processes. This ever-renewing discipline unveils new virulence factor biochemical activities shared by eukaryotic enzymes and hidden rules of cell proteome homeostasis, a particularly promising field to interrogate the impact of proteostasis breaching in late onset human diseases. It is integrating new concepts from the physics of soft matter to capture biomechanical determinants forging cells and tissues architecture. The success of this discipline is also grounded by the development of therapeutic tools and new strategies to treat both infectious and noncommunicable human diseases.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- Unité des Toxines Bactériennes, CNRS ERL6002, Institut Pasteur, Paris, France
| | | | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
18
|
Harre J, Heinkele L, Steffens M, Warnecke A, Lenarz T, Just I, Rohrbeck A. Potentiation of Brain-Derived Neurotrophic Factor-Induced Protection of Spiral Ganglion Neurons by C3 Exoenzyme/Rho Inhibitor. Front Cell Neurosci 2021; 15:602897. [PMID: 33776650 PMCID: PMC7991574 DOI: 10.3389/fncel.2021.602897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/19/2021] [Indexed: 11/17/2022] Open
Abstract
Preservation of the excitability of spiral ganglion neurons (SGN) may contribute to an improved speech perception after cochlear implantation. Thus, the application of exogenous neurotrophic factors such as the neurotrophin brain-derived neurotrophic factor (BDNF) to increase SGN survival in vitro and in vivo is a promising pharmacological approach in cochlear implant (CI) research. Due to the difficult pharmacokinetic profile of proteins such as BDNF, there is a quest for small molecules to mediate the survival of SGN or to increase the efficacy of BDNF. The C3 exoenzyme from Clostridium botulinum could be a potential new candidate for the protection and regeneration of SGN. Inhibition of the RhoA GTPase pathway which can be mediated by C3 is described as a promising strategy to enhance axonal regeneration and to exert pro-survival signals in neurons. Nanomolar concentrations of C3, its enzymatically inactive form C3E174Q, and a 26mer C-terminal peptide fragment covering amino acid 156–181 (C3156-181) potentiated the neuroprotective effect on SGN mediated by BDNF in vitro. The neuroprotective effect of C3/BDNF was reduced to the neuroprotective effect of BDNF alone after the treatment with wortmannin, an inhibitor of the phosphatidylinositol-3-kinase (PI3K).The exoenzyme C3 (wild-type and enzyme-deficient) and the C3 peptide fragment C3154–181 present novel biologically active compounds for the protection of the SGN. The exact underlying intracellular mechanisms that mediate the neuroprotective effect are not clarified yet, but the combination of BDNF (TrkB stimulation) and C3 exoenzyme (RhoA inhibition) can be used to protect SGN in vitro.
Collapse
Affiliation(s)
- Jennifer Harre
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Laura Heinkele
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Melanie Steffens
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation (EXC 2177/1), Hannover, Germany
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Dirks C, Striewski P, Wirth B, Aalto A, Olguin-Olguin A. A mathematical model for bleb regulation in zebrafish primordial germ cells. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2021; 38:218-254. [PMID: 33601409 DOI: 10.1093/imammb/dqab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2021] [Accepted: 01/24/2021] [Indexed: 01/02/2023]
Abstract
Blebs are cell protrusions generated by local membrane-cortex detachments followed by expansion of the plasma membrane. Blebs are formed by some migrating cells, e.g. primordial germ cells of the zebrafish. While blebs occur randomly at each part of the membrane in unpolarized cells, a polarization process guarantees the occurrence of blebs at a preferential site and thereby facilitates migration toward a specified direction. Little is known about the factors involved in the controlled and directed bleb generation, yet recent studies revealed the influence of an intracellular flow and the stabilizing role of the membrane-cortex linker molecule Ezrin. Based on this information, we develop and analyse a coupled bulk-surface model describing a potential cellular mechanism by which a bleb could be induced at a controlled site. The model rests upon intracellular Darcy flow and a diffusion-advection-reaction system, describing the temporal evolution from a homogeneous to a strongly anisotropic Ezrin distribution. We prove the well-posedness of the mathematical model and show that simulations qualitatively correspond to experimental observations, suggesting that indeed the interaction of an intracellular flow with membrane proteins can be the cause of the Ezrin redistribution accompanying bleb formation.
Collapse
Affiliation(s)
- Carolin Dirks
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Paul Striewski
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Benedikt Wirth
- WWU Münster FB 10 Mathematik und Informatik, Institute for Analysis and Numerics, 48149 Münster, Germany
| | - Anne Aalto
- WWU Münster FB 13 Biologie, Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Münster, Germany
| | - Adan Olguin-Olguin
- WWU Münster FB 13 Biologie, Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Münster, Germany
| |
Collapse
|
20
|
Cdk1 phosphorylation negatively regulates the activity of Net1 towards RhoA during mitosis. Cell Signal 2021; 80:109926. [PMID: 33465404 DOI: 10.1016/j.cellsig.2021.109926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
The Neuroepithelial transforming gene 1 (Net1) is a RhoA subfamily guanine nucleotide exchange factor that is overexpressed in a number of cancers and contributes to cancer cell motility and proliferation. Net1 also plays a Rho GTPase independent role in mitotic progression, where it promotes centrosomal activation of Aurora A and Pak2, and aids in chromosome alignment during prometaphase. To understand regulatory mechanisms controlling the mitotic function of Net1, we examined whether it was phosphorylated by the mitotic kinase Cdk1. We observed that Cdk1 phosphorylated Net1 on multiple sites in its N-terminal regulatory domain and C-terminus in vitro. By raising phospho-specific antibodies to two of these sites, we also demonstrated that both endogenous and transfected Net1 were phosphorylated by Cdk1 in cells. Substitution of the major Cdk1 phosphorylation sites with aliphatic or acidic residues inhibited the interaction of Net1 with RhoA, and treatment of metaphase cells with a Cdk1 inhibitor increased Net1 activity. Cdk1 inhibition also increased Net1 localization to the plasma membrane and stimulated cortical F-actin accumulation. Moreover, Net1 overexpression caused spindle polarity defects that were reduced in frequency by acidic substitution of the major Cdk1 phosphorylation sites. These data indicate that Cdk1 phosphorylates Net1 during mitosis and suggest that this negatively regulates its ability to signal to RhoA and alter actin cytoskeletal organization.
Collapse
|
21
|
Abstract
The name of the oncogene, ras, has its origin in studies of murine leukemia viruses in the 1960s by Jenny Harvey (H-ras) and by Werner Kirsten (K-ras) which, at high doses, produced sarcomas in rats. Transforming retroviruses were isolated, and its oncogene was named ras after rat sarcoma. From 1979, cellular ras sequences with transforming properties were identified by transfection of tumor DNA initially by Robert Weinberg from rodent tumors, and the isolation of homologous oncogenes from human tumors soon followed, including HRAS and KRAS, and a new member of the family named NRAS. I review these discoveries, placing emphasis on the pioneering research of Christopher Marshall and Alan Hall, who subsequently made immense contributions to our understanding of the functions of RAS and related small GTPases to signal transduction pathways, cell structure, and the behavior of normal and malignant cells.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
22
|
Grimaldi C, Schumacher I, Boquet-Pujadas A, Tarbashevich K, Vos BE, Bandemer J, Schick J, Aalto A, Olivo-Marin JC, Betz T, Raz E. E-cadherin focuses protrusion formation at the front of migrating cells by impeding actin flow. Nat Commun 2020; 11:5397. [PMID: 33106478 PMCID: PMC7588466 DOI: 10.1038/s41467-020-19114-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
The migration of many cell types relies on the formation of actomyosin-dependent protrusions called blebs, but the mechanisms responsible for focusing this kind of protrusive activity to the cell front are largely unknown. Here, we employ zebrafish primordial germ cells (PGCs) as a model to study the role of cell-cell adhesion in bleb-driven single-cell migration in vivo. Utilizing a range of genetic, reverse genetic and mathematical tools, we define a previously unknown role for E-cadherin in confining bleb-type protrusions to the leading edge of the cell. We show that E-cadherin-mediated frictional forces impede the backwards flow of actomyosin-rich structures that define the domain where protrusions are preferentially generated. In this way, E-cadherin confines the bleb-forming region to a restricted area at the cell front and reinforces the front-rear axis of migrating cells. Accordingly, when E-cadherin activity is reduced, the bleb-forming area expands, thus compromising the directional persistence of the cells. The arrival of migratory cells at their targets relies on following precise routes within tissues. Here the authors demonstrate that the cell adhesion molecule E-cadherin can control the path of cell migration by confining the site where bleb-type protrusions form within the cell front.
Collapse
Affiliation(s)
- Cecilia Grimaldi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Isabel Schumacher
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, 75105, Paris, France.,CNRS UMR 3691, 75105, Paris, France.,Sorbonne Université, 75005, Paris, France
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Bart Eduard Vos
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Jan Bandemer
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | - Anne Aalto
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany
| | | | - Timo Betz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany.,Institute of Physics - Biophysics, Georg August Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
23
|
Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells 2020; 9:cells9102167. [PMID: 32992837 PMCID: PMC7600866 DOI: 10.3390/cells9102167] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.
Collapse
|
24
|
Clostridial C3 Toxins Enter and Intoxicate Human Dendritic Cells. Toxins (Basel) 2020; 12:toxins12090563. [PMID: 32883045 PMCID: PMC7551598 DOI: 10.3390/toxins12090563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
C3 protein toxins produced by Clostridium (C.) botulinum and C. limosum are mono-ADP-ribosyltransferases, which specifically modify the GTPases Rho A/B/C in the cytosol of monocytic cells, thereby inhibiting Rho-mediated signal transduction in monocytes, macrophages, and osteoclasts. C3 toxins are selectively taken up into the cytosol of monocytic cells by endocytosis and translocate from acidic endosomes into the cytosol. The C3-catalyzed ADP-ribosylation of Rho proteins inhibits essential functions of these immune cells, such as migration and phagocytosis. Here, we demonstrate that C3 toxins enter and intoxicate dendritic cells in a time- and concentration-dependent manner. Both immature and mature human dendritic cells efficiently internalize C3 exoenzymes. These findings could also be extended to the chimeric fusion toxin C2IN-C3lim. Moreover, stimulated emission depletion (STED) microscopy revealed the localization of the internalized C3 protein in endosomes and emphasized its potential use as a carrier to deliver foreign proteins into dendritic cells. In contrast, the enzyme C2I from the binary C. botulinum C2 toxin was not taken up into dendritic cells, indicating the specific uptake of C3 toxins. Taken together, we identified human dendritic cells as novel target cells for clostridial C3 toxins and demonstrated the specific uptake of these toxins via endosomal vesicles.
Collapse
|
25
|
Hodge RG, Schaefer A, Howard SV, Der CJ. RAS and RHO family GTPase mutations in cancer: twin sons of different mothers? Crit Rev Biochem Mol Biol 2020; 55:386-407. [PMID: 32838579 DOI: 10.1080/10409238.2020.1810622] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RAS and RHO family comprise two major branches of the RAS superfamily of small GTPases. These proteins function as regulated molecular switches and control cytoplasmic signaling networks that regulate a diversity of cellular processes, including cell proliferation and cell migration. In the early 1980s, mutationally activated RAS genes encoding KRAS, HRAS and NRAS were discovered in human cancer and now comprise the most frequently mutated oncogene family in cancer. Only recently, exome sequencing studies identified cancer-associated alterations in two RHO family GTPases, RAC1 and RHOA. RAS and RHO proteins share significant identity in their amino acid sequences, protein structure and biochemistry. Cancer-associated RAS mutant proteins harbor missense mutations that are found primarily at one of three mutational hotspots (G12, G13 and Q61) and have been identified as gain-of-function oncogenic alterations. Although these residues are conserved in RHO family proteins, the gain-of-function mutations found in RAC1 are found primarily at a distinct hotspot. Unexpectedly, the cancer-associated mutations found with RHOA are located at different hotspots than those found with RAS. Furthermore, since the RHOA mutations suggested a loss-of-function phenotype, it has been unclear whether RHOA functions as an oncogene or tumor suppressor in cancer development. Finally, whereas RAS mutations are found in a broad spectrum of cancer types, RHOA and RAC1 mutations occur in a highly restricted range of cancer types. In this review, we focus on RHOA missense mutations found in cancer and their role in driving tumorigenesis, with comparisons to cancer-associated mutations in RAC1 and RAS GTPases.
Collapse
Affiliation(s)
- Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah V Howard
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
26
|
Yang B, Liu H, Bi Y, Cheng C, Li G, Kong P, Zhang L, Shi R, Zhang Y, Zhang R, Cheng X. MYH9 promotes cell metastasis via inducing Angiogenesis and Epithelial Mesenchymal Transition in Esophageal Squamous Cell Carcinoma. Int J Med Sci 2020; 17:2013-2023. [PMID: 32788880 PMCID: PMC7415390 DOI: 10.7150/ijms.46234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/10/2020] [Indexed: 12/18/2022] Open
Abstract
Non-muscle myosin heavy chain 9 (MYH9) is one novel low frequency mutated gene identified in esophageal squamous cell carcinoma (ESCC) using next-generation sequencing. However, its clinical relevance, potential function and mechanisms remain elusive. Methods: Genomic sequencing datas from 104 esophageal squamous cell carcinoma (ESCC) cases were screened a series of low frequency mutant genes. MYH9 was selected to further analyze its clinical significance, function and PCR-array was performed to explore its potential mechanism. Results: MHY9 is a low frequency mutant gene with a mutation frequency of 2.88% in ESCC. Immunohistochemical analysis showed that MYH9 expression was significantly higher in ESCC tumor tissues, and the expression levels were associated with lymph node metastasis of ESCC patients. Moreover, we found that MYH9 knock-down led to inhibition of cell migration and invasion. PCR-array showed MYH9 knockdown led to a significant change of genes expression associated with angiogenesis and epithelial-to-mesenchymal transition (EMT). This observation is further confirmed in TCGA database of LUSC (lung squamous cell carcinoma), CESC (cervical squamous cell carcinomas) and HNSC (head and neck squamous cell carcinoma). Conclusions: Collectively, our study identifies a novel role and mechanism of MYH9, highlights a significance of MYH9 as a metastatic biomarker, and offers potential therapeutic targets for ESCC patients harboring MYH9 mutations.
Collapse
Affiliation(s)
- Bin Yang
- The Department of Thoracic Surgery (Ⅲ), Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China.,Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Huijuan Liu
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanghui Bi
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Caixia Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Department of Pathology, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guodong Li
- Department of Otorhinolaryngology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030012, P.R. China.,Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong 250000, P.R. China
| | - Pengzhou Kong
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling Zhang
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ruyi Shi
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yunkui Zhang
- The Department of Thoracic Surgery (Ⅲ), Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Rongsheng Zhang
- The Department of Thoracic Surgery (Ⅲ), Shanxi Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Xiaolong Cheng
- Department of Pathology & Shanxi Key Laboratory of Carcinogenesis and Translational Research of Esophageal Cancer, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
27
|
Bober P, Alexovič M, Tomková Z, Kilík R, Sabo J. RHOA and mDia1 Promotes Apoptosis of Breast Cancer Cells Via a High Dose of Doxorubicin Treatment. Open Life Sci 2019; 14:619-627. [PMID: 33817200 PMCID: PMC7874778 DOI: 10.1515/biol-2019-0070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/05/2019] [Indexed: 01/01/2023] Open
Abstract
Background Transforming RhoA proteins (RHOA) and their downstream Diaphanous homolog 1 proteins (DIAPH1) or mDia1 participate in the regulation of actin cytoskeleton which plays critical role in cells, i.e., morphologic changes and apoptosis. Methodology To determine the cell viability the real time cell analysis (RTCA) and flow cytometry were used. To perform proteomic analysis, the label-free quantitative method and post-translation modification by the nano-HPLC and ESI-MS ion trap mass analyser were used. Results The results of the cell viability showed an increase of dead cells (around 30 %) in MCF-7/DOX-1 (i.e., 1μM of doxorubicin was added to MCF-7/WT breast cancer cell line) compared to MCF-7/WT (control) after 24 h doxorubicin (DOX) treatment. The signalling pathway of the Regulation of actin cytoskeleton (p<0.0026) was determined, where RHOA and mDia1 proteins were up-regulated. Also, post-translational modification analysis of these proteins in MCF-7/DOX-1 cells revealed dysregulation of the actin cytoskeleton, specifically the collapse of actin stress fibbers due to phosphorylation of RHOA at serine 188 and mDia1 at serine 22, resulting in their deactivation and cell apoptosis. Conclusion These results pointed to an assumed role of DOX to dysregulation of actin cytoskeleton and cell death.
Collapse
Affiliation(s)
- Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Zuzana Tomková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Róbert Kilík
- 1st Department of Surgery, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Trieda SNP1, 04011 Košice, Slovakia
| |
Collapse
|
28
|
Zhang H, Schaefer A, Wang Y, Hodge RG, Blake DR, Diehl JN, Papageorge AG, Stachler MD, Liao J, Zhou J, Wu Z, Akarca FG, de Klerk LK, Derks S, Pierobon M, Hoadley KA, Wang TC, Church G, Wong KK, Petricoin EF, Cox AD, Lowy DR, Der CJ, Bass AJ. Gain-of-Function RHOA Mutations Promote Focal Adhesion Kinase Activation and Dependency in Diffuse Gastric Cancer. Cancer Discov 2019; 10:288-305. [PMID: 31771969 DOI: 10.1158/2159-8290.cd-19-0811] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/24/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
Diffuse gastric cancer (DGC) is a lethal malignancy lacking effective systemic therapy. Among the most provocative recent results in DGC has been that of highly recurrent missense mutations in the GTPase RHOA. The function of these mutations has remained unresolved. We demonstrate that RHOAY42C, the most common RHOA mutation in DGC, is a gain-of-function oncogenic mutant, and that expression of RHOAY42C with inactivation of the canonical tumor suppressor Cdh1 induces metastatic DGC in a mouse model. Biochemically, RHOAY42C exhibits impaired GTP hydrolysis and enhances interaction with its effector ROCK. RHOA Y42C mutation and Cdh1 loss induce actin/cytoskeletal rearrangements and activity of focal adhesion kinase (FAK), which activates YAP-TAZ, PI3K-AKT, and β-catenin. RHOAY42C murine models were sensitive to FAK inhibition and to combined YAP and PI3K pathway blockade. These results, coupled with sensitivity to FAK inhibition in patient-derived DGC cell lines, nominate FAK as a novel target for these cancers. SIGNIFICANCE: The functional significance of recurrent RHOA mutations in DGC has remained unresolved. Through biochemical studies and mouse modeling of the hotspot RHOAY42C mutation, we establish that these mutations are activating, detail their effects upon cell signaling, and define how RHOA-mediated FAK activation imparts sensitivity to pharmacologic FAK inhibitors.See related commentary by Benton and Chernoff, p. 182.This article is highlighted in the In This Issue feature, p. 161.
Collapse
Affiliation(s)
- Haisheng Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Antje Schaefer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Yichen Wang
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Richard G Hodge
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Devon R Blake
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - J Nathaniel Diehl
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Matthew D Stachler
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Liao
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jin Zhou
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Zhong Wu
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Fahire G Akarca
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Leonie K de Klerk
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sarah Derks
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Katherine A Hoadley
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Timothy C Wang
- Division of Gastroenterology, Columbia University Medical Center, New York, New York
| | - George Church
- Harvard, MIT, Blavatnik Institute, Wyss Institute, Boston, Massachusetts
| | - Kwok-Kin Wong
- Division of Hematology and Oncology, New York University, New York, New York
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Adrienne D Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Douglas R Lowy
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Channing J Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. .,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam J Bass
- Division of Molecular and Cellular Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. .,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
29
|
ROCK Inhibitor-Induced Promotion of Retinal Pigment Epithelial Cell Motility during Wound Healing. J Ophthalmol 2019; 2019:9428738. [PMID: 31316826 PMCID: PMC6607728 DOI: 10.1155/2019/9428738] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Purpose No standard therapy for RPE tear, a complication of neovascular age-related macular degeneration, exists even though RPE tears cause severe vision loss, and promotion of cell proliferation and/or migration could be a candidate RPE tear therapy. The aim of this study is to evaluate the effect of Rho-associated coiled-coil containing kinase (ROCK) inhibitor Y27632 on retinal pigment epithelial (RPE) cell motility during wound healing. Methods Human RPE cells were cultured in media with and without 10 μM Y27632. A luminescent cell viability assay and vinculin immunocytochemistry were used to test the Y27632 effect on RPE cell adhesion. The mean size of vinculin puncta was quantified from immunofluorescence images. RPE cell motility during wound healing was evaluated using time-lapse imaging and measuring cell migration distances and cell coverage rate in wound fields. Results The number of adhered RPE and mean size of vinculin puncta were, respectively, 20519 cells and 3.65 μm2 under nontreatment and 23569 cells and 0.66 μm2 under Y27632 treatment. Cell migration distance and cell coverage percentage for untreated and Y27632-treated cells were 98.9 and 59.4% and 203.4 and 92.5%, respectively. Conclusions Inhibition of ROCK signaling by using 10 μM Y27632 promoted RPE cell motility during wound healing by reducing RPE cell adhesion strength.
Collapse
|
30
|
Abstract
ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules controlling major biological processes as diverse as DNA damage repair, transcriptional regulation, intracellular transport, immune and stress responses, cell survival and proliferation. Furthermore, enzymatic reactions of ADPr are central in the pathogenesis of many human diseases, including infectious conditions. By providing a review of ADPr signalling in bacterial systems, we highlight the relevance of this chemical modification in the pathogenesis of human diseases depending on host-pathogen interactions. The post-antibiotic era has raised the need to find alternative approaches to antibiotic administration, as major pathogens becoming resistant to antibiotics. An in-depth understanding of ADPr reactions provides the rationale for designing novel antimicrobial strategies for treatment of infectious diseases. In addition, the understanding of mechanisms of ADPr by bacterial virulence factors offers important hints to improve our knowledge on cellular processes regulated by eukaryotic homologous enzymes, which are often involved in the pathogenesis of human diseases.
Collapse
|
31
|
Rangel L, Bernabé-Rubio M, Fernández-Barrera J, Casares-Arias J, Millán J, Alonso MA, Correas I. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep 2019; 9:1116. [PMID: 30718762 PMCID: PMC6362014 DOI: 10.1038/s41598-018-38020-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/26/2018] [Indexed: 11/08/2022] Open
Abstract
The primary cilium is a single non-motile protrusion of the plasma membrane of most types of mammalian cell. The structure, length and function of the primary cilium must be tightly controlled because their dysfunction is associated with disease. Caveolin 1 (Cav1), which is best known as a component of membrane invaginations called caveolae, is also present in non-caveolar membrane domains whose function is beginning to be understood. We show that silencing of α and β Cav1 isoforms in different cell lines increases ciliary length regardless of the route of primary ciliogenesis. The sole expression of Cav1α, which is distributed at the apical membrane, restores normal cilium size in Cav1 KO MDCK cells. Cells KO for only Cav1α, which also show long cilia, have a disrupted actin cytoskeleton and reduced RhoA GTPase activity at the apical membrane, and a greater accumulation of Rab11 vesicles at the centrosome. Subsequent experiments showed that DIA1 and ROCK help regulate ciliary length. Since MDCK cells lack apical caveolae, our results imply that non-caveolar apical Cav1α is an important regulator of ciliary length, exerting its effect via RhoA and its effectors, ROCK and DIA1.
Collapse
Affiliation(s)
- Laura Rangel
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Bernabé-Rubio
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Jaime Fernández-Barrera
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Casares-Arias
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Jaime Millán
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel A Alonso
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | - Isabel Correas
- Department of Cell Biology and Immunology, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
32
|
Activated Rho GTPases in Cancer-The Beginning of a New Paradigm. Int J Mol Sci 2018; 19:ijms19123949. [PMID: 30544828 PMCID: PMC6321241 DOI: 10.3390/ijms19123949] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
Involvement of Rho GTPases in cancer has been a matter of debate since the identification of the first members of this branch of the Ras superfamily of small GTPases. The Rho GTPases were ascribed important roles in the cell, although these were restricted to regulation of cytoskeletal dynamics, cell morphogenesis, and cell locomotion, with initially no clear indications of direct involvement in cancer progression. This paradigm has been challenged by numerous observations that Rho-regulated pathways are often dysregulated in cancers. More recently, identification of point mutants in the Rho GTPases Rac1, RhoA, and Cdc42 in human tumors has finally given rise to a new paradigm, and we can now state with confidence that Rho GTPases serve as oncogenes in several human cancers. This article provides an exposé of current knowledge of the roles of activated Rho GTPases in cancers.
Collapse
|
33
|
Intracellular delivery of colloids: Past and future contributions from microinjection. Adv Drug Deliv Rev 2018; 132:3-15. [PMID: 29935217 DOI: 10.1016/j.addr.2018.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/06/2018] [Accepted: 06/18/2018] [Indexed: 01/07/2023]
Abstract
The manipulation of single cells and whole tissues has been possible since the early 70's, when semi-automatic injectors were developed. Since then, microinjection has been used to introduce an ever-expanding range of colloids of up to 1000 nm in size into living cells. Besides injecting nucleic acids to study transfection mechanisms, numerous cellular pathways have been unraveled through the introduction of recombinant proteins and blocking antibodies. The injection of nanoparticles has also become popular in recent years to investigate toxicity mechanisms and intracellular transport, and to conceive semi-synthetic cells containing artificial organelles. This article reviews colloidal systems such as proteins, nucleic acids and nanoparticles that have been injected into cells for different research aims, and discusses the scientific advances achieved through them. The colloids' intracellular processing and ultimate fate are also examined from a drug delivery perspective with an emphasis on the differences observed for endocytosed versus microinjected material.
Collapse
|
34
|
Narumiya S, Thumkeo D. Rho signaling research: history, current status and future directions. FEBS Lett 2018; 592:1763-1776. [PMID: 29749605 PMCID: PMC6032899 DOI: 10.1002/1873-3468.13087] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/24/2022]
Abstract
One of the main research areas in biology from the mid‐1980s through the 1990s was the elucidation of signaling pathways governing cell responses. These studies brought, among other molecules, the small GTPase Rho to the epicenter. Rho signaling research has since expanded to all areas of biology and medicine. Here, we describe how Rho emerged as a key molecule governing cell morphogenesis and movement, how it was linked to actin reorganization, and how the study of Rho signaling has expanded from cultured cells to whole biological systems. We then give an overview of the current research status of Rho signaling in development, brain, cardiovascular system, immunity and cancer, and discuss the future directions of Rho signaling research, with emphasis on one Rho effector, ROCK*.
*The Rho GTPase family. Rho family GTPases have now expanded to contain 20 members. Amino acid sequences of 20 Rho GTPases found in human were aligned and the phylogenetic tree was generated by ClustalW2 software (EMBL‐EBI) based on NJ algorithm. The subfamilies of the Rho GTPases are highlighted by the circle and labeled on the right side. Rho cited in this review refers to the original members of Rho subfamily, RhoA, RhoB and RhoC, that are C3 substrates, and, unless specified, not to other members of the Rho subfamily such as Rac, Cdc42, and Rnd. ![]()
Collapse
Affiliation(s)
- Shuh Narumiya
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan
| |
Collapse
|
35
|
Sepúlveda-Ramírez SP, Toledo-Jacobo L, Henson JH, Shuster CB. Cdc42 controls primary mesenchyme cell morphogenesis in the sea urchin embryo. Dev Biol 2018; 437:140-151. [PMID: 29555242 PMCID: PMC5973877 DOI: 10.1016/j.ydbio.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/05/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
In the sea urchin embryo, gastrulation is characterized by the ingression and directed cell migration of primary mesenchyme cells (PMCs), as well as the primary invagination and convergent extension of the endomesoderm. Like all cell shape changes, individual and collective cell motility is orchestrated by Rho family GTPases and their modulation of the actomyosin cytoskeleton. And while endomesoderm specification has been intensively studied in echinoids, much less is known about the proximate regulators driving cell motility. Toward these ends, we employed anti-sense morpholinos, mutant alleles and pharmacological inhibitors to assess the role of Cdc42 during sea urchin gastrulation. While inhibition of Cdc42 expression or activity had only mild effects on PMC ingression, PMC migration, alignment and skeletogenesis were disrupted in the absence of Cdc42, as well as elongation of the archenteron. PMC migration and patterning of the larval skeleton relies on the extension of filopodia, and Cdc42 was required for filopodia in vivo as well as in cultured PMCs. Lastly, filopodial extension required both Arp2/3 and formin actin-nucleating factors, supporting models of filopodial nucleation observed in other systems. Together, these results suggest that Cdc42 plays essential roles during PMC cell motility and organogenesis.
Collapse
Affiliation(s)
- Silvia P Sepúlveda-Ramírez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States
| | - Leslie Toledo-Jacobo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States
| | - John H Henson
- University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States; Department of Biology, Dickinson College, Carlisle, PA 17013, United States
| | - Charles B Shuster
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States; University of Washington Friday Harbor Laboratories, Friday Harbor, WA 98250, United States.
| |
Collapse
|
36
|
Olson MF. Rho GTPases, their post-translational modifications, disease-associated mutations and pharmacological inhibitors. Small GTPases 2018; 9:203-215. [PMID: 27548350 PMCID: PMC5927519 DOI: 10.1080/21541248.2016.1218407] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/24/2022] Open
Abstract
The 20 members of the Rho GTPase family are key regulators of a wide-variety of biological activities. In response to activation, they signal via downstream effector proteins to induce dynamic alterations in the organization of the actomyosin cytoskeleton. In this review, post-translational modifications, mechanisms of dysregulation identified in human pathological conditions, and the ways that Rho GTPases might be targeted for chemotherapy will be discussed.
Collapse
Affiliation(s)
- Michael F. Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| |
Collapse
|
37
|
O’Connor E, Phan V, Cordts I, Cairns G, Hettwer S, Cox D, Lochmüller H, Roos A. MYO9A deficiency in motor neurons is associated with reduced neuromuscular agrin secretion. Hum Mol Genet 2018; 27:1434-1446. [PMID: 29462312 PMCID: PMC5991207 DOI: 10.1093/hmg/ddy054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterized by compromised function of the neuromuscular junction, manifesting with fatigable muscle weakness. Mutations in MYO9A were previously identified as causative for CMS but the precise pathomechanism remained to be characterized. On the basis of the role of MYO9A as an actin-based molecular motor and as a negative regulator of RhoA, we hypothesized that loss of MYO9A may affect the neuronal cytoskeleton, leading to impaired intracellular transport. To investigate this, we used MYO9A-depleted NSC-34 cells (mouse motor neuron-derived cells), revealing altered expression of a number of cytoskeletal proteins important for neuron structure and intracellular transport. On the basis of these findings, the effect on protein transport was determined using a vesicular recycling assay which revealed impaired recycling of a neuronal growth factor receptor. In addition, an unbiased approach utilizing proteomic profiling of the secretome revealed a key role for defective intracellular transport affecting proper protein secretion in the pathophysiology of MYO9A-related CMS. This also led to the identification of agrin as being affected by the defective transport. Zebrafish with reduced MYO9A orthologue expression were treated with an artificial agrin compound, ameliorating defects in neurite extension and improving motility. In summary, loss of MYO9A affects the neuronal cytoskeleton and leads to impaired transport of proteins, including agrin, which may provide a new and unexpected treatment option.
Collapse
Affiliation(s)
- Emily O’Connor
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Vietxuan Phan
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| | - Isabell Cordts
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - George Cairns
- Wellcome Trust Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Daniel Cox
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V, Dortmund, Germany
| |
Collapse
|
38
|
Matijevic Glavan T, Mikulandra M. The in vitro effect of poly (I:C) on cell morphology of a metastatic pharyngeal cell line. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat Cell Biol 2017; 20:69-80. [PMID: 29230016 DOI: 10.1038/s41556-017-0005-z] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
Abstract
To establish and maintain organ structure and function, tissues need to balance stem cell proliferation and differentiation rates and coordinate cell fate with position. By quantifying and modelling tissue stress and deformation in the mammalian epidermis, we find that this balance is coordinated through local mechanical forces generated by cell division and delamination. Proliferation within the basal stem/progenitor layer, which displays features of a jammed, solid-like state, leads to crowding, thereby locally distorting cell shape and stress distribution. The resulting decrease in cortical tension and increased cell-cell adhesion trigger differentiation and subsequent delamination, reinstating basal cell layer density. After delamination, cells establish a high-tension state as they increase myosin II activity and convert to E-cadherin-dominated adhesion, thereby reinforcing the boundary between basal and suprabasal layers. Our results uncover how biomechanical signalling integrates single-cell behaviours to couple proliferation, cell fate and positioning to generate a multilayered tissue.
Collapse
|
40
|
Ebeling J, Fünfhaus A, Knispel H, Krska D, Ravulapalli R, Heney KA, Lugo MR, Merrill AR, Genersch E. Characterization of the toxin Plx2A, a RhoA-targeting ADP-ribosyltransferase produced by the honey bee pathogenPaenibacillus larvae. Environ Microbiol 2017; 19:5100-5116. [DOI: 10.1111/1462-2920.13989] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/24/2017] [Accepted: 11/04/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Julia Ebeling
- Department of Molecular Microbiology and Bee Diseases; Institute for Bee Research; 16540 Hohen Neuendorf Germany
| | - Anne Fünfhaus
- Department of Molecular Microbiology and Bee Diseases; Institute for Bee Research; 16540 Hohen Neuendorf Germany
| | - Henriette Knispel
- Department of Molecular Microbiology and Bee Diseases; Institute for Bee Research; 16540 Hohen Neuendorf Germany
| | - Daniel Krska
- Department of Molecular and Cellular Biology; Guelph ON Canada N1G 2W1
| | | | - Kayla A. Heney
- Department of Molecular and Cellular Biology; Guelph ON Canada N1G 2W1
| | - Miguel R. Lugo
- Department of Molecular and Cellular Biology; Guelph ON Canada N1G 2W1
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology; Guelph ON Canada N1G 2W1
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases; Institute for Bee Research; 16540 Hohen Neuendorf Germany
- Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen; Freie Universität Berlin; 14163 Berlin Germany
| |
Collapse
|
41
|
Nagarajan SK, Babu S, Sohn H, Devaraju P, Madhavan T. 3D-QSAR studies on indole and 7-azoindole derivatives as ROCK-2 inhibitors: An integrative computational approach. Comput Biol Chem 2017; 71:104-116. [DOI: 10.1016/j.compbiolchem.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 08/01/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
|
42
|
Aktories K, Schwan C, Lang AE. ADP-Ribosylation and Cross-Linking of Actin by Bacterial Protein Toxins. Handb Exp Pharmacol 2017; 235:179-206. [PMID: 27316913 DOI: 10.1007/164_2016_26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Actin and the actin cytoskeleton play fundamental roles in host-pathogen interactions. Proper function of the actin cytoskeleton is crucial for innate and acquired immune defense. Bacterial toxins attack the actin cytoskeleton by targeting regulators of actin. Moreover, actin is directly modified by various bacterial protein toxins and effectors, which cause ADP-ribosylation or cross-linking of actin. Modification of actin can result in inhibition or stimulation of actin polymerization. Toxins, acting directly on actin, are reviewed.
Collapse
Affiliation(s)
- Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany. .,Freiburg Institute of Advanced Studies (FRIAS), Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany.
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, Freiburg, 79104, Germany
| |
Collapse
|
43
|
Effects of the Rho-Kinase Inhibitor Y-27632 on Extraocular Muscle Surgery in Rabbits. J Ophthalmol 2017; 2017:8653130. [PMID: 28815090 PMCID: PMC5549496 DOI: 10.1155/2017/8653130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/27/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022] Open
Abstract
Purpose To evaluate the effect of the Rho-kinase inhibitor Y-27632 on postoperative inflammation and adhesion following extraocular muscle surgery in rabbits. Methods The superior rectus muscle reinsertion was performed on both eyes of 8 New Zealand white rabbits. After reinsertion, the rabbits received subconjunctival injections of the Rho-kinase inhibitor and saline on each eye. To assess acute and late inflammatory changes, Ki-67, CD11β+, and F4/80 were evaluated and the sites of muscle reattachment were evaluated for a postoperative adhesion score and histopathologically for collagen formation. Results F4/80 antibody expression was significantly different in the Rho-kinase inhibitor-injected group at both postoperative day 3 and week 4 (p = 0.038, 0.031). However, Ki-67 and CD11β+ were not different the between two groups. The difference in the SRM/conjunctiva adhesion score between the two groups was also significant (p = 0.034). Conclusion. Intraoperative subconjunctival injection of the Rho-kinase inhibitor may be effective for adjunctive management of inflammation and fibrosis in rabbit eyes following extraocular muscle surgery.
Collapse
|
44
|
Abstract
During an innate immune response, myeloid cells undergo complex morphological adaptations in response to inflammatory cues, which allow them to exit the vasculature, enter the tissues, and destroy invading pathogens. The actin and microtubule cytoskeletons are central to many of the most essential cellular functions including cell division, cell morphology, migration, intracellular trafficking, and signaling. Cytoskeletal structure and regulation are crucial for many myeloid cell functions, which require rapid and dynamic responses to extracellular signals. In this chapter, we review the roles of the actin and microtubule cytoskeletons in myeloid cells, focusing primarily on their roles in chemotaxis and phagocytosis. The role of myeloid cell cytoskeletal defects in hematological disorders is highlighted throughout.
Collapse
|
45
|
Ge F, Wang C, Wang W, Liu W, Wu B. MicroRNA-31 inhibits tumor invasion and metastasis by targeting RhoA in human gastric cancer. Oncol Rep 2017; 38:1133-1139. [PMID: 28656284 DOI: 10.3892/or.2017.5758] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/18/2017] [Indexed: 11/05/2022] Open
Abstract
Previous studies have shown that microRNA-31 (miR-31) functions as a tumor-suppressor in various types of cancer. In the present study we found that miR-31 was significantly downregulated in gastric cancer (GC) as determined by microRNA (miRNA) array screening analysis. Although aberrant expression of miR-31 has been found in different types of cancer, its pathophysiological effect and role in tumorigenesis still remain to be elucidated. In the present study, we detected miR-31 expression in both metastatic GC cell lines and tissues that are potentially highly metastatic by real-time polymerase chain reaction (PCR). Transwell and scratch healing assays were conducted to examine whether the ectopic expression of miR-31 could modify the invasion and migration abilities of GC cells in vitro. We found that miR-31 inhibited GC metastasis in a nude mouse xenograft model of GC. Luciferase reporter assays demonstrated that miR-31 could directly bind to the 3' untranslated region of RhoA and downregulate the expression of RhoA. Significant downregulation of miR-31 in 78 GC tissues and four GC cell lines was examined by real-time reverse transcription-PCR. Moreover, the decreased expression of miR-31 was demonstrated to be associated with lymph node metastasis, poor pT and pN stage, and invasion ability into lymphatic vessels as determined by the Mann-Whitney U test. We also found that miR-31 could inhibit cell invasion and migration abilities in vitro using the Transwell and scratch healing assays in BGC-823, SGC-7901, MGC-803 as well as AGS cells. Experiments in a nude mouse model revealed that miR-31 suppressed tumorigenicity in vivo. The luciferase activity assay and western blotting indicated that RhoA was the potential target of miR-31 in GC cells. Collectively, our results provide important evidence that the downregulation of miR-31 inhibited the invasion and migration abilities of GC cells through direct targeting of the tumor metastasis‑associated gene, RhoA. These findings suggest that miR-31 may be a promising therapeutic candidate in the treatment of GC metastasis.
Collapse
Affiliation(s)
- Fulin Ge
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Changzheng Wang
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Weihua Wang
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenhui Liu
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Benyan Wu
- Department of Gastroenterology, Division of Southern Building, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
46
|
Goedhart J, van Unen J. Molecular perturbation strategies to examine spatiotemporal features of Rho GEF and Rho GTPase activity in living cells. Small GTPases 2017; 10:178-186. [PMID: 28521592 PMCID: PMC6548299 DOI: 10.1080/21541248.2017.1302551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Much of our current knowledge of Rho GTPase networks and the regulation by Rho guanine exchange factors (Rho GEFs) and Rho GTPase activating proteins (Rho GAPs) is based on population-based techniques. Over the last decades, technologies that enable single cell analysis with high spatial and temporal resolution have revealed that Rho GTPase activity in cells is regulated on second timescales and at submicrometer length scales. Therefore, perturbation methods with matching spatial and temporal resolution are crucial to further our understanding of Rho GTPase signaling. Here, we give a brief overview of the components of Rho GTPase signaling networks and review a range of existing perturbation strategies that target a specific component of the Rho GTPase signaling module. The advantages and limitations of each perturbation method are discussed. Several recommendations are formulated to guide future studies aimed at addressing spatiotemporal aspects of Rho GEF and Rho GTPase signaling.
Collapse
Affiliation(s)
- Joachim Goedhart
- a Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam , Amsterdam , The Netherlands
| | - Jakobus van Unen
- a Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
47
|
The Molecular Basis of Toxins' Interactions with Intracellular Signaling via Discrete Portals. Toxins (Basel) 2017; 9:toxins9030107. [PMID: 28300784 PMCID: PMC5371862 DOI: 10.3390/toxins9030107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 12/20/2022] Open
Abstract
An understanding of the molecular mechanisms by which microbial, plant or animal-secreted toxins exert their action provides the most important element for assessment of human health risks and opens new insights into therapies addressing a plethora of pathologies, ranging from neurological disorders to cancer, using toxinomimetic agents. Recently, molecular and cellular biology dissecting tools have provided a wealth of information on the action of these diverse toxins, yet, an integrated framework to explain their selective toxicity is still lacking. In this review, specific examples of different toxins are emphasized to illustrate the fundamental mechanisms of toxicity at different biochemical, molecular and cellular- levels with particular consideration for the nervous system. The target of primary action has been highlighted and operationally classified into 13 sub-categories. Selected examples of toxins were assigned to each target category, denominated as portal, and the modulation of the different portal’s signaling was featured. The first portal encompasses the plasma membrane lipid domains, which give rise to pores when challenged for example with pardaxin, a fish toxin, or is subject to degradation when enzymes of lipid metabolism such as phospholipases A2 (PLA2) or phospholipase C (PLC) act upon it. Several major portals consist of ion channels, pumps, transporters and ligand gated ionotropic receptors which many toxins act on, disturbing the intracellular ion homeostasis. Another group of portals consists of G-protein-coupled and tyrosine kinase receptors that, upon interaction with discrete toxins, alter second messengers towards pathological levels. Lastly, subcellular organelles such as mitochondria, nucleus, protein- and RNA-synthesis machineries, cytoskeletal networks and exocytic vesicles are also portals targeted and deregulated by other diverse group of toxins. A fundamental concept can be drawn from these seemingly different toxins with respect to the site of action and the secondary messengers and signaling cascades they trigger in the host. While the interaction with the initial portal is largely determined by the chemical nature of the toxin, once inside the cell, several ubiquitous second messengers and protein kinases/ phosphatases pathways are impaired, to attain toxicity. Therefore, toxins represent one of the most promising natural molecules for developing novel therapeutics that selectively target the major cellular portals involved in human physiology and diseases.
Collapse
|
48
|
Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO. Control of Myofibroblast Differentiation and Function by Cytoskeletal Signaling. BIOCHEMISTRY (MOSCOW) 2017; 81:1698-1708. [PMID: 28260491 DOI: 10.1134/s0006297916130071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytoskeleton consists of three distinct types of protein polymer structures - microfilaments, intermediate filaments, and microtubules; each serves distinct roles in controlling cell shape, division, contraction, migration, and other processes. In addition to mechanical functions, the cytoskeleton accepts signals from outside the cell and triggers additional signals to extracellular matrix, thus playing a key role in signal transduction from extracellular stimuli through dynamic recruitment of diverse intermediates of the intracellular signaling machinery. This review summarizes current knowledge about the role of cytoskeleton in the signaling mechanism of fibroblast-to-myofibroblast differentiation - a process characterized by accumulation of contractile proteins and secretion of extracellular matrix proteins, and being critical for normal wound healing in response to tissue injury as well as for aberrant tissue remodeling in fibrotic disorders. Specifically, we discuss control of serum response factor and Hippo signaling pathways by actin and microtubule dynamics as well as regulation of collagen synthesis by intermediate filaments.
Collapse
Affiliation(s)
- N Sandbo
- University of Wisconsin, Department of Medicine, Madison, WI, USA
| | | | | | | |
Collapse
|
49
|
Ulmer B, Tingler M, Kurz S, Maerker M, Andre P, Mönch D, Campione M, Deißler K, Lewandoski M, Thumberger T, Schweickert A, Fainsod A, Steinbeißer H, Blum M. A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Sci Rep 2017; 7:43010. [PMID: 28220837 PMCID: PMC5318956 DOI: 10.1038/srep43010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Goosecoid (Gsc) expression marks the primary embryonic organizer in vertebrates and beyond. While functions have been assigned during later embryogenesis, the role of Gsc in the organizer has remained enigmatic. Using conditional gain-of-function approaches in Xenopus and mouse to maintain Gsc expression in the organizer and along the axial midline, neural tube closure defects (NTDs) arose and dorsal extension was compromised. Both phenotypes represent convergent extension (CE) defects, arising from impaired Wnt/planar cell polarity (PCP) signaling. Dvl2 recruitment to the cell membrane was inhibited by Gsc in Xenopus animal cap assays and key Wnt/PCP factors (RhoA, Vangl2, Prickle, Wnt11) rescued Gsc-mediated NTDs. Re-evaluation of endogenous Gsc functions in MO-mediated gene knockdown frog and knockout mouse embryos unearthed PCP/CE-related phenotypes as well, including cartilage defects in Xenopus and misalignment of inner ear hair cells in mouse. Our results assign a novel function to Gsc as an inhibitor of Wnt/PCP-mediated CE. We propose that in the organizer Gsc represses CE as well: Gsc-expressing prechordal cells, which leave the organizer first, migrate and do not undergo CE like the Gsc-negative notochordal cells, which subsequently emerge from the organizer. In this model, Gsc provides a switch between cell migration and CE, i.e. cell intercalation.
Collapse
Affiliation(s)
- Bärbel Ulmer
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Melanie Tingler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Sabrina Kurz
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Markus Maerker
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Philipp Andre
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Dina Mönch
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Marina Campione
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Kirsten Deißler
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Mark Lewandoski
- Genetics of Vertebrate Development Section, Cancer and Developmental Biology Lab, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | | | - Axel Schweickert
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University, Jerusalem 9112102, Israel
| | - Herbert Steinbeißer
- Institute of Human Genetics, University Hospital Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Martin Blum
- University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany
| |
Collapse
|
50
|
Abstract
One quarter of all deaths worldwide each year result from infectious diseases caused by microbial pathogens. Pathogens infect and cause disease by producing virulence factors that target host cell molecules. Studying how virulence factors target host cells has revealed fundamental principles of cell biology. These include important advances in our understanding of the cytoskeleton, organelles and membrane-trafficking intermediates, signal transduction pathways, cell cycle regulators, the organelle/protein recycling machinery, and cell-death pathways. Such studies have also revealed cellular pathways crucial for the immune response. Discoveries from basic research on the cell biology of pathogenesis are actively being translated into the development of host-targeted therapies to treat infectious diseases. Thus there are many reasons for cell biologists to incorporate the study of microbial pathogens into their research programs.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|