1
|
Mongiardini EJ, Parisi GD, Quelas JI, Lodeiro AR. The tight-adhesion proteins TadGEF of Bradyrhizobium diazoefficiens USDA 110 are involved in cell adhesion and infectivity on soybean roots. Microbiol Res 2016; 182:80-8. [PMID: 26686616 DOI: 10.1016/j.micres.2015.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/06/2015] [Accepted: 10/10/2015] [Indexed: 01/23/2023]
Abstract
Adhesion of symbiotic bacteria to host plants is an essential early step of the infection process that leads to the beneficial interaction. In the Bradyrhizobium diazoefficiens-soybean symbiosis few molecular determinants of adhesion are known. Here we identified the tight-adhesion gene products TadGEF in the open-reading frames blr3941-blr3943 of the B. diazoefficiens USDA 110 complete genomic sequence. Predicted structure of TadG indicates a transmembrane domain and two extracytosolic domains, from which the C-terminal has an integrin fold. TadE and TadF are also predicted as bearing transmembrane segments. Mutants in tadG or the small cluster tadGEF were impaired in adhesion to soybean roots, and the root infection was delayed. However, nodule histology was not compromised by the mutations, indicating that these effects were restricted to the earliest contact of the B. diazoefficiens and root surfaces. Knowledge of preinfection determinants is important for development of inoculants that are applied to soybean crops worldwide.
Collapse
Affiliation(s)
- Elías J Mongiardini
- Laboratorio de Interacciones entre Rizobios y Soja (LIRyS), IBBM-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL La Plata, Argentina
| | - Gustavo D Parisi
- Unidad de Bioinformática Estructural, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal, Argentina
| | - Juan I Quelas
- Laboratorio de Interacciones entre Rizobios y Soja (LIRyS), IBBM-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL La Plata, Argentina
| | - Aníbal R Lodeiro
- Laboratorio de Interacciones entre Rizobios y Soja (LIRyS), IBBM-Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata y CCT La Plata-CONICET, Calles 47 y 115, B1900AJL La Plata, Argentina.
| |
Collapse
|
2
|
Nigmatullina LR, Lavina AM, Vershinina ZR, Baymiev AK. Role of bacterial adhesin RAPA1 in formation of efficient symbiosis of Rhizobium leguminosarum with bean plants. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715060089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
3
|
Lodeiro AR. [Queries related to the technology of soybean seed inoculation with Bradyrhizobium spp]. Rev Argent Microbiol 2015; 47:261-73. [PMID: 26364183 DOI: 10.1016/j.ram.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 05/29/2015] [Accepted: 06/06/2015] [Indexed: 10/23/2022] Open
Abstract
With the aim of exploiting symbiotic nitrogen fixation, soybean crops are inoculated with selected strains of Bradyrhizobium japonicum, Bradyrhizobium diazoefficiens or Bradyrhizobium elkanii (collectively referred to as Bradyrhizobium spp.). The most common method of inoculation used is seed inoculation, whether performed immediately before sowing or using preinoculated seeds or pretreated seeds by the professional seed treatment. The methodology of inoculation should not only cover the seeds with living rhizobia, but must also optimize the chances of these rhizobia to infect the roots and nodulate. To this end, inoculated rhizobia must be in such an amount and condition that would allow them to overcome the competition exerted by the rhizobia of the allochthonous population of the soil, which are usually less effective for nitrogen fixation and thus dilute the effect of inoculation on yield. This optimization requires solving some queries related to the current knowledge of seed inoculation, which are addressed in this article. I conclude that the aspects that require further research are the adhesion and survival of rhizobia on seeds, the release of rhizobia once the seeds are deposited in the soil, and the movement of rhizobia from the vicinity of the seeds to the infection sites in the roots.
Collapse
Affiliation(s)
- Aníbal R Lodeiro
- Laboratorio de Interacciones entre Rizobios y Soja (LIRyS), IBBM-Facultad de Ciencias Exactas, UNLP y CCT-La Plata CONICET, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Pérez-Giménez J, Lodeiro AR. Two effects of combined nitrogen on the adhesion of Rhizobium etli to bean roots. Symbiosis 2013. [DOI: 10.1007/s13199-013-0229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Liu CT, Lee KB, Wang YS, Peng MH, Lee KT, Suzuki S, Suzuki T, Oyaizu H. Involvement of the azorhizobial chromosome partition gene (parA) in the onset of bacteroid differentiation during Sesbania rostrata stem nodule development. Appl Environ Microbiol 2011; 77:4371-82. [PMID: 21571889 PMCID: PMC3127717 DOI: 10.1128/aem.02327-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/03/2011] [Indexed: 12/17/2022] Open
Abstract
A parA gene in-frame deletion mutant of Azorhizobium caulinodans ORS571 (ORS571-ΔparA) was constructed to evaluate the roles of the chromosome-partitioning gene on various bacterial traits and on the development of stem-positioned nodules. The ΔparA mutant showed a pleiomorphic cell shape phenotype and was polyploid, with differences in nucleoid sizes due to dramatic defects in chromosome partitioning. Upon inoculation of the ΔparA mutant onto the stem of Sesbania rostrata, three types of immature nodule-like structures with impaired nitrogen-fixing activity were generated. Most showed signs of bacteroid early senescence. Moreover, the ΔparA cells within the nodule-like structures exhibited multiple developmental-stage phenotypes. Since the bacA gene has been considered an indicator for bacteroid formation, we applied the expression pattern of bacA as a nodule maturity index in this study. Our data indicate that the bacA gene expression is parA dependent in symbiosis. The presence of the parA gene transcript was inversely correlated with the maturity of nodule; the transcript was switched off in fully mature bacteroids. In summary, our experimental evidence demonstrates that the parA gene not only plays crucial roles in cellular development when the microbe is free-living but also negatively regulates bacteroid formation in S. rostrata stem nodules.
Collapse
Affiliation(s)
- Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, R412, No. 81, Chang-Xing St., Taipei 106, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Lodeiro AR, Lopez-Garcia SL, Vazquez TE, Favelukes G. Erratum to: "Stimulation of adhesiveness, infectivity, and competitiveness for nodulation of bradyrhizobium japonicum by its pretreatment with soybean seed lectin". FEMS Microbiol Lett 2000; 191:157-8. [PMID: 11004414 DOI: 10.1111/j.1574-6968.2000.tb09333.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- AR Lodeiro
- Instituto de Bioquimica y Biologia Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calles 47 y 115 (1900), La Plata, Argentina
| | | | | | | |
Collapse
|
7
|
Lodeiro AR, López-García SL, Vázquez TE, Favelukes G. Stimulation of adhesiveness, infectivity, and competitiveness for nodulation of Bradyrhizobium japonicum by its pretreatment with soybean seed lectin. FEMS Microbiol Lett 2000; 188:177-84. [PMID: 10913702 DOI: 10.1111/j.1574-6968.2000.tb09190.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Soybean seed lectin stimulates adsorption of Bradyrhizobium japonicum to its host roots. Pretreatment of the rhizobia with soybean seed lectin for at least 6-12 h previous to their interaction with the plants was required to detect the stimulatory effect. This activity could be observed with as few as 1000 soybean seed lectin molecules per bacterium, and required specific carbohydrate binding. Infectivity and competitiveness for nodulation were also stimulated by preincubation of the rhizobia either with soybean seed meal extract or soybean seed lectin, the extract being more effective in enhancing competitiveness.
Collapse
Affiliation(s)
- A R Lodeiro
- Instituto de Bioquímica y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calles 47 y 115 (1900), La Plata, Argentina.
| | | | | | | |
Collapse
|
8
|
Kang HC, Ardourel MY, Guérin B, Monsigny M, Delmotte FM. Purification of two lectins from a nopalin Agrobacterium tumefaciens strain. Biochimie 1998; 80:87-94. [PMID: 9587666 DOI: 10.1016/s0300-9084(98)80060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lectins were evidenced on the surface of one Agrobacterium tumefaciens wild strain (82,139) by agglutination test and neoglycoprotein labelling. Bacteria were incubated in the presence of various fluorescein-labelled neoglycoproteins and the binding was assessed by a fluorimetric method. Among the fluorescein-labelled neoglycoproteins tested, the one bearing alpha-D-galactosyl residues was the most efficient. The labelling was optimal at pH 5.0 and naught at pH above 7. The binding was specifically inhibited by homologous fluorescein-free neoglycoproteins. A galactoside-specific lectin was purified to homogeneity by affinity chromatography on agarose-A4 substituted with alpha-D-galactopyranosyl residues. Upon polyacrylamide gel electrophoresis, a single band (M(r) 58,000) was detected. This alpha-D-galactoside-specific lectin agglutinated preferentially human B red blood cells at pH 5.0. Another lectin specific for alpha-L-rhamnoside (M(r) 40,000) not retained on the immobilised galactose was purified by affinity chromatography on alpha-L-rhamnosyl substituted agarose-A4. This L-rhamnoside-specific lectin preferentially agglutinated horse erythrocytes. On the basis of their M(r) and on their sugar specificity, these two lectins are novel lectins with regard to the known sugar-binding proteins present in the Rhizobiaceae family: Agrobacterium, Rhizobium or Bradyrhizobium strains.
Collapse
Affiliation(s)
- H C Kang
- Glycobiologie, Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Orléans, France
| | | | | | | | | |
Collapse
|
9
|
|
10
|
Vanderleyden J. Surface Properties and Motility of Rhizobium and Azospirillum in Relation to Plant Root Attachment. MICROBIAL ECOLOGY 1996; 32:149-169. [PMID: 8688006 DOI: 10.1007/bf00185885] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant growth promotion by rhizobacteria is a widely spread phenomenon. However only a few rhizobacteria have been studied thoroughly. Rhizobium is the best-studied rhizobacterium. It forms a symbiosis with a restricted host range. Azospirillum is another plant-growth-promoting rhizobacterium which forms rhizocoenoses with a wide range of plants. In both bacteria, the interaction with the plant involves the attraction toward the host plant and the attachment to the surface of the root. Both bacteria are attracted to plant roots, but differ in specificity. Attachment to plant roots occurs in two steps for both bacteria: a quick, reversible adsorption, and a slow, irreversible anchoring to the plant root surface. However, for the two systems under study, the bacterial surface molecules involved in plant root attachment are not necessarily the same.
Collapse
|
11
|
Wisniewski JP, Delmotte FM. Modulation of carbohydrate-binding capacities and attachment ability of Bradyrhizobium sp. (lupinus) to white lupin roots. Can J Microbiol 1996; 42:234-42. [PMID: 8868230 DOI: 10.1139/m96-035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The attachment of Bradyrhizobium sp. (Lupinus) strain MSDJ718 to excised roots of white lupin was examined. Maximal attachment occurred at early to middle log phases of bacterial growth. This binding was pH dependent, with an optimal value reached at 6.6. Irrespective of the culture age, the attachment was strongly affected by the calcium concentration of the growth medium: a Ca2+ limitation in the Bergersen medium led to optimal attachment of the bacteria. When L-fucose was added during the attachment assay, a significant inhibition was observed. The binding was stimulated when bacteria were cultivated with lupin root extracts, genistein and genistin (two lupin isoflavonoids), and some monosaccharides. In addition, with a spectrofluorimetric method using fluoresceinylated neoglycoproteins, it was shown that the increase of the attachment of bacteria to host cells was correlated to the increase of the L-fucoside binding capacity of the rhizobial cells. Taken together, the results obtained in the present study evidenced a possible role of the L-fucose specific bacterial lectin previously described in the Rhizobium-lupin host cell recognition.
Collapse
Affiliation(s)
- J P Wisniewski
- Centre national de la recherche scientifique, Orléans, France
| | | |
Collapse
|
12
|
Abstract
Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes; they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in our knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants.
Collapse
Affiliation(s)
- S G Pueppke
- Department of Plant Pathology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Abstract
Rhizobium, Bradyrhizobium, and Azorhizobium species are able to elicit the formation of unique structures, called nodules, on the roots or stems of the leguminous host. In these nodules, the rhizobia convert atmospheric N2 into ammonia for the plant. To establish this symbiosis, signals are produced early in the interaction between plant and rhizobia and they elicit discrete responses by the two symbiotic partners. First, transcription of the bacterial nodulation (nod) genes is under control of the NodD regulatory protein, which is activated by specific plant signals, flavonoids, present in the root exudates. In return, the nod-encoded enzymes are involved in the synthesis and excretion of specific lipooligosaccharides, which are able to trigger on the host plant the organogenic program leading to the formation of nodules. An overview of the organization, regulation, and function of the nod genes and their participation in the determination of the host specificity is presented.
Collapse
Affiliation(s)
- P van Rhijn
- F.A. Janssens Laboratory of Genetics, KU Leuven, Heverlee, Belgium
| | | |
Collapse
|
14
|
Loh JT, Ho SC, Wang JL, Schindler M. Carbohydrate binding activities of Bradyrhizobium japonicum: IV. Effect of lactose and flavones on the expression of the lectin, BJ38. Glycoconj J 1994; 11:363-70. [PMID: 7873932 DOI: 10.1007/bf00731210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BJ38 is a galactose/lactose-specific lectin (M(r) approximately 38,000) found at one pole of Bradyrhizobium japonicum. It has been implicated in mediating the adhesion of the bacteria to soybean roots, leading to the establishment of a nitrogen-fixing symbiosis. When the ligand lactose is added to cultures of the bacteria for at least 1 h prior to harvesting the cells for BJ38 isolation, the yield of the protein was found to be elevated in a dose-dependent fashion. Half maximal stimulation was observed at approximately 50 microM; the effect was saturated at approximately 1 mM, where a 10-fold higher yield of BJ38 was obtained. Saccharides with a lower affinity for BJ38 than lactose yielded a correspondingly smaller induction effect when compared at a concentration of 1 mM. The higher level of BJ38 induced by lactose is also manifested by an elevated amount of BJ38 detectable at the cell surface and by a higher number of B. japonicum cells adsorbed onto soybean cells. Surprisingly, the induction of BJ38 expression seen with lactose was also observed with certain, but not all, flavonoids that induce the nod genes of the bacteria; genistein mimicked the induction observed with lactose, whereas luteolin failed to stimulate BJ38 production.
Collapse
Affiliation(s)
- J T Loh
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | | | |
Collapse
|
15
|
Wisniewski JP, Monsigny M, Delmotte FM. Purification of an alpha-L-fucoside-binding protein from Rhizobium lupini. Biochimie 1994; 76:121-8. [PMID: 8043647 DOI: 10.1016/0300-9084(94)90003-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Lectins associated with the bacterial cell surface of Rhizobium lupini strain LL13 were evidenced by erythrocyte agglutination, by aggregation of neoglycoprotein coated beads and by spectrofluorimetry using fluoresceinylated neoglycoproteins. At pH 5.0, a specific binding of the fluorescein-labelled neoglycoprotein bearing alpha-L-fucose was observed. The binding of this labelled neoglycoprotein is a saturable phenomenon and is inhibited by the same unlabelled neoglycoprotein. Extracts of R lupini obtained by disrupting a bacterial pellet through a French press were stabilized at pH 5.6 by gel filtration and purified to homogeneity by affinity chromatography on Agarose A4 substituted with alpha-L-fucose. A protein with a M(r) approximately 19,000 was specifically eluted from this affinity column with L-fucose. Isoelectric focusing of this sample yielded a single band with pI near 6.7. This protein specifically aggregated L-Fuc-BSA-coated microspheres. The results obtained in the present study indicate that we have purified from Rhizobium lupini strain LL13, a L-fucose binding protein as a lectin.
Collapse
Affiliation(s)
- J P Wisniewski
- Laboratoire des Glycoconjugués et des Lectines Endogènes, CNRS, Orléans, France
| | | | | |
Collapse
|
16
|
Abstract
The recognition of polar bacterial organization is just emerging. The examples of polar localization given here are from a variety of bacterial species and concern a disparate array of cellular functions. A number of well-characterized instances of polar localization of bacterial proteins, including the chemoreceptor complex in both C. crescentus and E. coli, the maltose-binding protein in E. coli, the B. japonicum surface attachment proteins, and the actin tail of L. monocytogenes within a mammalian cell, involve proteins or protein complexes that facilitate bacterial interaction with the environment, either the extracellular milieux or that within a plant or mammalian host. The significance of this observation remains unclear. Polarity in bacteria poses many problems, including the necessity for a mechanism for asymmetrically distributing proteins as well as a mechanism by which polar localization is maintained. Large structures, such as a flagellum, are anchored at the pole by means of the basal body that traverses the peptidoglycan wall. But for proteins and small complexes, whether in the periplasm or the membrane, one must invoke a mechanism that prevents the diffusion of these proteins away from the cell pole. Perhaps the periplasmic proteins are retained at the pole by the presence of the periseptal annulus (35). The constraining features for membrane components are not known. For large aggregates, such as the clusters of MCP, CheA, and CheW complexes, perhaps the size of the aggregate alone prevents displacement. In most cases of cellular asymmetry, bacteria are able to discriminate between the new pole and the old pole and to utilize this information for localization specificity. The maturation of new pole to old pole appears to be a common theme as well. Given numerous examples reported thus far, we propose that bacterial polarity displays specific rules and is a more general phenomenon than has been previously recognized.
Collapse
Affiliation(s)
- J R Maddock
- Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, California 94305-5427
| | | | | |
Collapse
|
17
|
Loh JT, Ho SC, de Feijter AW, Wang JL, Schindler M. Carbohydrate binding activities of Bradyrhizobium japonicum: unipolar localization of the lectin BJ38 on the bacterial cell surface. Proc Natl Acad Sci U S A 1993; 90:3033-7. [PMID: 8464919 PMCID: PMC46231 DOI: 10.1073/pnas.90.7.3033] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A polyclonal antiserum generated against the Bradyrhizobium japonicum lectin BJ38 was characterized to be specifically directed against the protein. Treatment of B. japonicum cells with this antiserum and subsequent visualization with transmission electron microscopy and both conventional and confocal fluorescence microscopy revealed BJ38 at only one pole of the bacterium. BJ38 appeared to be organized in a tuft-like mass, separated from the bacterial outer membrane. BJ38 localization was coincident with the attachment site for (i) homotypic agglutination to other B. japonicum cells, (ii) adhesion to the cultured soybean cell line SB-1, and (iii) adsorption to Sepharose beads covalently derivatized with lactose. In contrast, the plant lectin soybean agglutinin labeled the bacteria at the pole distant from the bacterial attachment site. These results indicate that the topological distribution of BJ38 is consistent with a suggested role for this bacterial lectin in the polar binding of B. japonicum to other cells and surfaces.
Collapse
Affiliation(s)
- J T Loh
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | | | | | |
Collapse
|
18
|
Abstract
This review focuses on the functions of nodulation (nod) genes in the interaction between rhizobia and legumes. The nod genes are the key bacterial determinants of the signal exchange between the two symbiotic partners. The product of the nodD gene is a transcriptional activator protein that functions as receptor for a flavonoid plant compound. This signaling induces the expression of a set of nod genes that produces several related Nod factors, substituted lipooligosaccharides. The Nod factors are then excreted and serve as signals sent from the bacterium to the plant. The plant responds with the development of a root nodule. The plant-derived flavonoid, as well as the rhizobial signal, must have distinct chemical structures which guarantee that only matching partners are brought together.
Collapse
Affiliation(s)
- M Göttfert
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule Zürich, Switzerland
| |
Collapse
|
19
|
Smit G, Swart S, Lugtenberg BJ, Kijne JW. Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol Microbiol 1992; 6:2897-903. [PMID: 1479881 DOI: 10.1111/j.1365-2958.1992.tb01748.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Attachment of bacteria to plant cells is one of the earliest steps in many plant-bacterium interactions. This review covers the current knowledge on one of the best-studied examples of bacterium-plant attachment, namely the molecular mechanism by which Rhizobium bacteria adhere to plant roots. Despite differences in several studies with regard to growth conditions of bacteria and plants and to methods used for measuring attachment, an overall consensus can be drawn from the available data. Rhizobial attachment to plant root hairs appears to be a two-step process. A bacterial Ca(2+)-binding protein, designated as rhicadhesin, is involved in direct attachment of bacteria to the surface of the root hair cell. Besides this step, there is another step which results mainly in accumulation and anchoring of the bacteria to the surface of the root hair. This leads to so-called firm attachment. Depending on the growth conditions of the bacteria, the latter step is mediated by plant lectins and/or by bacterial appendages such as cellulose fibrils and fimbriae. The possible role of these adhesions in root nodule formation is discussed.
Collapse
Affiliation(s)
- G Smit
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
20
|
Smit G, Tubbing DMJ, Kijne JW, Lugtenberg BJJ. Role of Ca2+ in the activity of rhicadhesin from Rhizobium leguminosarum biovar viciae, which mediates the first step in attachment of Rhizobiaceae cells to plant root hair tips. Arch Microbiol 1991. [DOI: 10.1007/bf00252212] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Ho SC, Wang JL, Schindler M. Carbohydrate binding activities of Bradyrhizobium japonicum. I. Saccharide-specific inhibition of homotypic and heterotypic adhesion. J Cell Biol 1990; 111:1631-8. [PMID: 2211829 PMCID: PMC2116252 DOI: 10.1083/jcb.111.4.1631] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bradyrhizobium japonicum (R110d) exhibited four saccharide-specific binding activities: (a) adsorption to Sepharose beads containing covalently coupled lactose; (b) homotypic agglutination through one pole of the cell (star formation); (c) heterotypic adhesion to the cultured soybean cell line, SB-1; and (d) attachment to roots of soybean plants. Each of these binding activities can be inhibited by the addition of galactose or lactose, but not by derivatives such as N-acetyl-D-galactosamine or melibiose. Treatment of wild-type bacteria with N-methyl-N'-nitro-N-nitrosoguanidine followed by selection on the basis of reduced binding to SB-1 cells, resulted in two specific mutants, designated N4 and N6. Compared to wild type, these two mutants also exhibited decreased binding activity in: (a) adsorption to lactose-Sepharose beads; (b) homotypic star formation; and (c) heterotypic attachment to roots of soybeans plants. These results suggest that all four of the saccharide-inhibitable binding activities of Bradyrhizobium japonicum may be mediated by the same mechanism(s) or molecular component(s).
Collapse
Affiliation(s)
- S C Ho
- Department of Biochemistry, Michigan State University, East Lansing 48824
| | | | | |
Collapse
|