1
|
Tamura K, Ueda H, Hara-Nishimura I. In vitro assembly of nuclear envelope in tobacco cultured cells. Nucleus 2021; 12:82-89. [PMID: 34030583 PMCID: PMC8158034 DOI: 10.1080/19491034.2021.1930681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
The coordinated regulation of the nucelar envelope (NE) reassembly during cell division is an essential event. However, there is little information on the molecular components involved in NE assembly in plant cells. Here we developed an in vitro assay of NE assembly using tobacco BY-2 cultured cells. To start the NE assembly reaction, the demembranated nuclei and the S12 fraction (cytosol and microsomes) were mixed in the presence of GTP and ATP nucleotides. Time-course analysis indicated that tubule structures were extended from the microsomal vesicles that accumulated on the demembranated nuclei, and finally sealed the NE. Immunofluorescence confirmed that the assembled membrane contains a component of nuclear pore complex. The efficiency of the NE assembly is significantly inhibited by GTPγS that suppresses membrane fusion. This in-vitro assay system may elucidate the role of specific proteins and provide important insights into the molecular machinery of NE assembly in plant cells.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Environmental and Life Sciences, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Haruko Ueda
- Faculty of Science and Engineering, Konan University, Kobe, Japan
| | | |
Collapse
|
2
|
Schellhaus AK, De Magistris P, Antonin W. Nuclear Reformation at the End of Mitosis. J Mol Biol 2015; 428:1962-85. [PMID: 26423234 DOI: 10.1016/j.jmb.2015.09.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 09/19/2015] [Indexed: 12/17/2022]
Abstract
Cells have developed highly sophisticated ways to accurately pass on their genetic information to the daughter cells. In animal cells, which undergo open mitosis, the nuclear envelope breaks down at the beginning of mitosis and the chromatin massively condenses to be captured and segregated by the mitotic spindle. These events have to be reverted in order to allow the reformation of a nucleus competent for DNA transcription and replication, as well as all other nuclear processes occurring in interphase. Here, we summarize our current knowledge of how, in animal cells, the highly compacted mitotic chromosomes are decondensed at the end of mitosis and how a nuclear envelope, including functional nuclear pore complexes, reassembles around these decondensing chromosomes.
Collapse
Affiliation(s)
| | - Paola De Magistris
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany
| | - Wolfram Antonin
- Friedrich Miescher Laboratory of the Max Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Bernis C, Swift-Taylor B, Nord M, Carmona S, Chook YM, Forbes DJ. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration. Mol Biol Cell 2014; 25:992-1009. [PMID: 24478460 PMCID: PMC3967982 DOI: 10.1091/mbc.e13-08-0506] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transportin-specific molecular tools are used to show that the mitotic cell contains importin β and transportin “global positioning system” pathways that are mechanistically parallel. Transportin works to control where the spindle, nuclear membrane, and nuclear pores are formed by directly affecting assembly factor function. The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel.
Collapse
Affiliation(s)
- Cyril Bernis
- Section of Cell and Developmental Biology, Division of Biological Sciences 0347, University of California-San Diego, La Jolla, CA 92093-0347 Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | | | | | | | | | | |
Collapse
|
4
|
Bernis C, Forbes DJ. Analysis of nuclear reconstitution, nuclear envelope assembly, and nuclear pore assembly using Xenopus in vitro assays. Methods Cell Biol 2014; 122:165-91. [PMID: 24857730 DOI: 10.1016/b978-0-12-417160-2.00008-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The large and complex eukaryotic nucleus is the arbiter of DNA replication, RNA transcription, splicing, and ribosome assembly. With the advent of in vitro nuclear reconstitution extracts derived from Xenopus eggs in the 1980s, it became possible to assemble multiple nuclei in vitro around added DNA or chromatin substrates. Such reconstituted nuclei contain a nuclear lamina, double nuclear membranes, nuclear pores, and are competent for DNA replication and nuclear import. In vitro nuclear reconstitution has allowed the assembly of "wild-type" and "biochemically mutant" nuclei in which the impact of individual components can be assessed. Here, we describe protocols for preparation of the nuclear reconstitution extract, nuclear reconstitution in vitro, assessment of nuclear membrane integrity, and a more specialized assay for nuclear pore assembly into preformed pore-free nuclear intermediates.
Collapse
Affiliation(s)
- Cyril Bernis
- Cell and Developmental Biology, University of California, San Diego, California, USA
| | - Douglass J Forbes
- Cell and Developmental Biology, University of California, San Diego, California, USA
| |
Collapse
|
5
|
Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation. Chromosoma 2012; 121:539-54. [PMID: 23104094 PMCID: PMC3501164 DOI: 10.1007/s00412-012-0388-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 12/01/2022]
Abstract
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.
Collapse
|
6
|
Dynamic assembly of brambleberry mediates nuclear envelope fusion during early development. Cell 2012; 150:521-32. [PMID: 22863006 DOI: 10.1016/j.cell.2012.05.048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 05/16/2012] [Accepted: 05/18/2012] [Indexed: 12/25/2022]
Abstract
To accommodate the large cells following zygote formation, early blastomeres employ modified cell divisions. Karyomeres are one such modification, mitotic intermediates wherein individual chromatin masses are surrounded by nuclear envelope; the karyomeres then fuse to form a single mononucleus. We identified brambleberry, a maternal-effect zebrafish mutant that disrupts karyomere fusion, resulting in formation of multiple micronuclei. As karyomeres form, Brambleberry protein localizes to the nuclear envelope, with prominent puncta evident near karyomere-karyomere interfaces corresponding to membrane fusion sites. brambleberry corresponds to an unannotated gene with similarity to Kar5p, a protein that participates in nuclear fusion in yeast. We also demonstrate that Brambleberry is required for pronuclear fusion following fertilization in zebrafish. Our studies provide insight into the machinery required for karyomere fusion and suggest that specialized proteins are necessary for proper nuclear division in large dividing blastomeres.
Collapse
|
7
|
Symens N, Walczak R, Demeester J, Mattaj I, De Smedt SC, Remaut K. Nuclear inclusion of nontargeted and chromatin-targeted polystyrene beads and plasmid DNA containing nanoparticles. Mol Pharm 2011; 8:1757-66. [PMID: 21859089 DOI: 10.1021/mp200120v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclear membrane is one of the major cellular barriers in the delivery of plasmid DNA (pDNA). Cell division has a positive influence on the expression efficiency since, at the end of mitosis, pDNA or pDNA containing complexes near the chromatin are probably included by a random process in the nuclei of the daughter cells. However, very little is known about the nuclear inclusion of nanoparticles during cell division. Using the Xenopus nuclear envelope reassembly (XNER) assay, we found that the nuclear enclosure of nanoparticles was dependent on size (with 100 and 200 nm particles being better included than the 500 nm ones) and charge (with positively charged particles being better included than negatively charged or polyethyleneglycolated (PEGylated) ones) of the beads. Also, coupling chromatin-targeting peptides to the polystyrene beads or pDNA complexes improved their inclusion by 2- to 3-fold. Upon microinjection in living HeLa cells, however, nanoparticles were never observed in the nuclei of cells postdivision but accumulated in a specific perinuclear region, which was identified as the lysosomal compartment. This indicates that nanoparticles can end up in the lysosomes even when they were not delivered through endocytosis. To elucidate if the chromatin binding peptides also have potential in living cells, this additional barrier first has to be tackled, since it prevents free particles from being present near the chromatin at the moment of cell division.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Lavoie C, Roy L, Lanoix J, Taheri M, Young R, Thibault G, Farah CA, Leclerc N, Paiement J. Taking organelles apart, putting them back together and creating new ones: lessons from the endoplasmic reticulum. ACTA ACUST UNITED AC 2011; 46:1-48. [PMID: 21536318 DOI: 10.1016/j.proghi.2011.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2011] [Indexed: 12/11/2022]
Abstract
The endoplasmic reticulum (ER) is a highly dynamic organelle. It is composed of four subcompartments including nuclear envelope (NE), rough ER (rER), smooth ER (sER) and transitional ER (tER). The subcompartments are interconnected, can fragment and dissociate and are able to reassemble again. They coordinate with cell function by way of protein regulators in the surrounding cytosol. The activity of the many associated molecular machines of the ER as well as the fluid nature of the limiting membrane of the ER contribute extensively to the dynamics of the ER. This review examines the properties of the ER that permit its isolation and purification and the physiological conditions that permit reconstitution both in vitro and in vivo in normal and in disease conditions.
Collapse
Affiliation(s)
- Christine Lavoie
- Département de pharmacologie, Faculté de médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fichtman B, Ramos C, Rasala B, Harel A, Forbes DJ. Inner/Outer nuclear membrane fusion in nuclear pore assembly: biochemical demonstration and molecular analysis. Mol Biol Cell 2010; 21:4197-211. [PMID: 20926687 PMCID: PMC2993748 DOI: 10.1091/mbc.e10-04-0309] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear pore complexes (NPCs) are large proteinaceous channels embedded in double nuclear membranes, which carry out nucleocytoplasmic exchange. The mechanism of nuclear pore assembly involves a unique challenge, as it requires creation of a long-lived membrane-lined channel connecting the inner and outer nuclear membranes. This stabilized membrane channel has little evolutionary precedent. Here we mapped inner/outer nuclear membrane fusion in NPC assembly biochemically by using novel assembly intermediates and membrane fusion inhibitors. Incubation of a Xenopus in vitro nuclear assembly system at 14°C revealed an early pore intermediate where nucleoporin subunits POM121 and the Nup107-160 complex were organized in a punctate pattern on the inner nuclear membrane. With time, this intermediate progressed to diffusion channel formation and finally to complete nuclear pore assembly. Correct channel formation was blocked by the hemifusion inhibitor lysophosphatidylcholine (LPC), but not if a complementary-shaped lipid, oleic acid (OA), was simultaneously added, as determined with a novel fluorescent dextran-quenching assay. Importantly, recruitment of the bulk of FG nucleoporins, characteristic of mature nuclear pores, was not observed before diffusion channel formation and was prevented by LPC or OA, but not by LPC+OA. These results map the crucial inner/outer nuclear membrane fusion event of NPC assembly downstream of POM121/Nup107-160 complex interaction and upstream or at the time of FG nucleoporin recruitment.
Collapse
Affiliation(s)
- Boris Fichtman
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | |
Collapse
|
10
|
Rafikova ER, Melikov K, Ramos C, Dye L, Chernomordik LV. Transmembrane protein-free membranes fuse into xenopus nuclear envelope and promote assembly of functional pores. J Biol Chem 2009; 284:29847-59. [PMID: 19696024 PMCID: PMC2785615 DOI: 10.1074/jbc.m109.044453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/17/2009] [Indexed: 11/06/2022] Open
Abstract
Post-mitotic reassembly of nuclear envelope (NE) and the endoplasmic reticulum (ER) has been reconstituted in a cell-free system based on interphase Xenopus egg extract. To evaluate the relative contributions of cytosolic and transmembrane proteins in NE and ER assembly, we replaced a part of native membrane vesicles with ones either functionally impaired by trypsin or N-ethylmaleimide treatments or with protein-free liposomes. Although neither impaired membrane vesicles nor liposomes formed ER and nuclear membrane, they both supported assembly reactions by fusing with native membrane vesicles. At membrane concentrations insufficient to generate full-sized functional nuclei, addition of liposomes and their fusion with membrane vesicles resulted in an extensive expansion of NE, further chromatin decondensation, restoration of the functionality, and spatial distribution of the nuclear pore complexes (NPCs), and, absent newly delivered transmembrane proteins, an increase in NPC numbers. This rescue of the nuclear assembly by liposomes was inhibited by wheat germ agglutinin and thus required active nuclear transport, similarly to the assembly of full-sized functional NE with membrane vesicles. Mechanism of fusion between liposomes and between liposomes and membrane vesicles was investigated using lipid mixing assay. This fusion required interphase cytosol and, like fusion between native membrane vesicles, was inhibited by guanosine 5'-3-O-(thio)triphosphate, soluble N-ethylmaleimide-sensitive factor attachment protein, and N-ethylmaleimide. Our findings suggest that interphase cytosol contains proteins that mediate the fusion stage of ER and NE reassembly, emphasize an unexpected tolerance of nucleus assembly to changes in concentrations of transmembrane proteins, and reveal the existence of a feedback mechanism that couples NE expansion with NPC assembly.
Collapse
Affiliation(s)
- Elvira R. Rafikova
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Kamran Melikov
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Corinne Ramos
- the Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0347, and
| | - Louis Dye
- the Microscopy and Imaging Core, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| | - Leonid V. Chernomordik
- From the Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892-1855
| |
Collapse
|
11
|
Lau CK, Delmar VA, Chan RC, Phung Q, Bernis C, Fichtman B, Rasala BA, Forbes DJ. Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly. Mol Biol Cell 2009; 20:4043-58. [PMID: 19641022 DOI: 10.1091/mbc.e09-02-0152] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin-and importin beta-initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events.
Collapse
Affiliation(s)
- Corine K Lau
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Anderson DJ, Hetzer MW. Shaping the endoplasmic reticulum into the nuclear envelope. J Cell Sci 2008; 121:137-42. [PMID: 18187447 DOI: 10.1242/jcs.005777] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nuclear envelope (NE), a double membrane enclosing the nucleus of eukaryotic cells, controls the flow of information between the nucleoplasm and the cytoplasm and provides a scaffold for the organization of chromatin and the cytoskeleton. In dividing metazoan cells, the NE breaks down at the onset of mitosis and then reforms around segregated chromosomes to generate the daughter nuclei. Recent data from intact cells and cell-free nuclear assembly systems suggest that the endoplasmic reticulum (ER) is the source of membrane for NE assembly. At the end of mitosis, ER membrane tubules are targeted to chromatin via tubule ends and reorganized into flat nuclear membrane sheets by specific DNA-binding membrane proteins. In contrast to previous models, which proposed vesicle fusion to be the principal mechanism of NE formation, these new studies suggest that the nuclear membrane forms by the chromatin-mediated reshaping of the ER.
Collapse
Affiliation(s)
- Daniel J Anderson
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
13
|
Baur T, Ramadan K, Schlundt A, Kartenbeck J, Meyer HH. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts. J Cell Sci 2007; 120:2895-903. [PMID: 17666429 DOI: 10.1242/jcs.010181] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.
Collapse
Affiliation(s)
- Tina Baur
- Institute of Biochemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Ito H, Koyama Y, Takano M, Ishii K, Maeno M, Furukawa K, Horigome T. Nuclear envelope precursor vesicle targeting to chromatin is stimulated by protein phosphatase 1 in Xenopus egg extracts. Exp Cell Res 2007; 313:1897-910. [PMID: 17448463 DOI: 10.1016/j.yexcr.2007.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 03/08/2007] [Accepted: 03/15/2007] [Indexed: 10/23/2022]
Abstract
The mechanism underlying targeting of the nuclear membrane to chromatin at the end of mitosis was studied using an in vitro cell-free system comprising Xenopus egg membrane and cytosol fractions, and sperm chromatin. The mitotic phase membrane, which was separated from a mitotic phase extract of Xenopus eggs and could not bind to chromatin, became able to bind to chromatin on pretreatment with a synthetic phase cytosol fraction of Xenopus eggs. When the cytosol fraction was depleted of protein phosphatase 1 (PP1) with anti-Xenopus PP1gamma1 antibodies, this ability was lost. The addition of recombinant xPP1gamma1 to the PP1-depleted cytosol fraction restored the ability. These and other results suggested that dephosphorylation of mitotic phosphorylation sites on membranes by PP1 in the synthetic phase cytosol fraction promoted targeting of the membranes to chromatin. On the other hand, a fragment containing the chromatin-binding domain of lamin B receptor (LBR) but not emerin inhibited targeting of membrane vesicles. It was also shown that PP1 dephosphorylates a phosphate group(s) responsible for regulation of the binding of LBR to chromatin. A possible mechanism involving PP1 and LBR for the regulation of nuclear membrane targeting to chromatin was discussed.
Collapse
Affiliation(s)
- Hiromi Ito
- Courses of Fundamental Sciences, Graduate School of Science and Technology, Niigata University, Igarashi-2, Niigata 950-2181, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Ramos C, Rafikova E, Melikov K, Chernomordik L. Transmembrane proteins are not required for early stages of nuclear envelope assembly. Biochem J 2006; 400:393-400. [PMID: 16953799 PMCID: PMC1698605 DOI: 10.1042/bj20061218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
All identified membrane fusion proteins are transmembrane proteins. In the present study, we explored the post-mitotic reassembly of the NE (nuclear envelope). The proteins that drive membrane rearrangements in NE assembly remain unknown. To determine whether transmembrane proteins are prerequisite components of this fusion machinery, we have focused on nuclear reconstitution in a cell-free system. Mixing of soluble interphase cytosolic extract and MV (membrane vesicles) from amphibian eggs with chromatin results in the formation of functional nuclei. We replaced MV and cytosol with protein-free phosphatidylcholine LS (liposomes) that were pre-incubated with interphase cytosol. While later stages of NE assembly yielding functional nucleus did not proceed without integral proteins of MV, LS-associated cytosolic proteins were sufficient to reconstitute membrane targeting to the chromatin and GTP-dependent lipid mixing. Binding involved LS-associated A-type lamin, and fusion involved Ran GTPase. Thus in contrast with post-fusion stages, fusion initiation in NE assembly, like membrane remodelling in budding and fission, does not require transmembrane proteins.
Collapse
Affiliation(s)
- Corinne Ramos
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, U.S.A
| | - Elvira R. Rafikova
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, U.S.A
| | - Kamran Melikov
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, U.S.A
| | - Leonid V. Chernomordik
- Section on Membrane Biology, Laboratory of Cellular and Molecular Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1855, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Estrada de Martin P, Novick P, Ferro-Novick S. The organization, structure, and inheritance of the ER in higher and lower eukaryotes. Biochem Cell Biol 2006; 83:752-61. [PMID: 16333327 DOI: 10.1139/o05-159] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The endoplasmic reticulum (ER) is a fundamental organelle required for protein assembly, lipid biosynthesis, and vesicular traffic, as well as calcium storage and the controlled release of calcium from the ER lumen into the cytosol. Membranes functionally linked to the ER by vesicle-mediated transport, such as the Golgi complex, endosomes, vacuoles-lysosomes, secretory vesicles, and the plasma membrane, originate largely from proteins and lipids synthesized in the ER. In this review we will discuss the structural organization of the ER and its inheritance.
Collapse
Affiliation(s)
- Paula Estrada de Martin
- Department of Cell Biology, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT 06519, USA
| | | | | |
Collapse
|
18
|
Abstract
The endoplasmic reticulum (ER) consists of a polygonal array of interconnected tubules and sheets that spreads throughout the eukaryotic cell and is contiguous with the nuclear envelope. This elaborate structure is created and maintained by a constant remodeling process that involves the formation of new tubules, their cytoskeletal transport and homotypic fusion. Since the ER is a large, single-copy organelle, it must be actively segregated into daughter cells during cell division. Recent analysis in budding yeast indicates that ER inheritance involves the polarized transport of cytoplasmic ER tubules into newly formed buds along actin cables by a type V myosin. The tubules then become anchored to a site at the bud tip and this requires the Sec3p subunit of the exocyst complex. The ER is then propagated along the cortex of the bud to yield a cortical ER structure similar to that of the mother cell. In animal cells, the ER moves predominantly along microtubules, whereas actin fibers serve a complementary role. It is not yet clear to what extent the other components controlling ER distribution in yeast might be conserved in animal cells.
Collapse
Affiliation(s)
- Yunrui Du
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | | | | |
Collapse
|
19
|
Hetzer MW, Walther TC, Mattaj IW. PUSHING THE ENVELOPE: Structure, Function, and Dynamics of the Nuclear Periphery. Annu Rev Cell Dev Biol 2005; 21:347-80. [PMID: 16212499 DOI: 10.1146/annurev.cellbio.21.090704.151152] [Citation(s) in RCA: 253] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear envelope (NE) is a highly specialized membrane that delineates the eukaryotic cell nucleus. It is composed of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) and, in metazoa, the lamina. The NE not only regulates the trafficking of macromolecules between nucleoplasm and cytosol but also provides anchoring sites for chromatin and the cytoskeleton. Through these interactions, the NE helps position the nucleus within the cell and chromosomes within the nucleus, thereby regulating the expression of certain genes. The NE is not static, rather it is continuously remodeled during cell division. The most dramatic example of NE reorganization occurs during mitosis in metazoa when the NE undergoes a complete cycle of disassembly and reformation. Despite the importance of the NE for eukaryotic cell life, relatively little is known about its biogenesis or many of its functions. We thus are far from understanding the molecular etiology of a diverse group of NE-associated diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
20
|
Marchetti F, Bishop JB, Cosentino L, Moore D, Wyrobek AJ. Paternally Transmitted Chromosomal Aberrations in Mouse Zygotes Determine Their Embryonic Fate1. Biol Reprod 2004; 70:616-24. [PMID: 14585809 DOI: 10.1095/biolreprod.103.023044] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The developmental consequences of chromosomal aberrations in embryos include spontaneous abortions, morphological defects, inborn abnormalities, and genetic/chromosomal diseases. Six germ-cell mutagens with different modes of action and spermatogenic stage sensitivities were used to investigate the relationship between the types of cytogenetic damage in zygotes with their subsequent risk of postimplantation death and of birth as a translocation carrier. Independent of the mutagen used, over 98% of paternally transmitted aberrations were chromosome type, rather than chromatid type, indicating that they were formed during the period between exposure of male germ cells and initiation of the first S phase after fertilization. There were consistent one-to-one agreements between the proportions of a) zygotes with unstable aberrations and the frequencies of dead embryos after implantation (slope = 0.87, confidence interval [CI]: 0.74, 1.16) and b) zygotes with reciprocal translocations and the frequency of translocation carriers at birth (slope = 0.74, CI: 0.48, 2.11). These findings suggest that chromosomal aberrations in zygotes are highly predictive of subsequent abnormal embryonic development and that development appears to proceed to implantation regardless of the presence of chromosomal abnormalities. Our findings support the hypothesis that, for paternally transmitted chromosomal aberrations, the fate of the embryo is already set by the end of G1 of the first cell cycle of development.
Collapse
Affiliation(s)
- Francesco Marchetti
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, California 94550, USA.
| | | | | | | | | |
Collapse
|
21
|
Gerace L, Foisner R. Integral membrane proteins and dynamic organization of the nuclear envelope. Trends Cell Biol 2004; 4:127-31. [PMID: 14731735 DOI: 10.1016/0962-8924(94)90067-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nuclear envelope is a complex structure consisting of nuclear membranes, nuclear pore complexes and lamina. Several integral membrane proteins specific to the nuclear pore membrane and the inner nuclear membrane are known. Pore membrane proteins are probably important for organization and assembly of the nuclear pore complex, while proteins of the inner nuclear membrane are likely to play major roles in the structure and dynamics of the nuclear lamina and chromatin. Biochemical studies are now identifying potential binding partners for some of these integral membrane proteins, and analysis of nuclear envelope assembly at the end of mitosis is providing important insights into their functions.
Collapse
Affiliation(s)
- L Gerace
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
22
|
Marchetti F, Wyrobek AJ. PAINT/DAPI analysis of mouse zygotes to detect paternally transmitted chromosomal aberrations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 518:131-45. [PMID: 12817682 DOI: 10.1007/978-1-4419-9190-4_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- Francesco Marchetti
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | | |
Collapse
|
23
|
The microtubule aster formation and its role in nuclear envelope assembly around the sperm chromatin inXenopus egg extracts. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03183977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Abstract
Nuclear pore complexes (NPCs) are large proteinaceous assemblies that provide the only known portals for exchanging macromolecules between the nucleus and cytoplasm. This includes the movement of small molecules and the selective, facilitated transport of large proteins and RNAs. Faithful, continuous NPC assembly is key for maintaining normal physiological function and is closely tied to proper cell division. This review focuses on the most outstanding issues involving NPC structure, assembly, and function.
Collapse
Affiliation(s)
- Mythili Suntharalingam
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 3120A MRBIII, 465 21st Avenue South, Nashville, TN 37232, USA
| | | |
Collapse
|
25
|
Nakagawa T, Hirano Y, Inomata A, Yokota S, Miyachi K, Kaneda M, Umeda M, Furukawa K, Omata S, Horigome T. Participation of a fusogenic protein, glyceraldehyde-3-phosphate dehydrogenase, in nuclear membrane assembly. J Biol Chem 2003; 278:20395-404. [PMID: 12651855 DOI: 10.1074/jbc.m210824200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We found an autoimmune serum, K199, that strongly suppresses nuclear membrane assembly in a cell-free system involving a Xenopus egg extract. Four different antibodies that suppress nuclear assembly were affinity-purified from the serum using Xenopus egg cytosol proteins. Three proteins recognized by these antibodies were identified by partial amino acid sequencing to be glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase, and the regulator of chromatin condensation 1. GAPDH is known to be a fusogenic protein. To verify the participation of GAPDH in nuclear membrane fusion, authentic antibodies against human and rat GAPDH were applied, and strong suppression of nuclear assembly at the nuclear membrane fusion step was observed. The nuclear assembly activity suppressed by antibodies was recovered on the addition of purified chicken GAPDH. A peptide with the sequence of amino acid residues 70-94 of GAPDH, which inhibits GAPDH-induced phospholipid vesicle fusion, inhibited nuclear assembly at the nuclear membrane fusion step. We propose that GAPDH plays a crucial role in the membrane fusion step in nuclear assembly in a Xenopus egg extract cell-free system.
Collapse
Affiliation(s)
- Tomoaki Nakagawa
- Course of Functional Biology, Graduate School of Science and Technology, Niigata University, Igarashi-2, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Here, we report the first evidence that the Ran GTPase cycle is required for nuclear pore complex (NPC) assembly. Using a genetic approach, factors required for NPC assembly were identified in Saccharomyces cerevisiae. Four mutant complementation groups were characterized that correspond to respective mutations in genes encoding Ran (gsp1), and essential Ran regulatory factors Ran GTPase-activating protein (rna1), Ran guanine nucleotide exchange factor (prp20), and the RanGDP import factor (ntf2). All the mutants showed temperature-dependent mislocalization of green fluorescence protein (GFP)-tagged nucleoporins (nups) and the pore-membrane protein Pom152. A decrease in GFP fluorescence associated with the nuclear envelope was observed along with an increase in the diffuse, cytoplasmic signal with GFP foci. The defects did not affect the stability of existing NPCs, and nup mislocalization was dependent on de novo protein synthesis and continued cell growth. Electron microscopy analysis revealed striking membrane perturbations and the accumulation of vesicles in arrested mutants. Using both biochemical fractionation and immunoelectron microscopy methods, these vesicles were shown to contain nups. We propose a model wherein a Ran-mediated vesicular fusion step is required for NPC assembly into intact nuclear envelopes.
Collapse
Affiliation(s)
- Kathryn J Ryan
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
27
|
Zhang C, Goldberg MW, Moore WJ, Allen TD, Clarke PR. Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. Eur J Cell Biol 2002; 81:623-33. [PMID: 12494999 DOI: 10.1078/0171-9335-00288] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nuclear envelope (NE) formation can be studied in a cell-free system made from Xenopus eggs. In this system, NE formation involves the small GTPase Ran. Ran associates with chromatin early in nuclear assembly and concentration of Ran on inert beads is sufficient to induce NE formation. Here, we show that Ran binds to chromatin prior to NE formation and recruits RCC1, the nucleotide exchange factor that generates Ran-GTP. In extracts prepared by high-speed centrifugation, increased concentrations of Ran are sufficient to induce chromatin decondensation and NE assembly. Using field emission in-lens scanning electron microscopy (FEISEM), we show that Ran promotes the formation of smoothed membranes and the assembly of nuclear pore complexes (NPCs). In contrast, RanT24N, a mutant that fails to bind GTP and inhibits RCC1, does not support efficient NE assembly, whereas RanQ69L, a mutant locked in a GTP-bound state, permits some membrane vesicle recruitment to chromatin, but inhibits vesicle fusion and NPC assembly. Thus, binding of Ran to chromatin, followed by local generation of Ran-GTP and GTP hydrolysis by Ran, induces chromatin decondensation, membrane vesicle recruitment, membrane formation and NPC assembly. We propose that the biological activity of Ran is determined by its targeting to structures such as chromatin as well as its guanine nucleotide bound state.
Collapse
Affiliation(s)
- Chuanmao Zhang
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | | | | | | | | |
Collapse
|
28
|
Drummond SP, Wilson KL. Interference with the cytoplasmic tail of gp210 disrupts "close apposition" of nuclear membranes and blocks nuclear pore dilation. J Cell Biol 2002; 158:53-62. [PMID: 12093788 PMCID: PMC2173024 DOI: 10.1083/jcb.200108145] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2001] [Revised: 05/16/2002] [Accepted: 05/20/2002] [Indexed: 12/12/2022] Open
Abstract
We tested the hypothesis that gp210, an integral membrane protein of nuclear pore complexes (NPCs), mediates nuclear pore formation. Gp210 has a large lumenal domain and small COOH-terminal tail exposed to the cytoplasm. We studied the exposed tail. We added recombinant tail polypeptides to Xenopus nuclear assembly extracts, or inhibited endogenous gp210 tails using anti-tail antibodies. Both strategies had no effect on the formation of fused flattened nuclear membranes, but blocked NPC assembly and nuclear growth. Inhibited nuclei accumulated gp210 and some nucleoporin p62, but failed to incorporate nup214/CAN, nup153, or nup98 and were defective for nuclear import of lamin B3. Scanning and transmission EM revealed a lack of "closely apposed" inner and outer membranes, and the accumulation of novel arrested structures including "mini-pores." We conclude that gp210 has early roles in nuclear pore formation, and that pore dilation is mediated by gp210 and its tail-binding partner(s). We propose that membrane fusion and pore dilation are coupled, acting as a mechanism to control nuclear pore size.
Collapse
Affiliation(s)
- Sheona P Drummond
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
29
|
Hetzer M, Gruss OJ, Mattaj IW. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nat Cell Biol 2002; 4:E177-84. [PMID: 12105431 DOI: 10.1038/ncb0702-e177] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The small GTPase Ran is a key regulator of nucleocytoplasmic transport during interphase. The asymmetric distribution of the GTP-bound form of Ran across the nuclear envelope--that is, large quantities in the nucleus compared with small quantities in the cytoplasm--determines the directionality of many nuclear transport processes. Recent findings that Ran also functions in spindle formation and nuclear envelope assembly during mitosis suggest that Ran has a general role in chromatin-centred processes. Ran functions in these events as a signal for chromosome position.
Collapse
Affiliation(s)
- Martin Hetzer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | |
Collapse
|
30
|
Hetzer M, Meyer HH, Walther TC, Bilbao-Cortes D, Warren G, Mattaj IW. Distinct AAA-ATPase p97 complexes function in discrete steps of nuclear assembly. Nat Cell Biol 2001; 3:1086-91. [PMID: 11781570 DOI: 10.1038/ncb1201-1086] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although nuclear envelope (NE) assembly is known to require the GTPase Ran, the membrane fusion machinery involved is uncharacterized. NE assembly involves formation of a reticular network on chromatin, fusion of this network into a closed NE and subsequent expansion. Here we show that p97, an AAA-ATPase previously implicated in fusion of Golgi and transitional endoplasmic reticulum (ER) membranes together with the adaptor p47, has two discrete functions in NE assembly. Formation of a closed NE requires the p97-Ufd1-Npl4 complex, not previously implicated in membrane fusion. Subsequent NE growth involves a p97-p47 complex. This study provides the first insights into the molecular mechanisms and specificity of fusion events involved in NE formation.
Collapse
Affiliation(s)
- M Hetzer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Paiement J, Bergeron J. The shape of things to come: Regulation of shape changes in endoplasmic reticulum. Biochem Cell Biol 2001. [DOI: 10.1139/o01-143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Shape changes in the endoplasmic reticulum control fundamental cell processes including nuclear envelope assembly in mitotic cells, calcium homeostasis in cytoplasmic domains of secreting and motile cells, and membrane traffic in the early secretion apparatus between the endoplasmic reticulum and Golgi. Opposing forces of assembly (membrane fusion) and disassembly (membrane fragmentation) ultimately determine the size and shape of this organelle. This review examines some of the regulatory mechanisms involved in these processes and how they occur at specific sites or subcompartments of the endoplasmic reticulum.Key words: rough endoplasmic reticulum, smooth endoplasmic reticulum, shape changes, assembly, membrane fusion, organelle size, vesicle formation.
Collapse
|
32
|
Lopez-Soler RI, Moir RD, Spann TP, Stick R, Goldman RD. A role for nuclear lamins in nuclear envelope assembly. J Cell Biol 2001; 154:61-70. [PMID: 11448990 PMCID: PMC2196852 DOI: 10.1083/jcb.200101025] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 05/15/2001] [Accepted: 06/05/2001] [Indexed: 11/30/2022] Open
Abstract
The molecular interactions responsible for nuclear envelope assembly after mitosis are not well understood. In this study, we demonstrate that a peptide consisting of the COOH-terminal domain of Xenopus lamin B3 (LB3T) prevents nuclear envelope assembly in Xenopus interphase extracts. Specifically, LB3T inhibits chromatin decondensation and blocks the formation of both the nuclear lamina-pore complex and nuclear membranes. Under these conditions, some vesicles bind to the peripheral regions of the chromatin. These "nonfusogenic" vesicles lack lamin B3 (LB3) and do not bind LB3T; however, "fusogenic" vesicles containing LB3 can bind LB3T, which blocks their association with chromatin and, subsequently, nuclear membrane assembly. LB3T also binds to chromatin in the absence of interphase extract, but only in the presence of purified LB3. Additionally, we show that LB3T inhibits normal lamin polymerization in vitro. These findings suggest that lamin polymerization is required for both chromatin decondensation and the binding of nuclear membrane precursors during the early stages of normal nuclear envelope assembly.
Collapse
Affiliation(s)
- R I Lopez-Soler
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- P Collas
- Institute of Medical Biochemistry, University of Oslo, Norway
| | | |
Collapse
|
34
|
Hetzer M, Bilbao-Cortés D, Walther TC, Gruss OJ, Mattaj IW. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol Cell 2000; 5:1013-24. [PMID: 10911995 DOI: 10.1016/s1097-2765(00)80266-x] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nuclear formation in Xenopus egg extracts requires cytosol and is inhibited by GTP gamma S, indicating a requirement for GTPase activity. Nuclear envelope (NE) vesicle fusion is extensively inhibited by GTP gamma S and two mutant forms of the Ran GTPase, Q69L and T24N. Depletion of either Ran or RCC1, the exchange factor for Ran, from the assembly reaction also inhibits this step of NE formation. Ran depletion can be complemented by the addition of Ran loaded with either GTP or GDP but not with GTP gamma S. RCC1 depletion is only complemented by RCC1 itself or by RanGTP. Thus, generation of RanGTP by RCC1 and GTP hydrolysis by Ran are both required for the extensive membrane fusion events that lead to NE formation.
Collapse
Affiliation(s)
- M Hetzer
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
35
|
Zhang C, Clarke PR. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 2000; 288:1429-32. [PMID: 10827954 DOI: 10.1126/science.288.5470.1429] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nuclear envelope (NE) forms a controlled boundary between the cytoplasm and the nucleus of eukaryotic cells. To facilitate investigation of mechanisms controlling NE assembly, we developed a cell-free system made from Xenopus laevis eggs to study the process in the absence of chromatin. NEs incorporating nuclear pores were assembled around beads coated with the guanosine triphosphatase Ran, forming pseudo-nuclei that actively imported nuclear proteins. NE assembly required the cycling of guanine nucleotides on Ran and was promoted by RCC1, a nucleotide exchange factor recruited to beads by Ran-guanosine diphosphate (Ran-GDP). Thus, concentration of Ran-GDP followed by generation of Ran-GTP is sufficient to induce NE assembly.
Collapse
Affiliation(s)
- C Zhang
- Biomedical Research Centre, University of Dundee, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK.
| | | |
Collapse
|
36
|
Dreier L, Rapoport TA. In vitro formation of the endoplasmic reticulum occurs independently of microtubules by a controlled fusion reaction. J Cell Biol 2000; 148:883-98. [PMID: 10704440 PMCID: PMC2174540 DOI: 10.1083/jcb.148.5.883] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We have established an in vitro system for the formation of the endoplasmic reticulum (ER). Starting from small membrane vesicles prepared from Xenopus laevis eggs, an elaborate network of membrane tubules is formed in the presence of cytosol. In the absence of cytosol, the vesicles only fuse to form large spheres. Network formation requires a ubiquitous cytosolic protein and nucleoside triphosphates, is sensitive to N-ethylmaleimide and high cytosolic Ca(2+) concentrations, and proceeds via an intermediate stage in which vesicles appear to be clustered. Microtubules are not required for membrane tubule and network formation. Formation of the ER network shares significant similarities with formation of the nuclear envelope. Our results suggest that the ER network forms in a process in which cytosolic factors modify and regulate a basic reaction of membrane vesicle fusion.
Collapse
Affiliation(s)
- Lars Dreier
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115-6091
| | - Tom A. Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115-6091
| |
Collapse
|
37
|
Ellenberg J, Lippincott-Schwartz J. Dynamics and mobility of nuclear envelope proteins in interphase and mitotic cells revealed by green fluorescent protein chimeras. Methods 1999; 19:362-72. [PMID: 10579931 DOI: 10.1006/meth.1999.0872] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding how membrane proteins are targeted to and retained within the nuclear envelope (NE) and the fate of these proteins during NE disassembly/reassembly in mitosis is central for insight into the function of the NE in nuclear organization and dynamics. To address these issues we have attached green fluorescent protein (GFP) to a well-characterized protein of the inner nuclear membrane, lamin B receptor, believed to be one of the major chromatin docking protein in the NE. We have used this construct in a variety of applications, including dual-color GFP time-lapse imaging, to investigate the mechanisms underlying protein targeting to the NE and NE breakdown and reassembly during mitosis. In this review, we present a summary of the results from such studies and discuss the photobleaching and imaging methodology on which they were derived.
Collapse
Affiliation(s)
- J Ellenberg
- Gene Expression and Cell Biology/Biophysics Programmes, EMBL, Menehofstrasse 1, Heidelberg, D-69117, Germany.
| | | |
Collapse
|
38
|
Sasagawa S, Yamamoto A, Ichimura T, Omata S, Horigome T. In vitro nuclear assembly with affinity-purified nuclear envelope precursor vesicle fractions, PV1 and PV2. Eur J Cell Biol 1999; 78:593-600. [PMID: 10494866 DOI: 10.1016/s0171-9335(99)80025-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Nuclear envelope precursor vesicles were affinity purified from a Xenopus egg extract by a chromatin binding method. Vesicles bound to chromatin at 4 degrees C were dissociated with a high salt buffer and further fractionated into nuclear envelope precursor vesicle fractions 1 (PV1) and 2 (PV2) by differential centrifugation. PV1 contained larger vesicles. When chromatin was incubated in a Xenopus egg cytosol fraction supplemented with PV1, vesicles bound to chromatin, fused with each other, formed a bilayered nuclear envelope, and assembled into spherical small nuclei. However, the thus assembled nuclei did not grow to the normal size. Nuclear pore complexes were not found on the thus assembled nuclei. On the other hand, PV2 contained smaller vesicles. PV2 vesicles bound to chromatin, fused little with each other in the Xenopus egg cytosol fraction, and no nuclei were assembled. When PV1 supplemented with PV2 was used for the nuclear assembly reaction, the assembled nuclei grew to the normal size. Nuclear pore complexes existed in the thus assembled nuclear envelopes. These results suggested that 1) two vesicle populations, PV1 and PV2, are necessary for the assembly of normal sized nuclei, 2) PV1 contains a chromatin targeting molecule(s) and membrane fusion machinery, 3) PV2 contains a chromatin targeting molecule(s) and a molecule(s) necessary for nuclear pore complex assembly, and 4) PV1 has the ability to assemble a nuclear membrane, and PV2 is necessary for the assembly of nuclear pore complexes and for nuclei to grow to the normal size. An in vitro nuclear assembly system constituted with affinity-purified vesicle fractions, PV1 and PV2, was established.
Collapse
Affiliation(s)
- S Sasagawa
- Course of Advanced Material Science, Graduate School of Science and Technology, Niigata University, Japan
| | | | | | | | | |
Collapse
|
39
|
Jantsch-Plunger V, Glotzer M. Depletion of syntaxins in the early Caenorhabditis elegans embryo reveals a role for membrane fusion events in cytokinesis. Curr Biol 1999; 9:738-45. [PMID: 10421575 DOI: 10.1016/s0960-9822(99)80333-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND During cytokinesis, the plasma membrane of the parent cell is resolved into the two plasma membranes of the daughter cells. Membrane fusion events mediated by the machinery that participates in intracellular vesicle trafficking might contribute to this process. Two classes of molecules that are required for membrane fusion are the t-SNAREs and the v-SNAREs. The t-SNAREs (syntaxins) comprise a multi-gene family that has been suggested to mediate, at least in part, selective membrane fusion events in the cell. RESULTS We have analyzed the genome of Caenorhabditis elegans and identified eight syntaxin genes. RNA-mediated interference (RNAi) was used to produce embryos deficient in individual syntaxins and these embryos were phenotypically characterized. Embryos deficient in one syntaxin, Syn-4, became multinucleate because of defects in karyomere fusion and cytokinesis. Syn-4 localized both to ingressing cleavage furrows and to punctate structures surrounding nuclei as they reformed during interphase. CONCLUSIONS Our analyses indicate that both cytokinesis and reformation of the nuclear envelope are dependent on SNARE-mediated membrane fusion.
Collapse
Affiliation(s)
- V Jantsch-Plunger
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030, Vienna, Austria
| | | |
Collapse
|
40
|
Gant TM, Harris CA, Wilson KL. Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2beta proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J Biophys Biochem Cytol 1999; 144:1083-96. [PMID: 10087255 PMCID: PMC2150574 DOI: 10.1083/jcb.144.6.1083] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans express three major splicing isoforms of LAP2, a lamin- and chromatin-binding nuclear protein. LAP2beta and gamma are integral membrane proteins, whereas alpha is intranuclear. When truncated recombinant human LAP2beta proteins were added to cell-free Xenopus laevis nuclear assembly reactions at high concentrations, a domain common to all LAP2 isoforms (residues 1-187) inhibited membrane binding to chromatin, whereas the chromatin- and lamin-binding region (residues 1-408) inhibited chromatin expansion. At lower concentrations of the common domain, membranes attached to chromatin with a unique scalloped morphology, but these nuclei neither accumulated lamins nor replicated. At lower concentrations of the chromatin- and lamin-binding region, nuclear envelopes and lamins assembled, but nuclei failed to enlarge and replicated on average 2. 5-fold better than controls. This enhancement was not due to rereplication, as shown by density substitution experiments, suggesting the hypothesis that LAP2beta is a downstream effector of lamina assembly in promoting replication competence. Overall, our findings suggest that LAP2 proteins mediate membrane-chromatin attachment and lamina assembly, and may promote replication by influencing chromatin structure.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
41
|
Drummond S, Ferrigno P, Lyon C, Murphy J, Goldberg M, Allen T, Smythe C, Hutchison CJ. Temporal differences in the appearance of NEP-B78 and an LBR-like protein during Xenopus nuclear envelope reassembly reflect the ordered recruitment of functionally discrete vesicle types. J Cell Biol 1999; 144:225-40. [PMID: 9922450 PMCID: PMC2132889 DOI: 10.1083/jcb.144.2.225] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/1997] [Revised: 12/09/1998] [Indexed: 11/30/2022] Open
Abstract
In this work, we have used novel mAbs against two proteins of the endoplasmic reticulum and outer nuclear membrane, termed NEP-B78 and p65, in addition to a polyclonal antibody against the inner nuclear membrane protein LBR (lamin B receptor), to study the order and dynamics of NE reassembly in the Xenopus cell-free system. Using these reagents, we demonstrate differences in the timing of recruitment of their cognate membrane proteins to the surface of decondensing chromatin in both the cell-free system and XLK-2 cells. We show unequivocally that, in the cell-free system, two functionally and biochemically distinct vesicle types are necessary for NE assembly. We find that the process of distinct vesicle recruitment to chromatin is an ordered one and that NEP-B78 defines a vesicle population involved in the earliest events of reassembly in this system. Finally, we present evidence that NEP-B78 may be required for the targeting of these vesicles to the surface of decondensing chromatin in this system. The results have important implications for the understanding of the mechanisms of nuclear envelope disassembly and reassembly during mitosis and for the development of systems to identify novel molecules that control these processes.
Collapse
Affiliation(s)
- S Drummond
- MRC Protein Phosphorylation Unit, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bucci M, Wente SR. A novel fluorescence-based genetic strategy identifies mutants of Saccharomyces cerevisiae defective for nuclear pore complex assembly. Mol Biol Cell 1998; 9:2439-61. [PMID: 9725905 PMCID: PMC25512 DOI: 10.1091/mbc.9.9.2439] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nuclear pore complexes (NPCs) are large proteinaceous portals for exchanging macromolecules between the nucleus and the cytoplasm. Revealing how this transport apparatus is assembled will be critical for understanding the nuclear transport mechanism. To address this issue and to identify factors that regulate NPC formation and dynamics, a novel fluorescence-based strategy was used. This approach is based on the functional tagging of NPC proteins with the green fluorescent protein (GFP), and the hypothesis that NPC assembly mutants will have distinct GFP-NPC signals as compared with wild-type (wt) cells. By fluorescence-activated cell sorting for cells with low GFP signal from a population of mutagenized cells expressing GFP-Nup49p, three complementation groups were identified: two correspond to mutant nup120 and gle2 alleles that result in clusters of NPCs. Interestingly, a third group was a novel temperature-sensitive allele of nup57. The lowered GFP-Nup49p incorporation in the nup57-E17 cells resulted in a decreased fluorescence level, which was due in part to a sharply diminished interaction between the carboxy-terminal truncated nup57pE17 and wt Nup49p. Interestingly, the nup57-E17 mutant also affected the incorporation of a specific subset of other nucleoporins into the NPC. Decreased levels of NPC-associated Nsp1p and Nup116p were observed. In contrast, the localizations of Nic96p, Nup82p, Nup159p, Nup145p, and Pom152p were not markedly diminished. Coincidentally, nuclear import capacity was inhibited. Taken together, the identification of such mutants with specific perturbations of NPC structure validates this fluorescence-based strategy as a powerful approach for providing insight into the mechanism of NPC biogenesis.
Collapse
Affiliation(s)
- M Bucci
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
43
|
Ho AK, Raczniak GA, Ives EB, Wente SR. The integral membrane protein snl1p is genetically linked to yeast nuclear pore complex function. Mol Biol Cell 1998; 9:355-73. [PMID: 9450961 PMCID: PMC25263 DOI: 10.1091/mbc.9.2.355] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/1997] [Accepted: 11/07/1997] [Indexed: 02/06/2023] Open
Abstract
Integral membrane proteins are predicted to play key roles in the biogenesis and function of nuclear pore complexes (NPCs). Revealing how the transport apparatus is assembled will be critical for understanding the mechanism of nucleocytoplasmic transport. We observed that expression of the carboxyl-terminal 200 amino acids of the nucleoporin Nup116p had no effect on wild-type yeast cells, but it rendered the nup116 null strain inviable at all temperatures and coincidentally resulted in the formation of nuclear membrane herniations at 23 degrees C. To identify factors related to NPC function, a genetic screen for high-copy suppressors of this lethal nup116-C phenotype was conducted. One gene (designated SNL1 for suppressor of nup116-C lethal) was identified whose expression was necessary and sufficient for rescuing growth. Snl1p has a predicted molecular mass of 18.3 kDa, a putative transmembrane domain, and limited sequence similarity to Pom152p, the only previously identified yeast NPC-associated integral membrane protein. By both indirect immunofluorescence microscopy and subcellular fractionation studies, Snl1p was localized to both the nuclear envelope and the endoplasmic reticulum. Membrane extraction and topology assays suggested that Snl1p was an integral membrane protein, with its carboxyl-terminal region exposed to the cytosol. With regard to genetic specificity, the nup116-C lethality was also suppressed by high-copy GLE2 and NIC96. Moreover, high-copy SNL1 suppressed the temperature sensitivity of gle2-1 and nic96-G3 mutant cells. The nic96-G3 allele was identified in a synthetic lethal genetic screen with a null allele of the closely related nucleoporin nup100. Gle2p physically associated with Nup116p in vitro, and the interaction required the N-terminal region of Nup116p. Therefore, genetic links between the role of Snl1p and at least three NPC-associated proteins were established. We suggest that Snl1p plays a stabilizing role in NPC structure and function.
Collapse
Affiliation(s)
- A K Ho
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
44
|
Abstract
We review old and new insights into the structure of the nuclear envelope and the components responsible for its dynamic reassembly during mitosis. New information is coming to light about several of the proteins that mediate nuclear reassembly. These proteins include the lamins and their emerging relationship with proteins such as otefin and the MAN antigens: peripheral proteins that might participate in lamina structure. There are four identified proteins localized to the inner nuclear membrane: the lamina-associated proteins LAP1 and LAP2, emerin, and the lamin B receptor (LBR). LBR can interact independently with lamin B and a chromodomain protein, Hp1, and appears to be a central player in targeting nuclear membranes to chromatin. Intermediates in the assembly of nuclear pore complexes (NPCs) can now be studied biochemically and visualized by high resolution scanning electron microscopy. We discuss the possibility that the filament-forming proteins Tpr/p270, NuMA, and perhaps actin may have roles in nuclear assembly.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
45
|
Affiliation(s)
- M J Lohka
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| |
Collapse
|
46
|
Collas P, Poccia D. Methods for studying in vitro assembly of male pronuclei using oocyte extracts from marine invertebrates: sea urchins and surf clams. Methods Cell Biol 1997; 53:417-52. [PMID: 9348519 DOI: 10.1016/s0091-679x(08)60889-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P Collas
- Norwegian College of Veterinary Medicine, Department of Biochemistry, Oslo, Norway
| | | |
Collapse
|
47
|
Abstract
Upon fertilization, the sperm nucleus undergoes reactivation. The poreless sperm nuclear envelope is replaced by a functional male pronuclear envelope and the highly compact male chromatin decondenses. Here some recent evidence is examined: that disassembly of the sperm lamina is required for chromatin decondensation, that remnant portions of the sperm nuclear envelope target the binding of egg membrane vesicles that form the male pronuclear envelope, that functional male pronuclear envelopes containing lamin B receptor assemble prior to lamin import and lamina formation, and that lamina assembly drives male pronuclear swelling. Several unresolved issues are discussed.
Collapse
Affiliation(s)
- D Poccia
- Department of Biology, Amherst College, MA 01002, USA
| | | |
Collapse
|
48
|
Ellenberg J, Siggia ED, Moreira JE, Smith CL, Presley JF, Worman HJ, Lippincott-Schwartz J. Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol 1997; 138:1193-206. [PMID: 9298976 PMCID: PMC2132565 DOI: 10.1083/jcb.138.6.1193] [Citation(s) in RCA: 594] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1997] [Revised: 06/27/1997] [Indexed: 02/05/2023] Open
Abstract
The mechanisms of localization and retention of membrane proteins in the inner nuclear membrane and the fate of this membrane system during mitosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR-GFP). Photobleaching techniques revealed the majority of LBR-GFP to be completely immobilized in the nuclear envelope (NE) of interphase cells, suggesting a tight binding to heterochromatin and/or lamins. A subpopulation of LBR-GFP within ER membranes, by contrast, was entirely mobile and diffused rapidly and freely (D = 0. 41 +/- 0.1 microm2/s). High resolution confocal time-lapse imaging in mitotic cells revealed LBR-GFP redistributing into the interconnected ER membrane system in prometaphase, exhibiting the same high mobility and diffusion constant as observed in interphase ER membranes. LBR-GFP rapidly diffused across the cell within the membrane network defined by the ER, suggesting the integrity of the ER was maintained in mitosis, with little or no fragmentation and vesiculation. At the end of mitosis, nuclear membrane reformation coincided with immobilization of LBR-GFP in ER elements at contact sites with chromatin. LBR-GFP-containing ER membranes then wrapped around chromatin over the course of 2-3 min, quickly and efficiently compartmentalizing nuclear material. Expansion of the NE followed over the course of 30-80 min. Thus, selective changes in lateral mobility of LBR-GFP within the ER/NE membrane system form the basis for its localization to the inner nuclear membrane during interphase. Such changes, rather than vesiculation mechanisms, also underlie the redistribution of this molecule during NE disassembly and reformation in mitosis.
Collapse
Affiliation(s)
- J Ellenberg
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ulitzur N, Harel A, Goldberg M, Feinstein N, Gruenbaum Y. Nuclear membrane vesicle targeting to chromatin in a Drosophila embryo cell-free system. Mol Biol Cell 1997; 8:1439-48. [PMID: 9285817 PMCID: PMC276168 DOI: 10.1091/mbc.8.8.1439] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A Drosophila cell-free system was used to characterize proteins that are required for targeting vesicles to chromatin and for fusion of vesicles to form nuclear envelopes. Treatment of vesicles with 1 M NaCl abolished their ability to bind to chromatin. Binding of salt-treated vesicles to chromatin could be restored by adding the dialyzed salt extract. Lamin Dm is one of the peripheral proteins whose activity was required, since supplying interphase lamin isoforms Dm1, and Dm2 to the assembly extract restored binding. As opposed to the findings in Xenopus, okadaic acid had no effect on vesicle binding. Trypsin digestion of the salt-stripped vesicles eliminated their association with chromatin even in the presence of the dialyzed salt extract. One vesicles attached to chromatin surface, fusion events took place were found to be sensitive to guanosine 5'-[gamma-thio]triphosphate (GTP gamma S). These chromatin-attached vesicles contained lamin Dm and otefin but not gp210. Thus, these results show that in Drosophila there are two populations of nuclear vesicles. The population that interacts first with chromatin contains lamin and otefin and requires both peripheral and integral membrane proteins, whereas fusion of vesicles requires GTPase activity.
Collapse
Affiliation(s)
- N Ulitzur
- Department of Genetics, Hebrew University of Jerusalem, Israel
| | | | | | | | | |
Collapse
|
50
|
Yang L, Guan T, Gerace L. Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J Biophys Biochem Cytol 1997; 137:1199-210. [PMID: 9182656 PMCID: PMC2132536 DOI: 10.1083/jcb.137.6.1199] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.
Collapse
Affiliation(s)
- L Yang
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|