1
|
Begley MA, Solon AL, Davis EM, Sherrill MG, Ohi R, Elting MW. K-fiber bundles in the mitotic spindle are mechanically reinforced by Kif15. Mol Biol Cell 2021; 32:br11. [PMID: 34668719 PMCID: PMC8694074 DOI: 10.1091/mbc.e20-06-0426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mitotic spindle, a self-constructed microtubule-based machine, segregates chromosomes during cell division. In mammalian cells, microtubule bundles called kinetochore fibers (k-fibers) connect chromosomes to the spindle poles. Chromosome segregation thus depends on the mechanical integrity of k-fibers. Here we investigate the physical and molecular basis of k-fiber bundle cohesion. We detach k-fibers from poles by laser ablation-based cutting, thus revealing the contribution of pole-localized forces to k-fiber cohesion. We then measure the physical response of the remaining kinetochore-bound segments of the k-fibers. We observe that microtubules within ablated k-fibers often splay apart from their minus-ends. Furthermore, we find that minus-end clustering forces induced by ablation seem at least partially responsible for k-fiber splaying. We also investigate the role of the k-fiber-binding kinesin-12 Kif15. We find that pharmacological inhibition of Kif15-microtubule binding reduces the mechanical integrity of k-fibers. In contrast, inhibition of its motor activity but not its microtubule binding ability, i.e., locking Kif15 into a rigor state, does not greatly affect splaying. Altogether, the data suggest that forces holding k-fibers together are of similar magnitude to other spindle forces, and that Kif15, acting as a microtubule cross-linker, helps fortify and repair k-fibers. This feature of Kif15 may help support robust k-fiber function and prevent chromosome segregation errors.
Collapse
Affiliation(s)
- Marcus A Begley
- Department of Physics, North Carolina State University, Raleigh, NC 27607
| | - April L Solon
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | | | | | - Ryoma Ohi
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Mary Williard Elting
- Department of Physics, North Carolina State University, Raleigh, NC 27607.,Quantitative and Computational Developmental Biology Cluster, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
2
|
Mechanical Mechanisms of Chromosome Segregation. Cells 2021; 10:cells10020465. [PMID: 33671543 PMCID: PMC7926803 DOI: 10.3390/cells10020465] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Chromosome segregation—the partitioning of genetic material into two daughter cells—is one of the most crucial processes in cell division. In all Eukaryotes, chromosome segregation is driven by the spindle, a microtubule-based, self-organizing subcellular structure. Extensive research performed over the past 150 years has identified numerous commonalities and contrasts between spindles in different systems. In this review, we use simple coarse-grained models to organize and integrate previous studies of chromosome segregation. We discuss sites of force generation in spindles and fundamental mechanical principles that any understanding of chromosome segregation must be based upon. We argue that conserved sites of force generation may interact differently in different spindles, leading to distinct mechanical mechanisms of chromosome segregation. We suggest experiments to determine which mechanical mechanism is operative in a particular spindle under study. Finally, we propose that combining biophysical experiments, coarse-grained theories, and evolutionary genetics will be a productive approach to enhance our understanding of chromosome segregation in the future.
Collapse
|
3
|
Danlasky BM, Panzica MT, McNally KP, Vargas E, Bailey C, Li W, Gong T, Fishman ES, Jiang X, McNally FJ. Evidence for anaphase pulling forces during C. elegans meiosis. J Cell Biol 2020; 219:211469. [PMID: 33064834 PMCID: PMC7577052 DOI: 10.1083/jcb.202005179] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/20/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Anaphase chromosome movement is thought to be mediated by pulling forces generated by end-on attachment of microtubules to the outer face of kinetochores. However, it has been suggested that during C. elegans female meiosis, anaphase is mediated by a kinetochore-independent pushing mechanism with microtubules only attached to the inner face of segregating chromosomes. We found that the kinetochore proteins KNL-1 and KNL-3 are required for preanaphase chromosome stretching, suggesting a role in pulling forces. In the absence of KNL-1,3, pairs of homologous chromosomes did not separate and did not move toward a spindle pole. Instead, each homolog pair moved together with the same spindle pole during anaphase B spindle elongation. Two masses of chromatin thus ended up at opposite spindle poles, giving the appearance of successful anaphase.
Collapse
|
4
|
Long AF, Suresh P, Dumont S. Individual kinetochore-fibers locally dissipate force to maintain robust mammalian spindle structure. J Cell Biol 2020; 219:e201911090. [PMID: 32435797 PMCID: PMC7401803 DOI: 10.1083/jcb.201911090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 01/16/2023] Open
Abstract
At cell division, the mammalian kinetochore binds many spindle microtubules that make up the kinetochore-fiber. To segregate chromosomes, the kinetochore-fiber must be dynamic and generate and respond to force. Yet, how it remodels under force remains poorly understood. Kinetochore-fibers cannot be reconstituted in vitro, and exerting controlled forces in vivo remains challenging. Here, we use microneedles to pull on mammalian kinetochore-fibers and probe how sustained force regulates their dynamics and structure. We show that force lengthens kinetochore-fibers by persistently favoring plus-end polymerization, not by increasing polymerization rate. We demonstrate that force suppresses depolymerization at both plus and minus ends, rather than sliding microtubules within the kinetochore-fiber. Finally, we observe that kinetochore-fibers break but do not detach from kinetochores or poles. Together, this work suggests an engineering principle for spindle structural homeostasis: different physical mechanisms of local force dissipation by the k-fiber limit force transmission to preserve robust spindle structure. These findings may inform how other dynamic, force-generating cellular machines achieve mechanical robustness.
Collapse
Affiliation(s)
- Alexandra F. Long
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
| | - Pooja Suresh
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
| | - Sophie Dumont
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA
- Biophysics Graduate Program, University of California, San Francisco, San Francisco, CA
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA
- Department of Bioengineering and Therapeutic Science, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| |
Collapse
|
5
|
Vemu A, Szczesna E, Zehr EA, Spector JO, Grigorieff N, Deaconescu AM, Roll-Mecak A. Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science 2018; 361:eaau1504. [PMID: 30139843 PMCID: PMC6510489 DOI: 10.1126/science.aau1504] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Spastin and katanin sever and destabilize microtubules. Paradoxically, despite their destructive activity they increase microtubule mass in vivo. We combined single-molecule total internal reflection fluorescence microscopy and electron microscopy to show that the elemental step in microtubule severing is the generation of nanoscale damage throughout the microtubule by active extraction of tubulin heterodimers. These damage sites are repaired spontaneously by guanosine triphosphate (GTP)-tubulin incorporation, which rejuvenates and stabilizes the microtubule shaft. Consequently, spastin and katanin increase microtubule rescue rates. Furthermore, newly severed ends emerge with a high density of GTP-tubulin that protects them against depolymerization. The stabilization of the newly severed plus ends and the higher rescue frequency synergize to amplify microtubule number and mass. Thus, severing enzymes regulate microtubule architecture and dynamics by promoting GTP-tubulin incorporation within the microtubule shaft.
Collapse
Affiliation(s)
- Annapurna Vemu
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Ewa Szczesna
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Elena A Zehr
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Jeffrey O Spector
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Nikolaus Grigorieff
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02454, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Mechanisms of Chromosome Congression during Mitosis. BIOLOGY 2017; 6:biology6010013. [PMID: 28218637 PMCID: PMC5372006 DOI: 10.3390/biology6010013] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/07/2017] [Accepted: 01/28/2017] [Indexed: 12/13/2022]
Abstract
Chromosome congression during prometaphase culminates with the establishment of a metaphase plate, a hallmark of mitosis in metazoans. Classical views resulting from more than 100 years of research on this topic have attempted to explain chromosome congression based on the balance between opposing pulling and/or pushing forces that reach an equilibrium near the spindle equator. However, in mammalian cells, chromosome bi-orientation and force balance at kinetochores are not required for chromosome congression, whereas the mechanisms of chromosome congression are not necessarily involved in the maintenance of chromosome alignment after congression. Thus, chromosome congression and maintenance of alignment are determined by different principles. Moreover, it is now clear that not all chromosomes use the same mechanism for congressing to the spindle equator. Those chromosomes that are favorably positioned between both poles when the nuclear envelope breaks down use the so-called "direct congression" pathway in which chromosomes align after bi-orientation and the establishment of end-on kinetochore-microtubule attachments. This favors the balanced action of kinetochore pulling forces and polar ejection forces along chromosome arms that drive chromosome oscillatory movements during and after congression. The other pathway, which we call "peripheral congression", is independent of end-on kinetochore microtubule-attachments and relies on the dominant and coordinated action of the kinetochore motors Dynein and Centromere Protein E (CENP-E) that mediate the lateral transport of peripheral chromosomes along microtubules, first towards the poles and subsequently towards the equator. How the opposite polarities of kinetochore motors are regulated in space and time to drive congression of peripheral chromosomes only now starts to be understood. This appears to be regulated by position-dependent phosphorylation of both Dynein and CENP-E and by spindle microtubule diversity by means of tubulin post-translational modifications. This so-called "tubulin code" might work as a navigation system that selectively guides kinetochore motors with opposite polarities along specific spindle microtubule populations, ultimately leading to the congression of peripheral chromosomes. We propose an integrated model of chromosome congression in mammalian cells that depends essentially on the following parameters: (1) chromosome position relative to the spindle poles after nuclear envelope breakdown; (2) establishment of stable end-on kinetochore-microtubule attachments and bi-orientation; (3) coordination between kinetochore- and arm-associated motors; and (4) spatial signatures associated with post-translational modifications of specific spindle microtubule populations. The physiological consequences of abnormal chromosome congression, as well as the therapeutic potential of inhibiting chromosome congression are also discussed.
Collapse
|
7
|
Milas A, Tolić I. Relaxation of interkinetochore tension after severing of a k-fiber depends on the length of the k-fiber stub. ACTA ACUST UNITED AC 2016. [DOI: 10.19185/matters.201603000025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Abstract
A universal feature of mitosis is that all chromosomes become aligned at the spindle equator--the halfway point between the two spindle poles--prior to anaphase onset. This migratory event is called congression, and is powered by centromere-bound protein machines called kinetochores. This Commentary aims to document recent advances concerning the two kinetochore-based force-generating mechanisms that drive mitotic chromosome congression in vertebrate cells: depolymerisation-coupled pulling (DCP) and lateral sliding. We aim to explore how kinetochores can 'read-out' their spatial position within the spindle, and adjust these force-generating mechanisms to ensure chromosomes reach, and then remain, at the equator. Finally, we will describe the 'life history' of a chromosome, and provide a working model for how individual mechanisms are integrated to ensure efficient and successful congression.
Collapse
Affiliation(s)
- Philip Auckland
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D McAinsh
- Mechanochemical Cell Biology Building, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
9
|
Forer A, Johansen KM, Johansen J. Movement of chromosomes with severed kinetochore microtubules. PROTOPLASMA 2015; 252:775-781. [PMID: 25576435 DOI: 10.1007/s00709-014-0752-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Experiments dating from 1966 and thereafter showed that anaphase chromosomes continued to move poleward after their kinetochore microtubules were severed by ultraviolet microbeam irradiation. These observations were initially met with scepticism as they contradicted the prevailing view that kinetochore fibre microtubules pulled chromosomes to the pole. However, recent experiments using visible light laser microbeam irradiations have corroborated these earlier experiments as anaphase chromosomes again were shown to move poleward after their kinetochore microtubules were severed. Thus, multiple independent studies using different techniques have shown that chromosomes can indeed move poleward without direct microtubule connections to the pole, with only a kinetochore 'stub' of microtubules. An issue not yet settled is: what propels the disconnected chromosome? There are two not necessarily mutually exclusive proposals in the literature: (1) chromosome movement is propelled by the kinetochore stub interacting with non-kinetochore microtubules and (2) chromosome movement is propelled by a spindle matrix acting on the stub. In this review, we summarise the data indicating that chromosomes can move with severed kinetochore microtubules and we discuss proposed mechanisms for chromosome movement with severed kinetochore microtubules.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, North York, Ontario, M3J 1P3, Canada,
| | | | | |
Collapse
|
10
|
Elting MW, Hueschen CL, Udy DB, Dumont S. Force on spindle microtubule minus ends moves chromosomes. ACTA ACUST UNITED AC 2014; 206:245-56. [PMID: 25023517 PMCID: PMC4107791 DOI: 10.1083/jcb.201401091] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
After the loss of continuous spindle microtubule attachment to the spindle pole, a previously undescribed mechanism of chromosome transport, powered by dynein pulling on minus ends of severed microtubules, repairs spindle architecture and integrity. The spindle is a dynamic self-assembling machine that coordinates mitosis. The spindle’s function depends on its ability to organize microtubules into poles and maintain pole structure despite mechanical challenges and component turnover. Although we know that dynein and NuMA mediate pole formation, our understanding of the forces dynamically maintaining poles is limited: we do not know where and how quickly they act or their strength and structural impact. Using laser ablation to cut spindle microtubules, we identify a force that rapidly and robustly pulls severed microtubules and chromosomes poleward, overpowering opposing forces and repairing spindle architecture. Molecular imaging and biophysical analysis suggest that transport is powered by dynein pulling on minus ends of severed microtubules. NuMA and dynein/dynactin are specifically enriched at new minus ends within seconds, reanchoring minus ends to the spindle and delivering them to poles. This force on minus ends represents a newly uncovered chromosome transport mechanism that is independent of plus end forces at kinetochores and is well suited to robustly maintain spindle mechanical integrity.
Collapse
Affiliation(s)
- Mary Williard Elting
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Christina L Hueschen
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Dylan B Udy
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| | - Sophie Dumont
- Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143Department of Cell and Tissue Biology, Biomedical Sciences Graduate Program, and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
11
|
Sikirzhytski V, Magidson V, Steinman JB, He J, Le Berre M, Tikhonenko I, Ault JG, McEwen BF, Chen JK, Sui H, Piel M, Kapoor TM, Khodjakov A. Direct kinetochore-spindle pole connections are not required for chromosome segregation. ACTA ACUST UNITED AC 2014; 206:231-43. [PMID: 25023516 PMCID: PMC4107786 DOI: 10.1083/jcb.201401090] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the absence of continuous K-fiber attachment between each kinetochore and the spindle pole, one or more additional mechanisms dependent on dynein-mediated kinetochore transport exist to ensure proper chromosome segregation during mitosis. Segregation of genetic material occurs when chromosomes move to opposite spindle poles during mitosis. This movement depends on K-fibers, specialized microtubule (MT) bundles attached to the chromosomes′ kinetochores. A long-standing assumption is that continuous K-fibers connect every kinetochore to a spindle pole and the force for chromosome movement is produced at the kinetochore and coupled with MT depolymerization. However, we found that chromosomes still maintained their position at the spindle equator during metaphase and segregated properly during anaphase when one of their K-fibers was severed near the kinetochore with a laser microbeam. We also found that, in normal fully assembled spindles, K-fibers of some chromosomes did not extend to the spindle pole. These K-fibers connected to adjacent K-fibers and/or nonkinetochore MTs. Poleward movement of chromosomes with short K-fibers was uncoupled from MT depolymerization at the kinetochore. Instead, these chromosomes moved by dynein-mediated transport of the entire K-fiber/kinetochore assembly. Thus, at least two distinct parallel mechanisms drive chromosome segregation in mammalian cells.
Collapse
Affiliation(s)
| | - Valentin Magidson
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | | | - Jie He
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | | | - Irina Tikhonenko
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | - Jeffrey G Ault
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | - Bruce F McEwen
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | | | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, NY 12201
| | | | | | - Alexey Khodjakov
- Wadsworth Center, New York State Department of Health, Albany, NY 12201 Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
12
|
Sheykhani R, Baker N, Gomez-Godinez V, Liaw LH, Shah J, Berns MW, Forer A. The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle. Cytoskeleton (Hoboken) 2013; 70:241-59. [PMID: 23475753 DOI: 10.1002/cm.21104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 11/08/2022]
Abstract
This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and unirradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and monophosphorylated myosin are associated with spindle fibers and showed that some actin and monophosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the unirradiated pole to move toward the equator until a balanced length is obtained.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Zhang X, Ling Y, Wang W, Zhang Y, Ma Q, Tan P, Song T, Wei C, Li P, Liu X, Ma RZ, Zhong H, Cao C, Xu Q. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores. Cell Cycle 2013; 12:1292-302. [PMID: 23531678 DOI: 10.4161/cc.24403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nucleation and transport organize microtubules in metaphase spindles. Cell 2012; 149:554-64. [PMID: 22541427 DOI: 10.1016/j.cell.2012.03.027] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/27/2011] [Accepted: 03/16/2012] [Indexed: 12/30/2022]
Abstract
Spindles are arrays of microtubules that segregate chromosomes during cell division. It has been difficult to validate models of spindle assembly due to a lack of information on the organization of microtubules in these structures. Here we present a method, based on femtosecond laser ablation, capable of measuring the detailed architecture of spindles. We used this method to study the metaphase spindle in Xenopus laevis egg extracts and found that microtubules are shortest near poles and become progressively longer toward the center of the spindle. These data, in combination with mathematical modeling, imaging, and biochemical perturbations, are sufficient to reject previously proposed mechanisms of spindle assembly. Our results support a model of spindle assembly in which microtubule polymerization dynamics are not spatially regulated, and the proper organization of microtubules in the spindle is determined by nonuniform microtubule nucleation and the local sorting of microtubules by transport.
Collapse
|
15
|
Johansen KM, Forer A, Yao C, Girton J, Johansen J. Do nuclear envelope and intranuclear proteins reorganize during mitosis to form an elastic, hydrogel-like spindle matrix? Chromosome Res 2011; 19:345-65. [DOI: 10.1007/s10577-011-9187-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Maghelli N, Tolić-Nørrelykke IM. Laser ablation of the microtubule cytoskeleton: setting up and working with an ablation system. Methods Mol Biol 2011; 777:261-71. [PMID: 21773935 DOI: 10.1007/978-1-61779-252-6_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Laser ablation is a powerful tool that can be used to study a variety of biological mechanisms. Microscopes with high optical performances are nowadays available, and lasers that could be used to perform ablations have become accessible to every laboratory. Setting up a laser ablation system is a relatively straightforward task; however, it requires some basic knowledge of optics. We illustrate the fundamental components of the experimental setup and describe the most common pitfalls and difficulties encountered when designing, setting up, and working with a laser ablation system.
Collapse
Affiliation(s)
- Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | | |
Collapse
|
17
|
Baker NM, Zeitlin SG, Shi LZ, Shah J, Berns MW. Chromosome tips damaged in anaphase inhibit cytokinesis. PLoS One 2010; 5:e12398. [PMID: 20811641 PMCID: PMC2928297 DOI: 10.1371/journal.pone.0012398] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/27/2010] [Indexed: 12/21/2022] Open
Abstract
Genome maintenance is ensured by a variety of biochemical sensors and pathways that repair accumulated damage. During mitosis, the mechanisms that sense and resolve DNA damage remain elusive. Studies have demonstrated that damage accumulated on lagging chromosomes can activate the spindle assembly checkpoint. However, there is little known regarding damage to DNA after anaphase onset. In this study, we demonstrate that laser-induced damage to chromosome tips (presumptive telomeres) in anaphase of Potorous tridactylis cells (PtK2) inhibits cytokinesis. In contrast, equivalent irradiation of non-telomeric chromosome regions or control irradiations in either the adjacent cytoplasm or adjacent to chromosome tips near the spindle midzone during anaphase caused no change in the eventual completion of cytokinesis. Damage to only one chromosome tip caused either complete absence of furrow formation, a prolonged delay in furrow formation, or furrow regression. When multiple chromosome tips were irradiated in the same cell, the cytokinesis defects increased, suggesting a potential dose-dependent mechanism. These results suggest a mechanism in which dysfunctional telomeres inhibit mitotic exit.
Collapse
Affiliation(s)
- Norman M. Baker
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California, United States of America
| | - Samantha G. Zeitlin
- Laboratory for Cell Biology, Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, California, United States of America
| | - Linda Z. Shi
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jagesh Shah
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MWB); (JS)
| | - Michael W. Berns
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Beckman Laser Institute, University of California Irvine, Irvine, California, United States of America
- * E-mail: (MWB); (JS)
| |
Collapse
|
18
|
Xie L, Forer A. Jasplakinolide, an actin stabilizing agent, alters anaphase chromosome movements in crane-fly spermatocytes. ACTA ACUST UNITED AC 2008; 65:876-89. [DOI: 10.1002/cm.20309] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Forer A, Pickett-Heaps JD, Spurck T. What generates flux of tubulin in kinetochore microtubules? PROTOPLASMA 2008; 232:137-141. [PMID: 18421550 DOI: 10.1007/s00709-008-0286-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/10/2007] [Indexed: 05/26/2023]
Abstract
We discuss models for production of tubulin flux in kinetochore microtubules. Current models concentrate solely on microtubules and their associated motors and enzymes. For example, in some models the driving force for flux is enzymes at the poles and the kinetochores; in others the driving force is motor molecules that are associated with a stationary spindle matrix. We present a different viewpoint, that microtubules are propelled poleward by forces arising from the spindle matrix, that the forces on the microtubules "activate" polymerising and depolymerising enzymes at kinetochores and poles, that matrix forces utilise actin, myosin, and microtubule motors, and that the matrix itself may not necessarily be static.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
20
|
Magidson V, Loncarek J, Hergert P, Rieder CL, Khodjakov A. Laser microsurgery in the GFP era: a cell biologist's perspective. Methods Cell Biol 2007; 82:239-66. [PMID: 17586259 PMCID: PMC2570757 DOI: 10.1016/s0091-679x(06)82007-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Modern biology is based largely on a reductionistic "dissection" approach-most cell biologists try to determine how complex biological systems work by removing their individual parts and studying the effects of this removal on the system. A variety of enzymatic and mechanical methods have been developed to dissect large cell assemblies like tissues and organs. Further, individual proteins can be inactivated or removed within a cell by genetic manipulations (e.g., RNAi or gene knockouts). However, there is a growing demand for tools that allow intracellular manipulations at the level of individual organelles. Laser microsurgery is ideally suited for this purpose and the popularity of this approach is on the rise among cell biologists. In this chapter, we review some of the applications for laser microsurgery at the subcellular level and describe practical requirements for laser microsurgery instrumentation demanded in the field. We also outline a relatively inexpensive but versatile laser microsurgery workstation that is being used in our laboratory. Our major thesis is that the limitations of the technology are no longer at the level of the laser, microscope, or software, but instead only in defining creative questions and in visualizing the target to be destroyed.
Collapse
Affiliation(s)
- Valentin Magidson
- Division of Molecular Medicine, Wadsworth Center, Albany, New York 12201, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
Katanin is a conserved AAA ATPase with the ability to sever microtubules, but its biological function in animal cells has been obscure. A recent study using electron tomography has found that katanin stimulates the production of microtubules in the meiotic spindles of Caenorhabditis elegans oocytes.
Collapse
Affiliation(s)
- Katharina Ribbeck
- Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
22
|
Johansen KM, Johansen J. Cell and Molecular Biology of the Spindle Matrix. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:155-206. [PMID: 17725967 DOI: 10.1016/s0074-7696(07)63004-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The concept of a spindle matrix has long been proposed to account for incompletely understood features of microtubule spindle dynamics and force production during mitosis. In its simplest formulation, the spindle matrix is hypothesized to provide a stationary or elastic molecular matrix that can provide a substrate for motor molecules to interact with during microtubule sliding and which can stabilize the spindle during force production. Although this is an attractive concept with the potential to greatly simplify current models of microtubule spindle behavior, definitive evidence for the molecular nature of a spindle matrix or for its direct role in microtubule spindle function has been lagging. However, as reviewed here multiple studies spanning the evolutionary spectrum from lower eukaryotes to vertebrates have provided new and intriguing evidence that a spindle matrix may be a general feature of mitosis.
Collapse
Affiliation(s)
- Kristen M Johansen
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
23
|
Colombelli J, Reynaud EG, Stelzer EHK. Investigating Relaxation Processes in Cells and Developing Organisms: From Cell Ablation to Cytoskeleton Nanosurgery. Methods Cell Biol 2007; 82:267-91. [PMID: 17586260 DOI: 10.1016/s0091-679x(06)82008-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic microscopy of living cells and organisms alone does not reveal the high level of complexity of cellular and subcellular organization. All observable processes rely on the activity of biochemical and biophysical processes and many occur at a physiological equilibrium. Experimentally, it is not trivial to apply a perturbation that targets a specific process without perturbing the overall equilibrium of a cell. Drugs and more recently RNAi certainly have general and undesired effects on cell physiology and metabolism. In particular, they affect the entire cell. Pulsed lasers allow to severe biological tissues with a precision in the range of hundreds of nanometers and to achieve ablation on the level of a single cell or a subcellular compartment. In this chapter, we present an efficient implementation of a picosecond UV-A pulsed laser-based nanosurgery system and review the different mechanisms of ablation that can be achieved at different levels of cellular organization. We discuss the performance of the ablation process in terms of the energy deposited onto the sample and compare our implementation to others recently employed for cellular and subcellular surgery. Above the energy threshold of ionization, we demonstrate how to achieve single-cell ablation through the induction of mechanical perturbation and cavitation in living organisms. Below this threshold, we induce cytoskeleton severing inside live cells. By combining nanosurgery with fast live-imaging fluorescence microscopy, we show how the apparent equilibrium of the cytoskeleton can be perturbed regionally inside a cell.
Collapse
Affiliation(s)
- Julien Colombelli
- Light Microscopy Group, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
24
|
Abstract
This introductory chapter reviews the history of microbeams starting with the original UV microbeam work of Tchakhotine in 1912 and covers the progress and application of microbeams through 2006. The main focus of the chapter is on laser "scissors" starting with Marcel Bessis' and colleagues work with the ruby laser microbeam in Paris in 1962. Following this introduction, a section is devoted to describing the different laser microbeam systems and then the rest of the chapter is devoted to applications in cell and developmental biology. The approach is to focus on the organelle/structure and describe how the laser microbeam has been applied to studying its structure and/or function. Since considerable work has been done on chromosomes and the mitotic spindle (Section V.A and C), these topics have been divided in distinct subsections. Other topics discussed are injection of foreign DNA through the cell membrane (optoporation/optoinjection), cell migration, the nucleolus, mitochondria, cytoplasmic filaments, and embryos fate-mapping. A final technology section is devoted to discussing the pros and cons of building/buying your own laser microbeam system and the option of using the Internet-based RoboLase system. Throughout the chapter, reference is made to other chapters in the book that go into more detail on the subjects briefly mentioned.
Collapse
Affiliation(s)
- Michael W Berns
- Department of Biomedical Engineering, Beckman Laser Institute, University of California, Irvine, California 92612, USA
| |
Collapse
|
25
|
Srayko M, O'toole ET, Hyman AA, Müller-Reichert T. Katanin Disrupts the Microtubule Lattice and Increases Polymer Number in C. elegans Meiosis. Curr Biol 2006; 16:1944-9. [PMID: 17027492 DOI: 10.1016/j.cub.2006.08.029] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/17/2022]
Abstract
Katanin is a heterodimer that exhibits ATP-dependent microtubule-severing activity in vitro. In Xenopus egg extracts, katanin activity correlates with the addition of cyclin B/cdc2, suggesting a role for microtubule severing in the disassembly of long interphase microtubules as the cell prepares for mitosis. However, studies from plant cells, cultured neurons, and nematode embryos suggest that katanin could be required for the organization or postnucleation processing of microtubules, rather than the dissolution of microtubule structures. Here we reexamine katanin's role by studying acentrosomal female meiotic spindles in C. elegans embryos. In mutant embryos lacking katanin, microtubules form around meiotic chromatin but do not organize into bipolar spindles. By using electron tomography, we found that katanin converts long microtubule polymers into shorter microtubule fragments near meiotic chromatin. We further show that turning on katanin during mitosis also creates a large pool of short microtubules near the centrosome. Furthermore, the identification of katanin-dependent microtubule lattice defects supports a mechanism involving an initial perforation of the protofilament wall. Taken together, our data suggest that katanin is used during meiotic spindle assembly to increase polymer number from a relatively inefficient chromatin-based microtubule nucleation pathway.
Collapse
Affiliation(s)
- Martin Srayko
- Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | |
Collapse
|
26
|
Colombelli J, Reynaud EG, Rietdorf J, Pepperkok R, Stelzer EHK. In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic 2006; 6:1093-102. [PMID: 16262721 DOI: 10.1111/j.1600-0854.2005.00334.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on the manipulation of intracellular filaments using a nanosurgery system based on a subnanosecond pulsed UV laser optimized for the localized severing of biological polymers. By inducing artificial catastrophe of selected microtubules (MTs), we perform shrinkage-rate measurements in interphase Ptk-2 cells throughout the entire cell. We quantify the impact of two labeling methods and three fluorescent markers, showing a 25% faster depolymerization with Alexa-488 tubulin compared with Rhodamine and yellow fluorescent protein (YFP) tubulins and a 20% higher variability induced by microinjection compared with stable transfection. Using EB3-GFP as a tip marker, we establish a new protocol to measure shrinkage rate, growth rate and rescue frequency simultaneously with high temporal and spatial specificity in live cells. As our analysis shows, laser-induced MT dynamics are physiologically relevant. The high statistical efficiency that the method offers in terms of numbers of measured events and therefore reduced standard deviations represents an important quantitative improvement in the measurement of dynamic instability parameters in vivo. We extend the application of the method by demonstrating induced dynamic behavior of actin-stress fibers after severing. This new method enables the quantitative investigation of cytoskeleton dynamics in a local confinement.
Collapse
Affiliation(s)
- Julien Colombelli
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
27
|
Abstract
How centrosomes nucleate microtubule growth is a question that has puzzled cell biologists for decades. It has been suspected for some time that a centrosome contains multiple copies of a basic microtubule-nucleating structure, each of which is responsible for nucleating a single microtubule. This suspicion has now been confirmed. A ring of gamma-tubulin molecules, associated with a large protein complex, apparently serves as the long-sought-after microtubule-nucleating structure.
Collapse
Affiliation(s)
- J W Raff
- Wellcome/CRC Institute, Dept of Genetics, Cambridge, UK
| |
Collapse
|
28
|
Maiato H, Rieder CL, Khodjakov A. Kinetochore-driven formation of kinetochore fibers contributes to spindle assembly during animal mitosis. ACTA ACUST UNITED AC 2004; 167:831-40. [PMID: 15569709 PMCID: PMC2172442 DOI: 10.1083/jcb.200407090] [Citation(s) in RCA: 227] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is now clear that a centrosome-independent pathway for mitotic spindle assembly exists even in cells that normally possess centrosomes. The question remains, however, whether this pathway only activates when centrosome activity is compromised, or whether it contributes to spindle morphogenesis during a normal mitosis. Here, we show that many of the kinetochore fibers (K-fibers) in centrosomal Drosophila S2 cells are formed by the kinetochores. Initially, kinetochore-formed K-fibers are not oriented toward a spindle pole but, as they grow, their minus ends are captured by astral microtubules (MTs) and transported poleward through a dynein-dependent mechanism. This poleward transport results in chromosome bi-orientation and congression. Furthermore, when individual K-fibers are severed by laser microsurgery, they regrow from the kinetochore outward via MT plus-end polymerization at the kinetochore. Thus, even in the presence of centrosomes, the formation of some K-fibers is initiated by the kinetochores. However, centrosomes facilitate the proper orientation of K-fibers toward spindle poles by integrating them into a common spindle.
Collapse
Affiliation(s)
- Helder Maiato
- Wadsworth Center, New York State Department of Health, Albany 12201, USA
| | | | | |
Collapse
|
29
|
Botvinick EL, Venugopalan V, Shah JV, Liaw LH, Berns MW. Controlled ablation of microtubules using a picosecond laser. Biophys J 2004; 87:4203-12. [PMID: 15454403 PMCID: PMC1304929 DOI: 10.1529/biophysj.104.049528] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The use of focused high-intensity light sources for ablative perturbation has been an important technique for cell biological and developmental studies. In targeting subcellular structures many studies have to deal with the inability to target, with certainty, an organelle or large macromolecular complex. Here we demonstrate the ability to selectively target microtubule-based structures with a laser microbeam through the use of enhanced yellow fluorescent protein (EYFP) and enhanced cyan fluorescent protein (ECFP) variants of green fluorescent protein fusions of tubule. Potorous tridactylus (PTK2) cell lines were generated that stably express EYFP and ECFP tagged to the alpha-subunit of tubulin. Using microtubule fluorescence as a guide, cells were irradiated with picosecond laser pulses at discrete microtubule sites in the cytoplasm and the mitotic spindle. Correlative thin-section transmission electron micrographs of cells fixed one second after irradiation demonstrated that the nature of the ultrastructural damage appeared to be different between the EYFP and the ECFP constructs suggesting different photon interaction mechanisms. We conclude that focal disruption of single cytoplasmic and spindle microtubules can be precisely controlled by combining laser microbeam irradiation with different fluorescent fusion constructs. The possible photon interaction mechanisms are discussed in detail.
Collapse
Affiliation(s)
- E L Botvinick
- Beckman Laser Institute, University of California, Irvine, Irvine, California 92612, USA
| | | | | | | | | |
Collapse
|
30
|
Tirnauer JS, Salmon ED, Mitchison TJ. Microtubule plus-end dynamics in Xenopus egg extract spindles. Mol Biol Cell 2004; 15:1776-84. [PMID: 14767058 PMCID: PMC379274 DOI: 10.1091/mbc.e03-11-0824] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule dynamics underlie spindle assembly, yet we do not know how the spindle environment affects these dynamics. We developed methods for measuring two key parameters of microtubule plus-end dynamic instability in Xenopus egg extract spindles. To measure plus-end polymerization rates and localize growing plus ends, we used fluorescence confocal imaging of EB1. This revealed plus-end polymerization throughout the spindle at approximately 11 microm/min, similar to astral microtubules, suggesting polymerization velocity is not regionally regulated by the spindle. The ratio of EB1 to microtubule fluorescence revealed an enrichment of polymerizing ends near the spindle middle, indicating enhanced nucleation or rescue there. We measured depolymerization rates by creating a front of synchronized depolymerization in spindles severed with microneedles. This front could be tracked by polarization and fluorescence microscopy as it advanced from each cut edge toward the associated pole. Both imaging modalities revealed rapid depolymerization ( approximately 30 microm/min) superimposed on a subset of microtubules stable to depolymerization. Larger spindle fragments contained a higher percentage of stable microtubules, which we believe were oriented with their minus ends facing the cut. Depolymerization was blocked by the potent microtubule stabilizing agent hexylene glycol, but was unaffected by alpha-MCAK antibody and AMPPNP, which block catastrophe and kinesin motility, respectively. These measurements move us closer to understanding the complete life history of a spindle microtubule.
Collapse
Affiliation(s)
- Jennifer S Tirnauer
- Woods Hole Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
| | | | | |
Collapse
|
31
|
Forer A, Spurck T, Pickett-Heaps JD, Wilson PJ. Structure of kinetochore fibres in crane-fly spermatocytes after irradiation with an ultraviolet microbeam: Neither microtubules nor actin filaments remain in the irradiated region. ACTA ACUST UNITED AC 2003; 56:173-92. [PMID: 14569597 DOI: 10.1002/cm.10144] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We studied chromosome movement after kinetochore microtubules were severed. Severing a kinetochore fibre in living crane-fly spermatocytes with an ultraviolet microbeam creates a kinetochore stub, a birefringent remnant of the spindle fibre connected to the kinetochore and extending only to the edge of the irradiated region. After the irradiation, anaphase chromosomes either move poleward led by their stubs or temporarily stop moving. We examined actin and/or microtubules in irradiated cells by means of confocal fluorescence microscopy or serial-section reconstructions from electron microscopy. For each cell thus examined, chromosome movement had been recorded continuously until the moment of fixation. Kinetochore microtubules were completely severed by the ultraviolet microbeam in cells in which chromosomes continued to move poleward after the irradiation: none were seen in the irradiated regions. Similarly, actin filaments normally present in kinetochore fibres were severed by the ultraviolet microbeam irradiations: the irradiated regions contained no actin filaments and only local spots of non-filamentous actin. There was no difference in irradiated regions when the associated chromosomes continued to move versus when they stopped moving. Thus, one cannot explain motion with severed kinetochore microtubules in terms of either microtubules or actin-filaments bridging the irradiated region. The data seem to negate current models for anaphase chromosome movement and support a model in which poleward chromosome movement results from forces generated within the spindle matrix that propel kinetochore fibres or kinetochore stubs poleward.
Collapse
Affiliation(s)
- Arthur Forer
- Biology Department, York University, Toronto, Ontario, Canada.
| | | | | | | |
Collapse
|
32
|
Khodjakov A, Copenagle L, Gordon MB, Compton DA, Kapoor TM. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J Cell Biol 2003; 160:671-83. [PMID: 12604591 PMCID: PMC2173370 DOI: 10.1083/jcb.200208143] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient chromosome-free bipolar array whose orientation specified the axis along which chromosomes segregated. We propose that the capture and incorporation of preformed K-fibers complements the microtubule plus-end capture mechanism and contributes to spindle formation in vertebrates.
Collapse
Affiliation(s)
- Alexey Khodjakov
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Pickett-Heaps JD, Forer A, Spurck T. Traction fibre: toward a "tensegral" model of the spindle. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:1-6. [PMID: 9142434 DOI: 10.1002/(sici)1097-0169(1997)37:1<1::aid-cm1>3.0.co;2-d] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Most current hypotheses of mitotic mechanisms are based on the "PAC-MAN" paradigm in which chromosome movement is generated and powered by disassembly of kinetochore microtubules (k-MTs) by the kinetochore. Recent experiments demonstrate that this model cannot explain force generation for anaphase chromosome movement [Pickett-Heaps et al., 1996: Protoplasma 192:1-10]. Another such experiment is described here: a UV-microbeam cut several kinetochore fibres (k-fibres) in newt epithelial cells at metaphase and the half-spindle immediately shortened: in several cells, the remaining intact spindle fibres bowed outwards as they came under increased compression. Thus, severing of k-MTs can lead to increased tension between chromosomes and poles. This observation cannot be explained by models in which force is produced by motor molecules at the kinetochore actively disassembling k-MTs. Rather, we argue that tensile forces act along the whole k-fibre, which, therefore, can be considered as a classic "traction fibre." We suggest that anaphase polewards force is generated by MTs interacting with the spindle matrix and when k-MTs are severed, polewards force continues to act on the remaining kMT-stub; spindle MTs act as rigid struts concurrently resisting and being controlled by these forces. We suggest that the principles of "cellular tensegrity" [Ingber, 1993: J. Cell Sci. 104:613-627] derived from the behaviour and organization of the interphase cell apply to the spindle. In an evolutionary context, this argument further suggests that the spindle might originally have evolved as the mechanism by which a single tensegral unit (cytoplast) is divided into two cytoplasts; use of the spindle for segregating chromosomes might represent a secondary, more recent development of this primary function. If valid, this concept has implications for the way the spindle functions and for the spindle's relationship to cytokinesis.
Collapse
Affiliation(s)
- J D Pickett-Heaps
- School of Botany, University of Melbourne, Parkville, Vic, Australia
| | | | | |
Collapse
|
35
|
Spurck T, Forer A, Pickett-Heaps J. Ultraviolet microbeam irradiations of epithelial and spermatocyte spindles suggest that forces act on the kinetochore fibre and are not generated by its disassembly. CELL MOTILITY AND THE CYTOSKELETON 2000; 36:136-48. [PMID: 9015202 DOI: 10.1002/(sici)1097-0169(1997)36:2<136::aid-cm4>3.0.co;2-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ultraviolet (UV) microbeam irradiations of crane-fly spermatocyte and newt epithelial spindles severed kinetochore fibres (KT-fibres), creating areas of reduced birefringence (ARBs): the remnant KT-fibre consists of two "stubs," a pole-stub attached to the pole and a KT-stub attached to the kinetochore. KT-stubs remained visible but pole-stubs soon became undetectable [Forer et al., 1996]. At metaphase, in both cell types the KT-stub often changed orientation immediately after irradiation and its tip steadily moved poleward. In spermatocytes, the chromosome attached to the KT-stub remained at the equator as the KT-stub elongated. In epithelial cells, the KT-stub sometimes elongated as the associated chromosome remained at the equator; other times the associated chromosome moved poleward together with the KT-stub, albeit only a short distance toward the pole. When an ARB was generated at anaphase, chromosome(s) with a KT-stub often continued to move poleward. In spermatocytes, this movement was accompanied by steady elongation of the KT-stub. In epithelial cells, chromosomes accelerated polewards after irradiation until the KT-stubs reached the pole, after which chromosome movement returned to normal speeds. In some epithelial cells fine birefringent fibres by chance were present along one edge of ARBs; these remnant fibres buckled and broke as the KT-stub and chromosome moved polewards. Similarly, KT-stubs that moved into pole stubs (or astral fibres) caused the pole stubs (or astral fibres) to bend sharply from the point of impact. Our results contradict models of chromosome movement that postulate that force is generated by the kinetochore disassembling the KT-fibre. Instead, these results suggest that poleward directed forces act on the KT-fibre and the KT-stub and suggest that continuity of microtubules between kinetochore and pole is not obligatory for achieving anaphase motion to the pole.
Collapse
Affiliation(s)
- T Spurck
- School of Botany, University of Melbourne, Parkville, Vic., Australia
| | | | | |
Collapse
|
36
|
Khodjakov A, Cole RW, Rieder CL. A synergy of technologies: combining laser microsurgery with green fluorescent protein tagging. CELL MOTILITY AND THE CYTOSKELETON 2000; 38:311-7. [PMID: 9415373 DOI: 10.1002/(sici)1097-0169(1997)38:4<311::aid-cm1>3.0.co;2-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
When focused through an objective lens with a high numerical aperture, nanosecond pulses of high-intensity green (532-nm) laser light can be used to selectively destroy any cellular component whose boundaries can be defined by light microscopy. These components include, for example, chromosomes, spindle fibers, bundles of keratin, or actin filaments, mitochondria, vacuoles, and so forth. In addition, the definition of poorly resolved components can be enhanced for selective destruction by tagging one or more of their constituent proteins with green fluorescence protein (GFP). As a example we show that the centrosome in living PtK1 cells can be clearly defined, and then destroyed by green laser light, after transforming the cells with gamma-tubulin/GFP fusion protein. In some transformed cells it is even possible to target and selectively destroy just one of the centrioles.
Collapse
Affiliation(s)
- A Khodjakov
- Division of Molecular Medicine, Wadsworth Center, Albany, New York 12201-0509, USA
| | | | | |
Collapse
|
37
|
Tran PT, Walker RA, Salmon ED. A metastable intermediate state of microtubule dynamic instability that differs significantly between plus and minus ends. J Cell Biol 1997; 138:105-17. [PMID: 9214385 PMCID: PMC2139954 DOI: 10.1083/jcb.138.1.105] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/1997] [Revised: 04/29/1997] [Indexed: 02/04/2023] Open
Abstract
The current two-state GTP cap model of microtubule dynamic instability proposes that a terminal crown of GTP-tubulin stabilizes the microtubule lattice and promotes elongation while loss of this GTP-tubulin cap converts the microtubule end to shortening. However, when this model was directly tested by using a UV microbeam to sever axoneme-nucleated microtubules and thereby remove the microtubule's GTP cap, severed plus ends rapidly shortened, but severed minus ends immediately resumed elongation (Walker, R.A., S. Inoué, and E.D. Salmon. 1989. J. Cell Biol. 108: 931-937). To determine if these previous results were dependent on the use of axonemes as seeds or were due to UV damage, or if they instead indicate an intermediate state in cap dynamics, we performed UV cutting of self-assembled microtubules and mechanical cutting of axoneme-nucleated microtubules. These independent methods yielded results consistent with the original work: a significant percentage of severed minus ends are stable after cutting. In additional experiments, we found that the stability of both severed plus and minus ends could be increased by increasing the free tubulin concentration, the solution GTP concentration, or by assembling microtubules with guanylyl-(alpha,beta)-methylene-diphosphonate (GMPCPP). Our results show that stability of severed ends, particularly minus ends, is not an artifact, but instead reveals the existence of a metastable kinetic intermediate state between the elongation and shortening states of dynamic instability. The kinetic properties of this intermediate state differ between plus and minus ends. We propose a three-state conformational cap model of dynamic instability, which has three structural states and four transition rate constants, and which uses the asymmetry of the tubulin heterodimer to explain many of the differences in dynamic instability at plus and minus ends.
Collapse
Affiliation(s)
- P T Tran
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | | | | |
Collapse
|
38
|
Abstract
Much of our understanding of the molecular basis of mitotic spindle function has been achieved within the past decade. Studies utilizing genetically tractable organisms have made important contributions to this field and these studies form the basis of this review. We focus upon three areas of spindle research: spindle poles, centromeres, and spindle motors. The structure and duplication mechanisms of spindle poles are considered as well as their roles in organizing spindle microtubules. Centromeres vary considerably in their size and complexity. We describe recent progress in our understanding of the relatively simple centromeres of the yeast Saccharomyces cerevisiae and the complex centromeres that are more typical of eukaryotic cells. Microtubule-based motor proteins that generate the characteristic spindle movements have been identified in recent years and can be grouped into families defined by conserved primary sequence and mitotic function.
Collapse
Affiliation(s)
- M A Hoyt
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
39
|
Echeverri CJ, Paschal BM, Vaughan KT, Vallee RB. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Biophys Biochem Cytol 1996; 132:617-33. [PMID: 8647893 PMCID: PMC2199864 DOI: 10.1083/jcb.132.4.617] [Citation(s) in RCA: 546] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Dynactin is a multi-subunit complex which has been implicated in cytoplasmic dynein function, though its mechanism of action is unknown. In this study, we have characterized the 50-kD subunit of dynactin, and analyzed the effects of its overexpression on mitosis in living cells. Rat and human cDNA clones revealed p50 to be novel and highly conserved, containing three predicted coiled-coil domains. Immunofluorescence staining of dynactin and cytoplasmic dynein components in cultured vertebrate cells showed that both complexes are recruited to kinetochores during prometaphase, and concentrate near spindle poles thereafter. Overexpression of p50 in COS-7 cells disrupted mitosis, causing cells to accumulate in a prometaphase-like state. Chromosomes were condensed but unaligned, and spindles, while still bipolar, were dramatically distorted. Sedimentation analysis revealed the dynactin complex to be dissociated in the transfected cultures. Furthermore, both dynactin and cytoplasmic dynein staining at prometaphase kinetochores was markedly diminished in cells expressing high levels of p50. These findings represent clear evidence for dynactin and cytoplasmic dynein codistribution within cells, and for the presence of dynactin at kinetochores. The data also provide direct in vivo evidence for a role for vertebrate dynactin in modulating cytoplasmic dynein binding to an organelle, and implicate both dynactin and dynein in chromosome alignment and spindle organization.
Collapse
Affiliation(s)
- C J Echeverri
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | | | | | |
Collapse
|
40
|
Inoué S, Salmon ED. Force generation by microtubule assembly/disassembly in mitosis and related movements. Mol Biol Cell 1995; 6:1619-40. [PMID: 8590794 PMCID: PMC301321 DOI: 10.1091/mbc.6.12.1619] [Citation(s) in RCA: 451] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this article, we review the dynamic nature of the filaments (microtubules) that make up the labile fibers of the mitotic spindle and asters, we discuss the roles that assembly and disassembly of microtubules play in mitosis, and we consider how such assembling and disassembling polymer filaments can generate forces that are utilized by the living cell in mitosis and related movements.
Collapse
Affiliation(s)
- S Inoué
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | |
Collapse
|
41
|
Zhai Y, Kronebusch PJ, Borisy GG. Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol 1995; 131:721-34. [PMID: 7593192 PMCID: PMC2120628 DOI: 10.1083/jcb.131.3.721] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have quantitatively studied the dynamic behavior of kinetochore fiber microtubules (kMTs); both turnover and poleward transport (flux) in metaphase and anaphase mammalian cells by fluorescence photoactivation. Tubulin derivatized with photoactivatable fluorescein was microinjected into prometaphase LLC-PK and PtK1 cells and allowed to incorporate to steady-state. A fluorescent bar was generated across the MTs in a half-spindle of the mitotic cells using laser irradiation and the kinetics of fluorescence redistribution were determined in terms of a double exponential decay process. The movement of the activated zone was also measured along with chromosome movement and spindle elongation. To investigate the possible regulation of MT transport at the metaphase-anaphase transition, we performed double photoactivation analyses on the same spindles as the cell advanced from metaphase to anaphase. We determined values for the turnover of kMTs (t1/2 = 7.1 +/- 2.4 min at 30 degrees C) and demonstrated that the turnover of kMTs in metaphase is approximately an order of magnitude slower than that for non-kMTs. In anaphase, kMTs become dramatically more stable as evidenced by a fivefold increase in the fluorescence redistribution half-time (t1/2 = 37.5 +/- 8.5 min at 30 degrees C). Our results also indicate that MT transport slows abruptly at anaphase onset to one-half the metaphase value. In early anaphase, MT depolymerization at the kinetochore accounted, on average, for 84% of the rate of chromosome movement toward the pole whereas the relative contribution of MT transport and depolymerization at the pole contributed 16%. These properties reflect a dramatic shift in the dynamic behavior of kMTs at the metaphase-anaphase transition. A release-capture model is presented in which the stability of kMTs is increased at the onset of anaphase through a reduction in the probability of MT release from the kinetochore. The reduction in MT transport at the metaphase-anaphase transition suggests that motor activity and/or subunit dynamics at the centrosome are subject to modulation at this key cell cycle point.
Collapse
Affiliation(s)
- Y Zhai
- Laboratory of Molecular Biology, University of Wisconsin-Madison 53706, USA
| | | | | |
Collapse
|
42
|
Uzbekov RE, Votchal MS, Vorobjev IA. Role of the centrosome in mitosis: UV micro-irradiation study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1995; 29:163-70. [PMID: 7472810 DOI: 10.1016/1011-1344(95)07129-p] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ultraviolet micro-irradiation (UV-MI) of the PK (pig kidney embryo) cell centrosome (lambda max = 280 nm, spot diameter 1.6 mm, exposure time 5-15 s) at metaphase and anaphase resulted in functional damage of the centrosome. After UV-MI of the centrosome at early metaphase, chromosomes quickly (in 1-3 min) moved away from the irradiated pole and then encircled the non-irradiated pole. Within 10 min after UV-MI the spindle disassembled and chromosomes remained unseparated. The minimal dose inducing this effect in 90% of cells was accumulated in 5 s. After the same UV-MI at late metaphase, chromosomes shifted towards the non-irradiated pole; however, anaphase started and chromosome motion towards the non-irradiated pole continued normally. UV-MI of the centrosome at early anaphase for 5-15 s slowed down and then stopped chromosome motion towards the irradiated pole. This was a result of rapid (within 2-3 min) disorganization of the half-spindle. Chromosomes continued to move towards the opposite pole normally, while cytokinesis was significantly retarded. No visible lesion was revealed by electron microscopy after 5 s UV-MI, while 15 s irradiation resulted in the truncation of the microtubule bundles 1.5-2 microns from the centrosome. We concluded that UV-MI inactivates the centrosome and induces disaggregation of microtubule initiation sites. The critical point (checkpoint) in mitosis up to which this damage induces mitotic arrest is mid-metaphase.
Collapse
Affiliation(s)
- R E Uzbekov
- Division of Electron Microscopy, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| | | | | |
Collapse
|
43
|
Abstract
Kinesin is but one member of a large superfamily of microtubule-based motor proteins. This diverse group of motors drives a number of essential subcellular movements, including transport of membranous organelles and mitotic spindle functions. Recent observations have revealed examples of functional cooperativity and antagonism between different kinesin-related motors.
Collapse
Affiliation(s)
- M A Hoyt
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
44
|
Rieder CL, Salmon ED. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle. J Cell Biol 1994; 124:223-33. [PMID: 8294508 PMCID: PMC2119939 DOI: 10.1083/jcb.124.3.223] [Citation(s) in RCA: 226] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.
Collapse
Affiliation(s)
- C L Rieder
- Wadsworth Center for Laboratories and Research, Albany, New York 12201-0509
| | | |
Collapse
|
45
|
|
46
|
Gliksman NR, Skibbens RV, Salmon ED. How the transition frequencies of microtubule dynamic instability (nucleation, catastrophe, and rescue) regulate microtubule dynamics in interphase and mitosis: analysis using a Monte Carlo computer simulation. Mol Biol Cell 1993; 4:1035-50. [PMID: 8298190 PMCID: PMC275737 DOI: 10.1091/mbc.4.10.1035] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Microtubules (MTs) in newt mitotic spindles grow faster than MTs in the interphase cytoplasmic microtubule complex (CMTC), yet spindle MTs do not have the long lengths or lifetimes of the CMTC microtubules. Because MTs undergo dynamic instability, it is likely that changes in the durations of growth or shortening are responsible for this anomaly. We have used a Monte Carlo computer simulation to examine how changes in the number of MTs and changes in the catastrophe and rescue frequencies of dynamic instability may be responsible for the cell cycle dependent changes in MT characteristics. We used the computer simulations to model interphase-like or mitotic-like MT populations on the basis of the dynamic instability parameters available from newt lung epithelial cells in vivo. We started with parameters that produced MT populations similar to the interphase newt lung cell CMTC. In the simulation, increasing the number of MTs and either increasing the frequency of catastrophe or decreasing the frequency of rescue reproduced the changes in MT dynamics measured in vivo between interphase and mitosis.
Collapse
Affiliation(s)
- N R Gliksman
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280
| | | | | |
Collapse
|
47
|
Czaban BB, Forer A, Bajer AS. Ultraviolet microbeam irradiation of chromosomal spindle fibres in Haemanthus katherinae endosperm. I. Behaviour of the irradiated region. J Cell Sci 1993; 105 ( Pt 2):571-8. [PMID: 8408286 DOI: 10.1242/jcs.105.2.571] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used an ultraviolet microbeam to irradiate chromosomal spindle fibres in metaphase Haemanthus endosperm cells. An area of reduced birefringence (ARB) was formed at the position of the focussed ultraviolet light with all wavelengths we used (260, 270, 280, and 290 nm). The chromosomal spindle fibre regions (kinetochore microtubules) poleward from the ARBs were unstable: they shortened (from the ARB to the pole) either too fast for us to measure or at rates of about 40 microns per minute. The chromosomal spindle fibre regions (kinetochore microtubules) kinetochore-ward from the ARBs were stable: they did not change length for about 80 seconds, and then they increased in length at rates of about 0.7 microns per minute. The lengthening chromosomal spindle fibres sometimes grew in a direction different from that of the original chromosomal spindle fibre. The chromosome associated with the irradiated spindle fibre sometimes moved off the equator a few micrometers, towards the non-irradiated half-spindle. We discuss our results in relation to other results in the literature and conclude that kinetochores and poles influence the behaviour of kinetochore microtubules.
Collapse
Affiliation(s)
- B B Czaban
- Department of Biology, York University, Ontario, Canada
| | | | | |
Collapse
|
48
|
Aist JR, Liang H, Berns MW. Astral and spindle forces in PtK2 cells during anaphase B: a laser microbeam study. J Cell Sci 1993; 104 ( Pt 4):1207-16. [PMID: 8314902 DOI: 10.1242/jcs.104.4.1207] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rat kangaroo kidney epithelium (PtK2) cells develop prominent asters and spindles during anaphase B of mitosis. It has been shown that severing the spindle at early anaphase B in living PtK1 cells results in a dramatic increase in the rate of pole-pole separation. This result suggested that the asters pull on the spindle poles, putting tension on the spindle, while the spindle acts as a governor, limiting the rate of pole separation. To further test these inferences, we used a UV-laser microbeam to damage one of the two asters in living PtK2 cells at early anaphase B and monitored the effects on individual spindle pole movements, pole-pole separation rates and astral microtubules (MTs). Irradiation at the estimated position of a centrosome greatly reduced its array of astral MTs and nearly stopped the movement of the irradiated pole, whereas the sister pole retained its normal array of astral MTs and actually accelerated. Control irradiations, either close to the estimated position of the centrosome or beside the spindle at the equator, had little or no effect on either spindle pole movements or astral MTs. These results support the inferences that during anaphase B in living PtK cells, the central spindle is under tension generated by pulling forces in the asters (presumably MT-mediated) and that the spindle generates counterforces that limit the rate of pole separation. The results also suggest that the central spindle in living PtK cells may be able to generate a pushing force.
Collapse
Affiliation(s)
- J R Aist
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853
| | | | | |
Collapse
|
49
|
Cassimeris L. Regulation of microtubule dynamic instability. CELL MOTILITY AND THE CYTOSKELETON 1993; 26:275-81. [PMID: 8299143 DOI: 10.1002/cm.970260402] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Characterization of microtubule assembly in vivo and in vitro has raised questions of how cells regulate dynamic instability. While dynamic instability is an intrinsic property of the tubulin molecule, factors are required to increase the plus-end elongation rate and increase the frequencies of both catastrophe and rescue to achieve cellular tubulin turnover rates. It is likely that the activities of the transition frequency regulators are themselves regulated during the cell cycle, but the mechanisms of regulation are not known. As we identify the proteins which alter microtubule assembly, new classes of MAPs will emerge. An understanding of how these proteins function may provide further insight into how cells organize the different arrays of microtubules used for such processes as vesicle transport, polarized organization of organelles, and chromosome movement.
Collapse
Affiliation(s)
- L Cassimeris
- Department of Molecular Biology, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
50
|
Mitchison TJ, Salmon ED. Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis. J Biophys Biochem Cytol 1992; 119:569-82. [PMID: 1400593 PMCID: PMC2289668 DOI: 10.1083/jcb.119.3.569] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubules in the mitotic spindles of newt lung cells were marked using local photoactivation of fluorescence. The movement of marked segments on kinetochore fibers was tracked by digital fluorescence microscopy in metaphase and anaphase and compared to the rate of chromosome movement. In metaphase, kinetochore oscillations toward and away from the poles were coupled to kinetochore fiber shortening and growth. Marked zones on the kinetochore microtubules, meanwhile, moved slowly polewards at a rate of approximately 0.5 micron/min, which identifies a slow polewards movement, or "flux," of kinetochore microtubules accompanied by depolymerization at the pole, as previously found in PtK2 cells (Mitchison, 1989b). Marks were never seen moving away from the pole, indicating that growth of the kinetochore microtubules occurs only at their kinetochore ends. In anaphase, marked zones on kinetochore microtubules also moved polewards, though at a rate slower than overall kinetochore-to-pole movement. Early in anaphase-A, microtubule depolymerization at kinetochores accounted on average for 75% of the rate of chromosome-to-pole movement, and depolymerization at the pole accounted for 25%. When chromosome-to-pole movement slowed in late anaphase, the contribution of depolymerization at the kinetochores lessened, and flux became the dominant component in some cells. Over the whole course of anaphase-A, depolymerization at kinetochores accounted on average for 63% of kinetochore fiber shortening, and flux for 37%. In some anaphase cells up to 45% of shortening resulted from the action of flux. We conclude that kinetochore microtubules change length predominantly through polymerization and depolymerization at the kinetochores during both metaphase and anaphase as the kinetochores move away from and towards the poles. Depolymerization, though not polymerization, also occurs at the pole during metaphase and anaphase, so that flux contributes to polewards chromosome movements throughout mitosis. Poleward force production for chromosome movements is thus likely to be generated by at least two distinct molecular mechanisms.
Collapse
Affiliation(s)
- T J Mitchison
- Department of Pharmacology, University of California, San Francisco 94143-0450
| | | |
Collapse
|