1
|
El-Tanani M, Nsairat H, Mishra V, Mishra Y, Aljabali AAA, Serrano-Aroca Á, Tambuwala MM. Ran GTPase and Its Importance in Cellular Signaling and Malignant Phenotype. Int J Mol Sci 2023; 24:ijms24043065. [PMID: 36834476 PMCID: PMC9968026 DOI: 10.3390/ijms24043065] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
Ran is a member of the Ras superfamily of proteins, which primarily regulates nucleocytoplasmic trafficking and mediates mitosis by regulating spindle formation and nuclear envelope (NE) reassembly. Therefore, Ran is an integral cell fate determinant. It has been demonstrated that aberrant Ran expression in cancer is a result of upstream dysregulation of the expression of various factors, such as osteopontin (OPN), and aberrant activation of various signaling pathways, including the extracellular-regulated kinase/mitogen-activated protein kinase (ERK/MEK) and phosphatidylinositol 3-kinase/Protein kinase B (PI3K/Akt) pathways. In vitro, Ran overexpression has severe effects on the cell phenotype, altering proliferation, adhesion, colony density, and invasion. Therefore, Ran overexpression has been identified in numerous types of cancer and has been shown to correlate with tumor grade and the degree of metastasis present in various cancers. The increased malignancy and invasiveness have been attributed to multiple mechanisms. Increased dependence on Ran for spindle formation and mitosis is a consequence of the upregulation of these pathways and the ensuing overexpression of Ran, which increases cellular dependence on Ran for survival. This increases the sensitivity of cells to changes in Ran concentration, with ablation being associated with aneuploidy, cell cycle arrest, and ultimately, cell death. It has also been demonstrated that Ran dysregulation influences nucleocytoplasmic transport, leading to transcription factor misallocation. Consequently, patients with tumors that overexpress Ran have been shown to have a higher malignancy rate and a shorter survival time compared to their counterparts.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Correspondence:
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Laboratory, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
2
|
Hirai K, Inoue YH, Matsuda M. Mitotic progression and dual spindle formation caused by spindle association of de novo-formed microtubule-organizing centers in parthenogenetic embryos of Drosophila ananassae. Genetics 2022; 223:6896485. [PMID: 36516293 PMCID: PMC9910410 DOI: 10.1093/genetics/iyac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/17/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Facultative parthenogenesis occurs in many animal species that typically undergo sexual reproduction. In Drosophila, such development from unfertilized eggs involves diploidization after completion of meiosis, but the exact mechanism remains unclear. Here we used a laboratory stock of Drosophila ananassae that has been maintained parthenogenetically to cytologically examine the initial events of parthenogenesis. Specifically, we determined whether the requirements for centrosomes and diploidization that are essential for developmental success can be overcome. As a primal deviation from sexually reproducing (i.e. sexual) strains of the same species, free asters emerged from the de novo formation of centrosome-like structures in the cytosol of unfertilized eggs. Those microtubule-organizing centers had distinct roles in the earliest cycles of parthenogenetic embryos with respect to mitotic progression and arrangement of mitotic spindles. In the first cycle, an anastral bipolar spindle self-assembled around a haploid set of replicated chromosomes. Participation of at least one microtubule-organizing center in the spindle was necessary for mitotic progression into anaphase. In particular, the first mitosis involving a monastral bipolar spindle resulted in haploid daughter nuclei, one of which was associated with a microtubule-organizing center whereas the other was not. Remarkably, in the following cycle, biastral and anastral bipolar spindles formed that were frequently arranged in tandem by sharing an aster with bidirectional connections at their central poles. We propose that, for diploidization of haploid nuclei, unfertilized parthenogenetic embryos utilize dual spindles during the second mitosis, as occurs for the first mitosis in normal fertilized eggs.
Collapse
Affiliation(s)
| | - Yoshihiro H Inoue
- Biomedical Research Center, Kyoto Institute of Technology, Kyoto, Kyoto 606-8585, Japan
| | - Muneo Matsuda
- Department of Biology, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| |
Collapse
|
3
|
Weiss JD, McVey SL, Stinebaugh SE, Sullivan CF, Dawe RK, Nannas NJ. Frequent Spindle Assembly Errors Require Structural Rearrangement to Complete Meiosis in Zea mays. Int J Mol Sci 2022; 23:ijms23084293. [PMID: 35457112 PMCID: PMC9031645 DOI: 10.3390/ijms23084293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 12/04/2022] Open
Abstract
The success of an organism is contingent upon its ability to faithfully pass on its genetic material. In the meiosis of many species, the process of chromosome segregation requires that bipolar spindles be formed without the aid of dedicated microtubule organizing centers, such as centrosomes. Here, we describe detailed analyses of acentrosomal spindle assembly and disassembly in time-lapse images, from live meiotic cells of Zea mays. Microtubules organized on the nuclear envelope with a perinuclear ring structure until nuclear envelope breakdown, at which point microtubules began bundling into a bipolar form. However, the process and timing of spindle assembly was highly variable, with frequent assembly errors in both meiosis I and II. Approximately 61% of cells formed incorrect spindle morphologies, with the most prevalent being tripolar spindles. The erroneous spindles were actively rearranged to bipolar through a coalescence of poles before proceeding to anaphase. Spindle disassembly occurred as a two-state process with a slow depolymerization, followed by a quick collapse. The results demonstrate that maize meiosis I and II spindle assembly is remarkably fluid in the early assembly stages, but otherwise proceeds through a predictable series of events.
Collapse
Affiliation(s)
- Jodi D. Weiss
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Shelby L. McVey
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Sarah E. Stinebaugh
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - Caroline F. Sullivan
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
| | - R. Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA 30602, USA;
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Natalie J. Nannas
- Department of Biology, Hamilton College, Clinton, NY 13323, USA; (J.D.W.); (S.L.M.); (S.E.S.); (C.F.S.)
- Correspondence:
| |
Collapse
|
4
|
Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020; 9:cells9102156. [PMID: 32987651 PMCID: PMC7598677 DOI: 10.3390/cells9102156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
The centrosome, which consists of two centrioles surrounded by pericentriolar material, is a unique structure that has retained its main features in organisms of various taxonomic groups from unicellular algae to mammals over one billion years of evolution. In addition to the most noticeable function of organizing the microtubule system in mitosis and interphase, the centrosome performs many other cell functions. In particular, centrioles are the basis for the formation of sensitive primary cilia and motile cilia and flagella. Another principal function of centrosomes is the concentration in one place of regulatory proteins responsible for the cell's progression along the cell cycle. Despite the existing exceptions, the functioning of the centrosome is subject to general principles, which are discussed in this review.
Collapse
|
5
|
Warecki B, Sullivan W. Mechanisms driving acentric chromosome transmission. Chromosome Res 2020; 28:229-246. [PMID: 32712740 DOI: 10.1007/s10577-020-09636-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The kinetochore-microtubule association is a core, conserved event that drives chromosome transmission during mitosis. Failure to establish this association on even a single chromosome results in aneuploidy leading to cell death or the development of cancer. However, although many chromosomes lacking centromeres, termed acentrics, fail to segregate, studies in a number of systems reveal robust alternative mechanisms that can drive segregation and successful poleward transport of acentrics. In contrast to the canonical mechanism that relies on end-on microtubule attachments to kinetochores, mechanisms of acentric transmission largely fall into three categories: direct attachments to other chromosomes, kinetochore-independent lateral attachments to microtubules, and long-range tether-based attachments. Here, we review these "non-canonical" methods of acentric chromosome transmission. Just as the discovery and exploration of cell cycle checkpoints provided insight into both the origins of cancer and new therapies, identifying mechanisms and structures specifically involved in acentric segregation may have a significant impact on basic and applied cancer research.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
6
|
Basal Body Protein TbSAF1 Is Required for Microtubule Quartet Anchorage to the Basal Bodies in Trypanosoma brucei. mBio 2020; 11:mBio.00668-20. [PMID: 32518185 PMCID: PMC7291619 DOI: 10.1128/mbio.00668-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei contains a large array of single-copied organelles and structures. Through extensive interorganelle connections, these structures replicate and divide following a strict temporal and spatial order. A microtubule quartet (MtQ) originates from the basal bodies and extends toward the anterior end of the cell, stringing several cytoskeletal structures together along its path. In this study, we examined the interaction network of TbSpef1, the only protein specifically located to the MtQ. We identified an interaction between TbSpef1 and a basal body protein TbSAF1, which is required for MtQ anchorage to the basal bodies. This study thus provides the first molecular description of MtQ association with the basal bodies, since the discovery of this association ∼30 years ago. The results also reveal a general mechanism of the evolutionarily conserved Spef1/CLAMP, which achieves specific cellular functions via their conserved microtubule functions and their diverse molecular interaction networks. Sperm flagellar protein 1 (Spef1, also known as CLAMP) is a microtubule-associated protein involved in various microtubule-related functions from ciliary motility to polarized cell movement and planar cell polarity. In Trypanosoma brucei, the causative agent of trypanosomiasis, a single Spef1 ortholog (TbSpef1) is associated with a microtubule quartet (MtQ), which is in close association with several single-copied organelles and is required for their coordinated biogenesis during the cell cycle. Here, we investigated the interaction network of TbSpef1 using BioID, a proximity-dependent protein-protein interaction screening method. Characterization of selected candidates provided a molecular description of TbSpef1-MtQ interactions with nearby cytoskeletal structures. Of particular interest, we identified a new basal body protein TbSAF1, which is required for TbSpef1-MtQ anchorage to the basal bodies. The results demonstrate that MtQ-basal body anchorage is critical for the spatial organization of cytoskeletal organelles, as well as the morphology of the membrane-bound flagellar pocket where endocytosis takes place in this parasite.
Collapse
|
7
|
Singh A, Denu RA, Wolfe SK, Sperger JM, Schehr J, Witkowsky T, Esbona K, Chappell RJ, Weaver BA, Burkard ME, Lang JM. Centrosome amplification is a frequent event in circulating tumor cells from subjects with metastatic breast cancer. Mol Oncol 2020; 14:1898-1909. [PMID: 32255253 PMCID: PMC7400789 DOI: 10.1002/1878-0261.12687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 01/05/2023] Open
Abstract
Centrosome amplification (CA) is a common phenomenon in cancer, promotes genomic stability and cancer evolution, and has been reported to promote metastasis. CA promotes a stochastic gain/loss of chromosomes during cell division, known as chromosomal instability (CIN). However, it is unclear whether CA is present in circulating tumor cells (CTCs), the seeds for metastasis. Here, we surveyed CA in CTCs from human subjects with metastatic breast cancer. CTCs were captured by CD45 exclusion and selection of EpCAM‐positive cells using an exclusion‐based sample preparation technology platform known as VERSA (versatile exclusion‐based rare sample analysis). Centriole amplification (centrin foci> 4) is the definitive assay for CA. However, determination of centrin foci is technically challenging and incompatible with automated analysis. To test if the more technically accessible centrosome marker pericentrin could serve as a surrogate for centriole amplification in CTCs, cells were stained with pericentrin and centrin antibodies to evaluate CA. This assay was first validated using breast cancer cell lines and a nontransformed epithelial cell line model of inducible CA, then translated to CTCs. Pericentrin area and pericentrin area x intensity correlate well with centrin foci, validating pericentrin as a surrogate marker of CA. CA is found in CTCs from 75% of subjects, with variability in the percentage and extent of CA in individual circulating cells in a given subject, similar to the variability previously seen in primary tumors and cell lines. In summary, we created, validated, and implemented a novel method to assess CA in CTCs from subjects with metastatic breast cancer. Such an assay will be useful for longitudinal monitoring of CA in cancer patients and in prospective clinical trials for assessing the impact of CA on response to therapy.
Collapse
Affiliation(s)
- Ashok Singh
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Ryan A Denu
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, WI, USA
| | - Serena K Wolfe
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Jamie M Sperger
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Jennifer Schehr
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Tessa Witkowsky
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Karla Esbona
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA
| | - Richard J Chappell
- Departments of Statistics and of Biostatistics & Medical Informatics, University of Wisconsin-Madison, WI, USA
| | - Beth A Weaver
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA.,Department of Cell and Regenerative Biology and Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, WI, USA
| | - Mark E Burkard
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA.,Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, WI, USA
| | - Joshua M Lang
- Carbone Cancer Center, University of Wisconsin-Madison, WI, USA.,Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison, WI, USA
| |
Collapse
|
8
|
Animal Female Meiosis: The Challenges of Eliminating Centrosomes. Cells 2018; 7:cells7070073. [PMID: 29996518 PMCID: PMC6071224 DOI: 10.3390/cells7070073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023] Open
Abstract
Sexual reproduction requires the generation of gametes, which are highly specialised for fertilisation. Female reproductive cells, oocytes, grow up to large sizes when they accumulate energy stocks and store proteins as well as mRNAs to enable rapid cell divisions after fertilisation. At the same time, metazoan oocytes eliminate their centrosomes, i.e., major microtubule-organizing centres (MTOCs), during or right after the long growth phases. Centrosome elimination poses two key questions: first, how can the centrosome be re-established after fertilisation? In general, metazoan oocytes exploit sperm components, i.e., the basal body of the sperm flagellum, as a platform to reinitiate centrosome production. Second, how do most metazoan oocytes manage to build up meiotic spindles without centrosomes? Oocytes have evolved mechanisms to assemble bipolar spindles solely around their chromosomes without the guidance of pre-formed MTOCs. Female animal meiosis involves microtubule nucleation and organisation into bipolar microtubule arrays in regulated self-assembly under the control of the Ran system and nuclear transport receptors. This review summarises our current understanding of the molecular mechanism underlying self-assembly of meiotic spindles, its spatio-temporal regulation, and the key players governing this process in animal oocytes.
Collapse
|
9
|
Lian Y, Fan W, Huang Y, Wang H, Wang J, Zhou L, Wu X, Deng M, Huang Y. Downregulated Trophinin-Associated Protein Plays a Critical Role in Human Hepatocellular Carcinoma Through Upregulation of Tumor Cell Growth and Migration. Oncol Res 2017; 26:691-701. [PMID: 29117881 PMCID: PMC7844635 DOI: 10.3727/096504017x15101398724809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Trophinin-associated protein (TROAP) was a protein first identified to mediate the process of embryo transplantation and later found to be involved in microtubule regulation. However, little is known about the role of TROAP in hepatocellular carcinoma (HCC). In the present study, we reported that both TROAP mRNA and protein expressions were downregulated in human HCC samples as well as cell lines. A high level of TROAP was associated with small tumor size (p < 0.05), minor tumor nodules (p < 0.01), and mild vein invasion (p < 0.05). We further constructed in vitro TROAP depletion and overexpression HCC cell models. TROAP depletion significantly enhanced the proliferation and colony formation abilities, whereas TROAP overexpression had an inhibitory effect on the growth of HCC cells. The G1/S phase arrest by TROAP overexpression correlated with increased cell cycle inhibitors p21 and p27, and declined cell cycle promoting kinase complex CDK6/cyclin D1. Depressed TROAP expression enhanced the migration ability, while the opposite influence was observed in TROAP-overexpressed HCC cells. Taken together, these results indicate that TROAP suppresses cellular growth and migration in HCC. This discovery will further our understanding of the pathogenic mechanisms of human HCC.
Collapse
Affiliation(s)
- Yifan Lian
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Weiming Fan
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yanlin Huang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Hongbo Wang
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jialiang Wang
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Liang Zhou
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Xiaojuan Wu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Meihai Deng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yuehua Huang
- Guangdong Province Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
10
|
Regulation of spindle integrity and mitotic fidelity by BCCIP. Oncogene 2017; 36:4750-4766. [PMID: 28394342 PMCID: PMC5561484 DOI: 10.1038/onc.2017.92] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/11/2017] [Accepted: 02/26/2017] [Indexed: 12/11/2022]
Abstract
Centrosomes together with the mitotic spindle ensure the faithful distribution of chromosomes between daughter cells, and spindle orientation is a major determinant of cell fate during tissue regeneration. Spindle defects are not only an impetus of chromosome instability but are also a cause of developmental disorders involving defective asymmetric cell division. In this work, we demonstrate BCCIP, especially BCCIPα, as a previously unidentified component of the mitotic spindle pole and the centrosome. We demonstrate that BCCIP localizes proximal to the mother centriole and participates in microtubule organization and then redistributes to the spindle pole to ensure faithful spindle architecture. We find that BCCIP depletion leads to morphological defects, disoriented mitotic spindles, chromosome congression defects and delayed mitotic progression. Our study identifies BCCIP as a novel factor critical for microtubule regulation and explicates a mechanism utilized by BCCIP in tumor suppression.
Collapse
|
11
|
Adamakis IDS, Panteris E, Eleftheriou EP. Bisphenol A disrupts microtubules and induces multipolar spindles in dividing root tip cells of the gymnosperm Abies cephalonica. CHEMOSPHERE 2016; 149:202-10. [PMID: 26855225 DOI: 10.1016/j.chemosphere.2016.01.082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 05/12/2023]
Abstract
The effects of bisphenol A (BPA), an endocrine chemical disruptor extensively used in the plastic and epoxy resin industry, on dividing root tip cells of the gymnosperm Abies cephalonica Loudon were investigated by confocal laser scanning microscopy after tubulin and endoplasmic reticulum immunolocalization and DNA staining. Microtubule arrays of all mitotic stages were disrupted within a few hours of treatment: preprophase bands exhibited asymmetric width; prometaphase, metaphase and anaphase spindles appeared sharply pointed, sigmoid or multipolar; phragmoplast microtubules were elongated and occasionally bended toward the daughter nuclei. Depending on the mitotic stage, the chromosomes appeared condensed at prophase, as a compact mass at metaphase and anaphase, unsegregated or bridged at telophase. Endoplasmic reticulum patterns were also affected, reflecting those of the respective microtubule arrays. Recovery of the microtubules after oryzalin treatment was more effective in a BPA solution than in water. It is concluded that the plant mitotic apparatus microtubules are very sensitive to BPA, the effect of which depends on the specific cell cycle stage. The formation of multipolar spindles is reminiscent of animal cells and is ascribed to the induction of multiple microtubule nucleation sites, deriving from the centrosomal properties of gymnosperms.
Collapse
Affiliation(s)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Eleftherios P Eleftheriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece.
| |
Collapse
|
12
|
Jeon HJ, You SY, Park YS, Chang JW, Kim JS, Oh JS. TCTP regulates spindle microtubule dynamics by stabilizing polar microtubules during mouse oocyte meiosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:630-7. [PMID: 26802898 DOI: 10.1016/j.bbamcr.2016.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 01/09/2023]
Abstract
Dynamic changes in spindle structure and function are essential for maintaining genomic integrity during the cell cycle. Spindle dynamics are highly dependent on several microtubule-associated proteins that coordinate the dynamic behavior of microtubules, including microtubule assembly, stability and organization. Here, we show that translationally controlled tumor protein (TCTP) is a novel microtubule-associated protein that regulates spindle dynamics during meiotic maturation. TCTP was expressed and widely distributed in the cytoplasm with strong enrichment at the spindle microtubules during meiosis. TCTP was found to be phosphorylated during meiotic maturation, and was exclusively localized to the spindle poles. Knockdown of TCTP impaired spindle organization without affecting chromosome alignment. These spindle defects were mostly due to the destabilization of the polar microtubules. However, the stability of kinetochore microtubules attached to chromosomes was not affected by TCTP knockdown. Overexpression of a nonphosphorylable mutant of TCTP disturbed meiotic maturation, stabilizing the spindle microtubules. In addition, Plk1 was decreased by TCTP knockdown. Taken together, our results demonstrate that TCTP is a microtubule-associating protein required to regulate spindle microtubule dynamics during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Hyuk-Joon Jeon
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seung Yeop You
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong Seok Park
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Jae-Sung Kim
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Jeong Su Oh
- Department of Genetic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
13
|
Case CM, Sackett DL, Wangsa D, Karpova T, McNally JG, Ried T, Camps J. CKAP2 ensures chromosomal stability by maintaining the integrity of microtubule nucleation sites. PLoS One 2013; 8:e64575. [PMID: 23737987 PMCID: PMC3667829 DOI: 10.1371/journal.pone.0064575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/15/2013] [Indexed: 02/06/2023] Open
Abstract
Integrity of the microtubule spindle apparatus and intact cell division checkpoints are essential to ensure the fidelity of distributing chromosomes into daughter cells. Cytoskeleton-associated protein 2, CKAP2, is a microtubule-associated protein that localizes to spindle poles and aids in microtubule stabilization, but the exact function and mechanism of action are poorly understood. In the present study, we utilized RNA interference to determine the extent to which the expression of CKAP2 plays a role in chromosome segregation. CKAP2-depleted cells showed a significant increase of multipolar mitoses and other spindle pole defects. Notably, when interrogated for microtubule nucleation capacity, CKAP2-depleted cells showed a very unusual phenotype as early as two minutes after release from mitotic block, consisting of dispersal of newly polymerized microtubule filaments through the entire chromatin region, creating a cage-like structure. Nevertheless, spindle poles were formed after one hour of mitotic release suggesting that centrosome-mediated nucleation remained dominant. Finally, we showed that suppression of CKAP2 resulted in a higher incidence of merotelic attachments, anaphase lagging, and polyploidy. Based on these results, we conclude that CKAP2 is involved in the maintenance of microtubule nucleation sites, focusing microtubule minus ends to the spindle poles in early mitosis, and is implicated in maintaining genome stability.
Collapse
Affiliation(s)
- Chanelle M. Case
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Biomedical Science, George Washington University, Washington, D. C., United States of America
| | - Dan L. Sackett
- Section on Cell Biophysics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danny Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tatiana Karpova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - James G. McNally
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JC); (TR)
| | - Jordi Camps
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JC); (TR)
| |
Collapse
|
14
|
Yoshitome S, Furuno N, Prigent C, Hashimoto E. The subcellular localization of cyclin B2 is required for bipolar spindle formation during Xenopus oocyte maturation. Biochem Biophys Res Commun 2012; 422:770-5. [PMID: 22627133 DOI: 10.1016/j.bbrc.2012.05.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 05/13/2012] [Indexed: 11/30/2022]
Abstract
Cyclins B1 and B2 are subtypes of cyclin B, a regulatory subunit of a maturation/M-phase promoting factor, and they are also highly conserved in many vertebrate species. Cyclin B1 is essential for mitosis, whereas cyclin B2 is regarded as dispensable. However, the overexpression of the cyclin B2 N-terminus containing the cytoplasmic retention signal, but not cyclin B1, inhibits bipolar spindle formation in Xenopus oocytes and embryos. Here we show that endogenous cyclin B2 was localized in and around the germinal vesicle. The perinuclear localization of cyclin B2 was perturbed by the overexpression of its N-terminus containing the cytoplasmic retention signal, which resulted in a spindle defect. This spindle defect was rescued by the overexpression of bipolar kinesin Eg5, which is located at the perinuclear region in the proximity of endogenous cyclin B2. These results demonstrate that the proper localization of cyclin B2 is essential for bipolar spindle formation in Xenopus oocytes.
Collapse
Affiliation(s)
- Satoshi Yoshitome
- Faculty of Pharmacy, Iwaki Meisei University, Iwaki 970-8551, Japan.
| | | | | | | |
Collapse
|
15
|
Dynein LIC1 localizes to the mitotic spindle and midbody and LIC2 localizes to spindle poles during cell division. Cell Biol Int 2011; 35:171-8. [DOI: 10.1042/cbi20100284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Uppalapati M, Huang YM, Aravamuthan V, Jackson TN, Hancock WO. "Artificial mitotic spindle" generated by dielectrophoresis and protein micropatterning supports bidirectional transport of kinesin-coated beads. Integr Biol (Camb) 2010; 3:57-64. [PMID: 21031221 DOI: 10.1039/c0ib00065e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mitotic spindle is a dynamic assembly of microtubules and microtubule-associated proteins that controls the directed movement of chromosomes during cell division. Because proper segregation of the duplicated genome requires that each daughter cell receives precisely one copy of each chromosome, numerous overlapping mechanisms have evolved to ensure that every chromosome is transported to the cell equator during metaphase. However, due to the inherent redundancy in this system, cellular studies using gene knockdowns or small molecule inhibitors have an inherent limit in defining the sufficiency of precise molecular mechanisms as well as quantifying aspects of their mechanical performance. Thus, there exists a need for novel experimental approaches that reconstitute important aspects of the mitotic spindle in vitro. Here, we show that by microfabricating Cr electrodes on quartz substrates and micropatterning proteins on the electrode surfaces, AC electric fields can be used to assemble opposed bundles of aligned and uniformly oriented microtubules as found in the mitotic spindle. By immobilizing microtubule ends on each electrode, analogous to anchoring at centrosomes, solutions of motor or microtubule binding proteins can be introduced and their resulting dynamics analyzed. Using this "artificial mitotic spindle" we show that beads functionalized with plus-end kinesin motors move in an oscillatory manner analogous to the movements of chromosomes and severed chromosome arms during metaphase. Hence, features of directional instability, an established characteristic of metaphase chromosome dynamics, can be reconstituted in vitro using a pair of uniformly oriented microtubule bundles and a plus-end kinesin functionalized bead.
Collapse
Affiliation(s)
- Maruti Uppalapati
- Department of Bioengineering, The Pennsylvania State University, University Park, 16802, USA
| | | | | | | | | |
Collapse
|
17
|
Radulescu AE, Cleveland DW. NuMA after 30 years: the matrix revisited. Trends Cell Biol 2010; 20:214-22. [PMID: 20137953 DOI: 10.1016/j.tcb.2010.01.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 01/05/2010] [Accepted: 01/05/2010] [Indexed: 12/17/2022]
Abstract
The large nuclear mitotic apparatus (NuMA) protein is an abundant component of interphase nuclei and an essential player in mitotic spindle assembly and maintenance. With its partner, cytoplasmic dynein, NuMA uses its cross-linking properties to tether microtubules to spindle poles. NuMA and its invertebrate homologs play a similar tethering role at the cell cortex, thereby mediating essential asymmetric divisions during development. Despite its maintenance as a nuclear component for decades after the final mitosis of many cell types (including neurons), an interphase role for NuMA remains to be established, although its structural properties implicate it as a component of a nuclear scaffold, perhaps as a central constituent of the proposed nuclear matrix.
Collapse
Affiliation(s)
- Andreea E Radulescu
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093-6070, USA
| | | |
Collapse
|
18
|
Müller-Reichert T, Greenan G, O’Toole E, Srayko M. The elegans of spindle assembly. Cell Mol Life Sci 2010; 67:2195-213. [PMID: 20339898 PMCID: PMC2883083 DOI: 10.1007/s00018-010-0324-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 11/26/2022]
Abstract
The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly.
Collapse
Affiliation(s)
| | - Garrett Greenan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPICBG), Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Eileen O’Toole
- Boulder Laboratory for 3D Electron Microscopy of Cells, University of Colorado, Boulder, CO 80309 USA
| | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
19
|
Gatlin JC, Bloom K. Microtubule motors in eukaryotic spindle assembly and maintenance. Semin Cell Dev Biol 2010; 21:248-54. [PMID: 20109569 DOI: 10.1016/j.semcdb.2010.01.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/19/2010] [Indexed: 01/26/2023]
Abstract
The spindle is a microtubule-based structure that facilitates chromosome segregation during mitosis and meiosis. Spindle assembly from dynamic microtubule building blocks is a major challenge for the dividing cell and a process that critically requires microtubule motors. In this review we focus on the mechanisms by which microtubule motors shape the spindle. Specifically, we address how motors are thought to move and arrange microtubules to form the characteristic bipolar morphology shared by all eukaryotic spindles as well as motor-dependent mechanisms of microtubule length regulation.
Collapse
Affiliation(s)
- Jesse C Gatlin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, United States.
| | | |
Collapse
|
20
|
Abstract
Kinesin-5s help assemble the bipolar spindle by crosslinking and sliding apart antiparallel microtubules. A recent study has uncovered a novel pathway for the phospho-regulation of these motors.
Collapse
Affiliation(s)
- David J Sharp
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | |
Collapse
|
21
|
Delattre M, Félix MA. The evolutionary context of robust and redundant cell biological mechanisms. Bioessays 2009; 31:537-45. [DOI: 10.1002/bies.200800215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
22
|
Dinu CZ, Bale SS, Zhu G, Dordick JS. Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2009; 5:310-315. [PMID: 19148890 DOI: 10.1002/smll.200801434] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Cerasela Zoica Dinu
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
23
|
Requirement for Nudel and dynein for assembly of the lamin B spindle matrix. Nat Cell Biol 2009; 11:247-56. [PMID: 19198602 PMCID: PMC2699591 DOI: 10.1038/ncb1832] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 11/19/2008] [Indexed: 01/14/2023]
Abstract
Guanosine triphosphatase Ran (RanGTP) can stimulate assembly of the type V intermediate filament protein, lamin B, into a membranous lamin B spindle matrix, which is required for proper microtubule organization during spindle assembly. Microtubules in turn enhance assembly of the matrix. We report here that the isolated matrix contains known spindle assembly factors such as dynein and Nudel. Using spindle assembly assays in Xenopus egg extracts, we show that Nudel regulates microtubule organization during spindle assembly independent of its function at kinetochores. Importantly, Nudel directly interacts with lamin B to facilitate the accumulation and assembly of lamin B-containing matrix on microtubules in a dynein-dependent manner. Perturbing either Nudel or dynein inhibited assembly of lamin B matrix. However, depleting lamin B still allowed formation of matrices containing dynein and Nudel. Therefore, dynein and Nudel regulate assembly of the lamin B matrix. Interestingly, we found that whereas depleting lamin B resulted in disorganized spindle and spindle poles, disrupting the function of Nudel or dynein caused a complete lack of spindle pole focusing. We suggest that Nudel regulates microtubule organization in part by facilitating assembly of the lamin B spindle matrix in a dynein-dependent manner.
Collapse
|
24
|
Venoux M, Delmouly K, Milhavet O, Vidal-Eychenié S, Giorgi D, Rouquier S. Gene organization, evolution and expression of the microtubule-associated protein ASAP (MAP9). BMC Genomics 2008; 9:406. [PMID: 18782428 PMCID: PMC2551623 DOI: 10.1186/1471-2164-9-406] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 09/09/2008] [Indexed: 11/10/2022] Open
Abstract
Background ASAP is a newly characterized microtubule-associated protein (MAP) essential for proper cell-cycling. We have previously shown that expression deregulation of human ASAP results in profound defects in mitotic spindle formation and mitotic progression leading to aneuploidy, cytokinesis defects and/or cell death. In the present work we analyze the structure and evolution of the ASAP gene, as well as the domain composition of the encoded protein. Mouse and Xenopus cDNAs were cloned, the tissue expression characterized and the overexpression profile analyzed. Results Bona fide ASAP orthologs are found in vertebrates with more distantly related potential orthologs in invertebrates. This single-copy gene is conserved in mammals where it maps to syntenic chromosomal regions, but is also clearly identified in bird, fish and frog. The human gene is strongly expressed in brain and testis as a 2.6 Kb transcript encoding a ~110 KDa protein. The protein contains MAP, MIT-like and THY domains in the C-terminal part indicative of microtubule interaction, while the N-terminal part is more divergent. ASAP is composed of ~42% alpha helical structures, and two main coiled-coil regions have been identified. Different sequence features may suggest a role in DNA damage response. As with human ASAP, the mouse and Xenopus proteins localize to the microtubule network in interphase and to the mitotic spindle during mitosis. Overexpression of the mouse protein induces mitotic defects similar to those observed in human. In situ hybridization in testis localized ASAP to the germ cells, whereas in culture neurons ASAP localized to the cell body and growing neurites. Conclusion The conservation of ASAP indicated in our results reflects an essential function in vertebrates. We have cloned the ASAP orthologs in mouse and Xenopus, two valuable models to study the function of ASAP. Tissue expression of ASAP revealed a high expression in brain and testis, two tissues rich in microtubules. ASAP associates to the mitotic spindle and cytoplasmic microtubules, and represents a key factor of mitosis with possible involvement in other cell cycle processes. It may have a role in spermatogenesis and also represents a potential new target for antitumoral drugs. Possible involvement in neuron dynamics also highlights ASAP as a candidate target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Magali Venoux
- Groupe Microtubules et Cycle Cellulaire, Institut de Génétique Humaine, CNRS UPR 1142, rue de cardonille, 34396 Montpellier cédex 5, France.
| | | | | | | | | | | |
Collapse
|
25
|
Zimmerman W, Doxsey SJ. Construction of Centrosomes and Spindle Poles by Molecular Motor-Driven Assembly of Protein Particles. Traffic 2008. [DOI: 10.1111/j.1600-0854.2000.11202.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Alieva IB, Uzbekov RE. The centrosome is a polyfunctional multiprotein cell complex. BIOCHEMISTRY (MOSCOW) 2008; 73:626-43. [DOI: 10.1134/s0006297908060023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
27
|
Henson JH, Fried CA, McClellan MK, Ader J, Davis JE, Oldenbourg R, Simerly CR. Bipolar, anastral spindle development in artificially activated sea urchin eggs. Dev Dyn 2008; 237:1348-58. [PMID: 18393308 PMCID: PMC2386260 DOI: 10.1002/dvdy.21533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mitotic apparatus of the early sea urchin embryo is the archetype example of a centrosome-dominated, large aster spindle organized by means of the centriole of the fertilizing sperm. In this study, we tested the hypothesis that artificially activated sea urchin eggs possess the capacity to assemble the anastral, bipolar spindles present in many acentrosomal systems. Control fertilized Lytechinus pictus embryos and ammonia-activated eggs were immunolabeled for tubulin, centrosomal material, the spindle pole structuring protein NuMA and the mitotic kinesins MKLP1/Kinesin-6, Eg5/Kinesin-5, and KinI/Kinesin-13. Confocal imaging showed that a subset of ammonia-activated eggs contained bipolar "mini-spindles" that were anastral; displayed metaphase and anaphase-like stages; labeled for centrosomal material, NuMA, and the three mitotic kinesins; and were observed in living eggs using polarization optics. These results suggest that spindle structural and motor proteins have the ability to organize bipolar, anastral spindles in sea urchin eggs activated in the absence of the paternal centriole.
Collapse
Affiliation(s)
- John H Henson
- Department of Biology, Dickinson College, Carlisle, Pennsylvania 17013, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Swain JE, Ding J, Wu J, Smith GD. Regulation of spindle and chromatin dynamics during early and late stages of oocyte maturation by aurora kinases. Mol Hum Reprod 2008; 14:291-9. [PMID: 18353803 PMCID: PMC2408935 DOI: 10.1093/molehr/gan015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Examination of factors regulating oocyte chromatin remodeling is crucial to circumvent embryonic aneuploidy and resulting defects. Aurora kinases (AURK) are involved in regulation of chromatin remodeling, however, little attention has been paid to AURKs in regard to oocyte maturation. Meiotically incompetent mouse oocytes contain transcripts for all three Aurk isoforms: A, B and C. Upon achieving meiotic competence, oocytes showed significant increases in transcript levels of all three Aurk isoforms and transcript levels remained unchanged as oocytes progressed through meiosis, with AurkA being the predominant isoform. Inhibition of oocyte AURKs during the prophase–metaphase I (MI) transition via inhibitor ZM447439 (ZM) had no effect on germinal vesicle breakdown. However, meiotic spindles were malformed, and microtubule organizing centers and chromatin were scattered. Chromosomal spreads of MI oocytes indicated AURK inhibition resulted in abnormal chromosome condensation. Furthermore, inhibition of AURK during prophase I–MII prevented completion of MII and extrusion of the polar body. Inhibition of AURKs during the MI–MII transition resulted in significantly fewer cells progressing to MII and induced aberrant chromatin remodeling. Further analysis indicated that inhibition of AURKs resulted in absence of histone-H3 phosphorylation at serine 10 and 28. These data suggest a ZM-sensitive AURK may be an oocyte histone-H3 kinase capable of regulating chromatin remodeling throughout oocyte meiosis, both pre- and post-MI.
Collapse
Affiliation(s)
- Jason E Swain
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
29
|
Yang S, Liu X, Yin Y, Fukuda MN, Zhou J. Tastin is required for bipolar spindle assembly and centrosome integrity during mitosis. FASEB J 2008; 22:1960-72. [PMID: 18218922 DOI: 10.1096/fj.07-081463] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tastin was previously characterized as an accessory protein for cell adhesion that participates in early embryo implantation. Here, we report that tastin is also required for spindle assembly during mitosis. Tastin protein levels peaked in the G(2)/M phase and abruptly declined after cell division. Microscopy showed that tastin is primarily localized on the microtubules, centrosomes, and the mitotic spindle during the cell cycle. Tastin interacted with the dynein intermediate chain, p150(Glued), and gamma-tubulin in addition to Tctex-1 (the light chain of dynein). Overexpression of tastin led to monopolar spindle formation, whereas loss of tastin expression caused profound mitotic block and preferentially induced multipolar spindles. These multipolar spindles were generated through a loss of cohesion in mitotic centrosomes; specifically, tastin depletion caused the fragmentation of pericentrosomal material and the splitting of the centrioles at the spindle poles. Tastin depletion induced centrosome abnormalities exclusively during mitosis and required both microtubule integrity and Eg5 activity. However, tastin depletion did not disrupt the organization of spindle poles, as revealed by localization of nuclear mitotic apparatus protein (NuMA) and the p150(Glued) component of dynactin. These data indicate that the major function of tastin during mitosis is to maintain the structural and dynamic features of centrosomes, thereby contributing to spindle bipolarity.
Collapse
Affiliation(s)
- Shuo Yang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
30
|
Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod Biomed Online 2008; 16:103-12. [PMID: 18252055 DOI: 10.1016/s1472-6483(10)60562-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aneuploidy often results from chromosome misalignment at metaphases. Oocytes from senescence-accelerated mice (SAM) exhibit increased chromosome misalignment with age, which originates from nuclear factors. This work sought to further characterize the underlying defects of chromosome misalignments. Using immunofluorescence microscopy with specific antibodies, several specific components associated with spindles or chromosomes, including centrosomes, centromeres and cohesin complex were examined. No obvious differences were found in the distribution of centrosome focus at the spindle pole of oocytes from young and aged SAM, regardless of chromosome alignments, although cytoplasmic centrosome foci were significantly reduced in aged SAM (P < 0.0001). Oocytes from both young and aged SAM exhibited centromere-associated protein-E (CENP-E) at centromeres of all chromosomes, including misaligned chromosomes from aged SAM, demonstrating that CENP-E did not contribute to chromosome misalignments. Notably, both meiotic cohesin proteins located between sister chromatids, REC8 (recombinant 8), STAG3 (stromal antigen 3) and SMC1beta, were remarkably reduced in oocytes from aged SAM. Further, degradation of the cohesin was even more obvious in SAM than in hybrid F1 mice with age, which may explain why SAM are vulnerable to aneuploidy. This natural ageing mouse model shows that defective cohesin coincides with increased incidence of chromosome misalignment and precocious separations of sister chromatids.
Collapse
Affiliation(s)
- Lin Liu
- Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa, Florida 33612, USA.
| | | |
Collapse
|
31
|
Burakov A, Kovalenko O, Semenova I, Zhapparova O, Nadezhdina E, Rodionov V. Cytoplasmic dynein is involved in the retention of microtubules at the centrosome in interphase cells. Traffic 2007; 9:472-80. [PMID: 18182007 DOI: 10.1111/j.1600-0854.2007.00698.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytoplasmic dynein is known to be involved in the establishment of radial microtubule (MT) arrays. During mitosis, dynein activity is required for tethering of the MTs at the spindle poles. In interphase cells, dynein inhibitors induce loss of radial MT organization; however, the exact role of dynein in the maintenance of MT arrays is unclear. Here, we examined the effect of dynein inhibitors on MT distribution and the centrosome protein composition in cultured fibroblasts. We found that while these inhibitors induced rapid (t(1/2) approximately 20 min) loss of radial MT organization, the levels of key centrosomal proteins or the rates of MT nucleation did not change significantly in dynein-inhibited cells, suggesting that the loss of dynein activity does not affect the structural integrity of the centrosome or its capacity to nucleate MTs. Live observations of the centrosomal activity showed that dynein inhibition enhanced the detachment of MTs from the centrosome. We conclude that the primary role of dynein in the maintenance of a radial MT array in interphase cells consists of retention of MTs at the centrosome and hypothesize that dynein has a role in the MT retention, separate from the delivery to the centrosome of MT-anchoring proteins.
Collapse
Affiliation(s)
- Anton Burakov
- Department of Cell Biology and Center for Cell Analysis and Modeling, University of Connecticut Health Center, 263 Farmington Avenue-MC1507, Farmington, CT 06032-1507, USA
| | | | | | | | | | | |
Collapse
|
32
|
Pfaff KL, Straub CT, Chiang K, Bear DM, Zhou Y, Zon LI. The zebra fish cassiopeia mutant reveals that SIL is required for mitotic spindle organization. Mol Cell Biol 2007; 27:5887-97. [PMID: 17576815 PMCID: PMC1952118 DOI: 10.1128/mcb.00175-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A critical step in cell division is formation of the mitotic spindle, which is a bipolar array of microtubules that mediates chromosome separation. Here, we report that the SCL-interrupting locus (SIL), a vertebrate-specific cytosolic protein, is necessary for proper mitotic spindle organization in zebrafish and human cells. A homozygous lethal zebrafish mutant, cassiopeia (csp), was identified by a genetic screen for mitotic mutant. csp mutant embryos have an increased mitotic index, have highly disorganized mitotic spindles, and often lack one or both centrosomes. These phenotypes are caused by a loss-of-function mutation in zebrafish sil. To determine if the requirement for SIL in mitotic spindle organization is conserved in mammals, we generated an antibody against human SIL, which revealed that SIL localizes to the poles of the mitotic spindle during metaphase. Furthermore, short hairpin RNA knockdown of SIL in human cells recapitulates the zebrafish csp mitotic spindle defects. These data, taken together, identify SIL as a novel, vertebrate-specific regulator of mitotic spindle assembly.
Collapse
Affiliation(s)
- Kathleen L Pfaff
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital Boston, Dana Farber Cancer Research Institute, Howard Hughes Medical Institute, and Harvard Medical School, Karp Family Research Building, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
33
|
Wong RW, Blobel G, Coutavas E. Rae1 interaction with NuMA is required for bipolar spindle formation. Proc Natl Acad Sci U S A 2006; 103:19783-7. [PMID: 17172455 PMCID: PMC1750899 DOI: 10.1073/pnas.0609582104] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In eukaryotic cells, the faithful segregation of daughter chromosomes during cell division depends on formation of a microtubule (MT)-based bipolar spindle apparatus. The Nuclear Mitotic Apparatus protein (NuMA) is recruited from interphase nuclei to spindle MTs during mitosis. The carboxy terminal domain of NuMA binds MTs, allowing a NuMA dimer to function as a "divalent" crosslinker that bundles MTs. The messenger RNA export factor, Rae1, also binds to MTs. Lowering Rae1 or increasing NuMA levels in cells results in spindle abnormalities. We have identified a mitotic-specific interaction between Rae1 and NuMA and have explored the relationship between Rae1 and NuMA in spindle formation. We have mapped a specific binding site for Rae1 on NuMA that would convert a NuMA dimer to a "tetravalent" crosslinker of MTs. In mitosis, reducing Rae1 or increasing NuMA concentration would be expected to alter the valency of NuMA toward MTs; the "density" of NuMA-MT crosslinks in these conditions would be diminished, even though a threshold number of crosslinks sufficient to stabilize aberrant multipolar spindles may form. Consistent with this interpretation, we found that coupling NuMA overexpression to Rae1 overexpression or coupling Rae1 depletion to NuMA depletion prevented the formation of aberrant spindles. Likewise, we found that overexpression of the specific Rae1-binding domain of NuMA in HeLa cells led to aberrant spindle formation. These data point to the Rae1-NuMA interaction as a critical element for normal spindle formation in mitosis.
Collapse
Affiliation(s)
- Richard W. Wong
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021
| | - Günter Blobel
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021
- *To whom correspondence may be addressed. E-mail:
or
| | - Elias Coutavas
- Laboratory of Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
34
|
Dai Y, Wang L, Wang H, Liu Y, Li N, Lyu Q, Keefe DL, Albertini DF, Liu L. Fate of centrosomes following somatic cell nuclear transfer (SCNT) in bovine oocytes. Reproduction 2006; 131:1051-61. [PMID: 16735544 DOI: 10.1530/rep.1.01058] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cloning mammalians by somatic cell nuclear transfer (SCNT) remains inefficient. A majority of clones produced by SCNT fail to develop properly and of those which do survive, some exhibit early aging, premature death, tumors, and other pathologies associated with aneuploidy. Alterations of centrosomes are linked to aberrant cell cycle progression, aneuploidy, and tumorigenesis in many cell types. It remains to be determined how centrosomes are remodeled in cloned bovine embryos. We show that abnormalities in either distribution and/or number of centrosomes were evident in approximately 50% of reconstructed embryos following SCNT. Moreover, centrosome abnormalities and failed ‘pronuclear’ migration which manifested during the first cell cycle coincided with errors in spindle morphogenesis, chromosome alignment, and cytokinesis. By contrast, nuclear mitotic apparatus protein (NuMA) exhibited normal expression patterns at metaphase spindle poles and in ‘pronucleus’ during interphase. The defects in centrosome remodeling and ‘pronuclear’ migration could lead to chromosome instability and developmental failures associated with embryo production by SCNT. Addressing these fundamental problems may enhance production of normal clones.
Collapse
Affiliation(s)
- Yunping Dai
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vanstraelen M, Inzé D, Geelen D. Mitosis-specific kinesins in Arabidopsis. TRENDS IN PLANT SCIENCE 2006; 11:167-75. [PMID: 16530461 DOI: 10.1016/j.tplants.2006.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/09/2006] [Accepted: 02/24/2006] [Indexed: 05/07/2023]
Abstract
Kinesins are a class of microtubule-associated proteins that possess a motor domain for binding to microtubules and, in general, allows movement along microtubules. In animal mitosis, they function in spindle formation, chromosome movement and in cytokinesis. In addition to the spindle, plants develop a preprophase band and a phragmoplast that might require multiple kinesins for construction and functioning. Indeed, several kinesins play a role in phragmoplast and cell plate dynamics. Surprisingly few kinesins have been associated with the spindle and the preprophase band. Analysis of expression datasets from synchronized cell cultures indicate that at least 23 kinesins are in some way implicated in mitosis-related processes. In this review, the function of kinesins in animal and plant mitoses are compared, and the divergence that originates from plant-specific aspects is highlighted.
Collapse
Affiliation(s)
- Marleen Vanstraelen
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | |
Collapse
|
36
|
Abstract
Upon infection, virions or subviral nucleoprotein complexes are transported from the cell surface to the site of viral transcription and replication. During viral egress, particles containing viral proteins and nucleic acids again move from the site of their synthesis to that of virus assembly and further to the plasma membrane. Because free diffusion of molecules larger than 500 kDa is restricted in the cytoplasm, viruses as well as cellular organelles employ active, energy-consuming enzymes for directed transport. This is particularly evident in the case of neurotropic viruses that travel long distances in the axon during retrograde or anterograde transport. Viruses use two strategies for intracellular transport: Viral components either hijack the cytoplasmic membrane traffic or they interact directly with the cytoskeletal transport machinery. In this review we describe how viruses--particularly members of the Herpesviridae, Adenoviridae, Parvoviridae, Poxviridae, and Baculoviridae--make use of the microtubule and the actin cytoskeleton. Analysing the underlying principles of viral cytosolic transport will be helpful in the design of viral vectors to be used in research as well as human gene therapy, and in the identification of new antiviral target molecules.
Collapse
Affiliation(s)
- K Döhner
- Department of Virology, Hannover Medical School, Carl-Neuberg-Str 1, 30625 Hannover, Germany
| | | |
Collapse
|
37
|
Li GP, Liu Y, Bunch TD, White KL, Aston KI. Asymmetric division of spindle microtubules and microfilaments during bovine meiosis from metaphase I to metaphase III. Mol Reprod Dev 2005; 71:220-6. [PMID: 15791589 DOI: 10.1002/mrd.20255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The kinetics of spindle and chromosomes during bovine oocyte meiosis from meiosis I to meiosis III is described. The results of this study showed that (1) oocytes began to extrude the first polar body (Pb1) at the early anaphase I stage and the Pb1 totally separated from the mother cell only when oocytes reach the MII stage; (2) the morphology of the spindle changed from barrel-shaped at the metaphase stage to cylinder-shaped at early anaphase, and then to a thin, long triangle-shaped cone at late anaphase and telophase stages; (3) chromosome morphology went from an individual visible stage at metaphase to a less defined chromatin state during anaphase and telophase stages, and then back to visible individual chromosomes at the next metaphase; (4) chromatin that connected with the floor of the cone became the polar bodies and expelled, and almost all of the microtubules (MTs) and microfilaments (MFs) composing the spindles moved towards and contributed to the polar bodies; and (5) the size of the metaphase I (MI) spindle was larger than the metaphase II (MII) and metaphase III (MIII) spindles. The MII spindle, however, is more barrel-shaped than the MI spindle. This study suggests that spindle MTs and MFs during bovine oocyte meiosis are asymmetrically divided into the polar bodies.
Collapse
Affiliation(s)
- Guang-Peng Li
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, Utah 84321, USA.
| | | | | | | | | |
Collapse
|
38
|
Abstract
Accurate and timely chromosome segregation is a task performed within meiotic and mitotic cells by a specialized force-generating structure--the spindle. This micromachine is constructed from numerous proteins, most notably the filamentous microtubules that form a structural framework for the spindle and also transmit forces through it. Poleward flux is an evolutionarily conserved mechanism used by spindle microtubules both to move chromosomes and to regulate spindle length. Recent studies have identified a microtubule-depolymerizing kinesin as a key force-generating component required for flux. On the basis of these findings, we propose a new model for flux powered by a microtubule-disassembly mechanism positioned at the spindle pole. In addition, we use the flux model to explain the results of spindle manipulation experiments to illustrate the importance of flux for proper chromosome positioning.
Collapse
Affiliation(s)
- Gregory C Rogers
- Department of Physiology and Biophysics, 223 Ullmann Building, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
39
|
Mirouse V, Dastugue B, Couderc JL. The Drosophila Toucan protein is a new mitotic microtubule-associated protein required for spindle microtubule stability. Genes Cells 2005; 10:37-46. [PMID: 15670212 DOI: 10.1111/j.1365-2443.2004.00813.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitotic spindle dynamics are highly dependent on proteins that interact with microtubules to influence their organization or stability. Here, we show that the Drosophila Toucan protein interacts directly with microtubules. Its localization to the microtubule network when it is expressed in mammalian cells and its direct interaction with microtubules in vitro are dependent on its central basic domain. Moreover, Toc expression in mammalian cells strongly protects microtubules from depolymerization. By using in vivo inducible RNAi in syncytial embryos, we generated a dose-sensitive loss of function of toucan, demonstrating that this technique is an efficient method for inactivating a maternal transcript. This enabled us to accurately characterize several new mitotic defects from the early to the late phases of mitosis, depending on Toucan depletion level. Toucan is required for metaphase spindle formation and centrosome anchoring to the poles. Then, during anaphase, Toc depletion affects kinetochore microtubules and therefore chromosome segregation. Toc is also necessary for central spindle formation by the interpolar microtubules. In contrast, astral microtubules are not disturbed by Toc depletion. Taken together, our results show that Toucan is a microtubule-associated protein specifically required for the stability of spindle microtubules throughout mitosis.
Collapse
Affiliation(s)
- Vincent Mirouse
- Institut National de la Santé et de la Recherche Médicale UMR384, Laboratoire de Biochimie, UFR Médecine, 28, place Henri Dunant, 63001 Clermont-Fd, France
| | | | | |
Collapse
|
40
|
Michaut MA, Williams CJ, Schultz RM. Phosphorylated MARCKS: A novel centrosome component that also defines a peripheral subdomain of the cortical actin cap in mouse eggs. Dev Biol 2005; 280:26-37. [PMID: 15766745 DOI: 10.1016/j.ydbio.2005.01.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 12/23/2004] [Accepted: 01/04/2005] [Indexed: 01/13/2023]
Abstract
MARCKS (myristoylated alanine-rich C-kinase substrate) is a major substrate for protein kinase C (PKC), a kinase that has multiple functions during oocyte maturation and egg activation, for example, spindle function and cytoskeleton reorganization. We examined temporal and spatial changes in p-MARCKS localization during maturation of mouse oocytes and found that p-MARCKS is a novel centrosome component based its co-localization with pericentrin and gamma-tubulin within microtubule organizing centers (MTOCs). Like pericentrin, p-MARCKS staining at the MI spindle poles was asymmetric. Based on this asymmetry, we found that one end of the spindle was preferentially extruded with the first polar body. At MII, however, the spindle poles had symmetrical p-MARCKS staining. p-MARCKS also was enriched in the periphery of the actin cap overlying the MI or MII spindle to form a ring-shaped subdomain. Because phosphorylation of MARCKS modulates its actin crosslinking function, this localization suggests p-MARCKS functions as part of the contractile apparatus during polar body emission. Our finding that an activator of conventional and novel PKC isoforms did not increase the amount of p-MARCKS suggested that an atypical isoform was responsible for MARCKS phosphorylation. Consistent with this idea, immunostaining revealed that the staining patterns of p-MARCKS and the active form of the atypical PKC zeta/lambda isoform(s) were very similar. These results show that p-MARCKS is a novel centrosome component and also defines a previously unrecognized subdomain of the actin cap overlying the spindle.
Collapse
Affiliation(s)
- Marcela A Michaut
- Center for Research on Reproduction and Women's Health and Department of Obstetrics and Gynecology, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
41
|
Maiato H, Sampaio P, Sunkel CE. Microtubule-associated proteins and their essential roles during mitosis. ACTA ACUST UNITED AC 2005; 241:53-153. [PMID: 15548419 DOI: 10.1016/s0074-7696(04)41002-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microtubules play essential roles during mitosis, including chromosome capture, congression, and segregation. In addition, microtubules are also required for successful cytokinesis. At the heart of these processes is the ability of microtubules to do work, a property that derives from their intrinsic dynamic behavior. However, if microtubule dynamics were not properly regulated, it is certain that microtubules alone could not accomplish any of these tasks. In vivo, the regulation of microtubule dynamics is the responsibility of microtubule-associated proteins. Among these, we can distinguish several classes according to their function: (1) promotion and stabilization of microtubule polymerization, (2) destabilization or severance of microtubules, (3) functioning as linkers between various structures, or (4) motility-related functions. Here we discuss how the various properties of microtubule-associated proteins can be used to assemble an efficient mitotic apparatus capable of ensuring the bona fide transmission of the genetic information in animal cells.
Collapse
Affiliation(s)
- Hélder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
42
|
Krauss SW, Lee G, Chasis JA, Mohandas N, Heald R. Two Protein 4.1 Domains Essential for Mitotic Spindle and Aster Microtubule Dynamics and Organization in Vitro. J Biol Chem 2004; 279:27591-8. [PMID: 15102852 DOI: 10.1074/jbc.m402813200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multifunctional structural proteins belonging to the 4.1 family are components of nuclei, spindles, and centrosomes in vertebrate cells. Here we report that 4.1 is critical for spindle assembly and the formation of centrosome-nucleated and motor-dependent self-organized microtubule asters in metaphase-arrested Xenopus egg extracts. Immunodepletion of 4.1 disrupted microtubule arrays and mislocalized the spindle pole protein NuMA. Remarkably, assembly was completely rescued by supplementation with a recombinant 4.1R isoform. We identified two 4.1 domains critical for its function in microtubule polymerization and organization utilizing dominant negative peptides. The 4.1 spectrin-actin binding domain or NuMA binding C-terminal domain peptides caused morphologically disorganized structures. Control peptides with low homology or variant spectrin-actin binding domain peptides that were incapable of binding actin had no deleterious effects. Unexpectedly, the addition of C-terminal domain peptides with reduced NuMA binding caused severe microtubule destabilization in extracts, dramatically inhibiting aster and spindle assembly and also depolymerizing preformed structures. However, the mutant C-terminal peptides did not directly inhibit or destabilize microtubule polymerization from pure tubulin in a microtubule pelleting assay. Our data showing that 4.1 is a crucial factor for assembly and maintenance of mitotic spindles and self-organized and centrosome-nucleated microtubule asters indicates that 4.1 is involved in regulating both microtubule dynamics and organization. These investigations underscore an important functional context for protein 4.1 in microtubule morphogenesis and highlight a previously unappreciated role for 4.1 in cell division.
Collapse
Affiliation(s)
- Sharon Wald Krauss
- Lawrence Berkeley National Laboratory, Life Sciences Division, University of California, Berkeley 94720, USA.
| | | | | | | | | |
Collapse
|
43
|
Chakravarty A, Howard L, Compton DA. A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Mol Biol Cell 2004; 15:2116-32. [PMID: 14978218 PMCID: PMC404009 DOI: 10.1091/mbc.e03-08-0579] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 01/30/2004] [Accepted: 01/30/2004] [Indexed: 11/11/2022] Open
Abstract
We used computer simulation to understand the functional relationships between motor (dynein, HSET, and Eg5) and non-motor (NuMA) proteins involved in microtubule aster organization. The simulation accurately predicted microtubule organization under all combinations of motor and non-motor proteins, provided that microtubule cross-links at minus-ends were dynamic, and dynein and HSET were restricted to cross-linking microtubules in parallel orientation only. A mechanistic model was derived from these data in which a combination of two aggregate properties, Net Minus-end-directed Force and microtubule Cross-linking Orientation Bias, determine microtubule organization. This model uses motor and non-motor proteins, accounts for motor antagonism, and predicts that alterations in microtubule Cross-linking Orientation Bias should compensate for imbalances in motor force during microtubule aster formation. We tested this prediction in the mammalian mitotic extract and, consistent with the model, found that increasing the contribution of microtubule cross-linking by NuMA compensated for the loss of Eg5 motor activity. Thus, this model proposes a precise mechanism of action of each noncentrosomal protein during microtubule aster organization and suggests that microtubule organization in spindles involves both motile forces from motors and static forces from non-motor cross-linking proteins.
Collapse
Affiliation(s)
- Arijit Chakravarty
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
44
|
Malikov V, Kashina A, Rodionov V. Cytoplasmic dynein nucleates microtubules to organize them into radial arrays in vivo. Mol Biol Cell 2004; 15:2742-9. [PMID: 15047865 PMCID: PMC420098 DOI: 10.1091/mbc.e03-10-0770] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Numerous evidence demonstrates that dynein is crucial for organization of microtubules (MTs) into radial arrays, but its exact function in this process is unclear. Here, we studied the role of cytoplasmic dynein in MT radial array formation in the absence of the centrosome. We found that dynein is a potent MT nucleator in vitro and that stimulation of dynein activity in cytoplasmic fragments of melanophores induces nucleation-dependent formation of MT radial array in the absence of the centrosome. This new property of dynein, in combination with its known role as an MT motor that is essential for MT array organization in the absence and presence of the centrosome, makes it a unique molecule whose activity is necessary and sufficient for the formation and maintenance of MT radial arrays in cells.
Collapse
Affiliation(s)
- Viacheslav Malikov
- Department of Physiology and Center for Biomedical Imaging Technology, University of Connecticut Health Center, Farmington, Connecticut 06032-1507, USA
| | | | | |
Collapse
|
45
|
Taskén K, Aandahl EM. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol Rev 2004; 84:137-67. [PMID: 14715913 DOI: 10.1152/physrev.00021.2003] [Citation(s) in RCA: 567] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
More than 20% of the human genome encodes proteins involved in transmembrane and intracellular signaling pathways. The cAMP-protein kinase A (PKA) pathway is one of the most common and versatile signal pathways in eukaryotic cells and is involved in regulation of cellular functions in almost all tissues in mammals. Various extracellular signals converge on this signal pathway through ligand binding to G protein-coupled receptors, and the cAMP-PKA pathway is therefore tightly regulated at several levels to maintain specificity in the multitude of signal inputs. Ligand-induced changes in cAMP concentration vary in duration, amplitude, and extension into the cell, and cAMP microdomains are shaped by adenylyl cyclases that form cAMP as well as phosphodiesterases that degrade cAMP. Different PKA isozymes with distinct biochemical properties and cell-specific expression contribute to cell and organ specificity. A kinase anchoring proteins (AKAPs) target PKA to specific substrates and distinct subcellular compartments providing spatial and temporal specificity for mediation of biological effects channeled through the cAMP-PKA pathway. AKAPs also serve as scaffolding proteins that assemble PKA together with signal terminators such as phosphatases and cAMP-specific phosphodiesterases as well as components of other signaling pathways into multiprotein signaling complexes that serve as crossroads for different paths of cell signaling. Targeting of PKA and integration of a wide repertoire of proteins involved in signal transduction into complex signal networks further increase the specificity required for the precise regulation of numerous cellular and physiological processes.
Collapse
Affiliation(s)
- Kjetil Taskén
- The Biotechnology Centre of Oslo, University of Oslo, Norway.
| | | |
Collapse
|
46
|
Neben K, Tews B, Wrobel G, Hahn M, Kokocinski F, Giesecke C, Krause U, Ho AD, Krämer A, Lichter P. Gene expression patterns in acute myeloid leukemia correlate with centrosome aberrations and numerical chromosome changes. Oncogene 2004; 23:2379-84. [PMID: 14767474 DOI: 10.1038/sj.onc.1207401] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes, which mediate accurate chromosome segregation during mitosis, undergo duplication precisely once per cell division at the G1/S boundary. Recently, we described centrosome aberrations as a possible cause of aneuploidy in acute myeloid leukemia (AML) and found a correlation of the percentage of cells carrying abnormal centrosomes to their cytogenetic risk profile. To elucidate the molecular events responsible for the development of centrosome aberrations in AML, tumor RNA of 29 AML samples was hybridized to cDNA microarrays. The microarrays comprised some 2800 different genes with relevance to hematopoiesis, tumorigenesis and mitosis and included a set of 359 centrosome-associated genes. We identified two gene expression signatures, which allowed an accurate classification according to the extent of centrosome aberrations and the ploidy status in 28 of 29 patients each. Specifically, 18 genes were present in both signatures, including genes that code for cell cycle regulatory proteins (cyclin A2, cyclin D3, cyclin H, CDK6, p18INK4c, p21Cip1, PAK1) and centrosome-associated proteins (pericentrin, alpha2-tubulin, NUMA1, TUBGCP2, PRKAR2A). In conclusion, the high expression of centrosome-associated genes matches the description of centrosome aberrations in several tumor types. Moreover, in AML the identification of G1/S-phase stimulatory genes suggests that one mechanism of aneuploidy induction might be the deregulation of centrosome replication at the G1/S boundary.
Collapse
Affiliation(s)
- Kai Neben
- Division of Molecular Genetics (B060), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Krämer A, Schweizer S, Neben K, Giesecke C, Kalla J, Katzenberger T, Benner A, Müller-Hermelink HK, Ho AD, Ott G. Centrosome aberrations as a possible mechanism for chromosomal instability in non-Hodgkin's lymphoma. Leukemia 2004; 17:2207-13. [PMID: 14523473 DOI: 10.1038/sj.leu.2403142] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Recently, centrosome aberrations have been described as a possible cause of aneuploidy in many solid tumors. To investigate whether centrosome aberrations occur in non-Hodgkin's lymphoma (NHL) and correlate with histologic subtype, karyotype, and other biological disease features, we examined 24 follicular lymphomas (FL), 18 diffuse large-B-cell lymphomas (DLCL), 33 mantle cell lymphomas (MCL), and 17 extranodal marginal zone B-cell lymphomas (MZBCL), using antibodies to centrosomal proteins. All 92 NHL displayed numerical and structural centrosome aberrations as compared to nonmalignant lymphoid tissue. Centrosome abnormalities were detectable in 32.3% of the cells in NHL, but in only 5.5% of lymphoid cells from 30 control individuals (P<0.0001). Indolent FL and MZBCL contained only 25.8 and 28.8% cells with abnormal centrosomes. In contrast, aggressive DLCL and MCL harbored centrosome aberrations in 41.8 and 35.0% of the cells, respectively (P<0.0001). Centrosomal aberrations correlated to lymphoma grade, mitotic, and proliferation indices, but not to the p53 labeling index. Importantly, diploid MCL contained 31.2% cells with abnormal centrosomes, while tetraploid samples harbored centrosome aberrations in 55.6% of the cells (P<0.0001). These results indicate that centrosome defects are common in NHL and suggest that they may contribute to the acquisition of chromosomal instability typically seen in NHL.
Collapse
Affiliation(s)
- A Krämer
- Medizinische Klinik und Poliklinik V, Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Segbert C, Barkus R, Powers J, Strome S, Saxton WM, Bossinger O. KLP-18, a Klp2 kinesin, is required for assembly of acentrosomal meiotic spindles in Caenorhabditis elegans. Mol Biol Cell 2003; 14:4458-69. [PMID: 12937278 PMCID: PMC266765 DOI: 10.1091/mbc.e03-05-0283] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The proper segregation of chromosomes during meiosis or mitosis requires the assembly of well organized spindles. In many organisms, meiotic spindles lack centrosomes. The formation of such acentrosomal spindles seems to involve first assembly or capture of microtubules (MTs) in a random pattern around the meiotic chromosomes and then parallel bundling and bipolar organization by the action of MT motors and other proteins. Here, we describe the structure, distribution, and function of KLP-18, a Caenorhabditis elegans Klp2 kinesin. Previous reports of Klp2 kinesins agree that it concentrates in spindles, but do not provide a clear view of its function. During prometaphase, metaphase, and anaphase, KLP-18 concentrates toward the poles in both meiotic and mitotic spindles. Depletion of KLP-18 by RNA-mediated interference prevents parallel bundling/bipolar organization of the MTs that accumulate around female meiotic chromosomes. Hence, meiotic chromosome segregation fails, leading to haploid or aneuploid embryos. Subsequent assembly and function of centrosomal mitotic spindles is normal except when aberrant maternal chromatin is present. This suggests that although KLP-18 is critical for organizing chromosome-derived MTs into a parallel bipolar spindle, the order inherent in centrosome-derived astral MT arrays greatly reduces or eliminates the need for KLP-18 organizing activity in mitotic spindles.
Collapse
Affiliation(s)
- Christoph Segbert
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Lu C, Srayko M, Mains PE. The Caenorhabditis elegans microtubule-severing complex MEI-1/MEI-2 katanin interacts differently with two superficially redundant beta-tubulin isotypes. Mol Biol Cell 2003; 15:142-50. [PMID: 14565976 PMCID: PMC307535 DOI: 10.1091/mbc.e03-06-0418] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule-severing protein complex katanin is required for a variety of important microtubule-base morphological changes in both animals and plants. Caenorhabditis elegans katanin is encoded by the mei-1 and mei-2 genes and is required for oocyte meiotic spindle formation and must be inactivated before the first mitotic cleavage. We identified a mutation, sb26, in the tbb-2 beta-tubulin gene that partially inhibits MEI-1/MEI-2 activity: sb26 rescues lethality caused by ectopic MEI-1/MEI-2 expression during mitosis, and sb26 increases meiotic defects in a genetic background where MEI-1/MEI-2 activity is lower than normal. sb26 does not interfere with MEI-1/MEI-2 microtubule localization, suggesting that this mutation likely interferes with severing. Tubulin deletion alleles and RNA-mediated interference revealed that TBB-2 and the other germline enriched beta-tubulin isotype, TBB-1, are redundant for embryonic viability. However, limiting MEI-1/MEI-2 activity in these experiments revealed that MEI-1/MEI-2 preferentially interacts with TBB-2-containing microtubules. Our results demonstrate that these two superficially redundant beta-tubulin isotypes have functionally distinct roles in vivo.
Collapse
Affiliation(s)
- Chenggang Lu
- Genes and Development Research Group, University of Calgary, Calgary, Alberta, T2N 4N1 Canada
| | | | | |
Collapse
|
50
|
Ems-McClung SC, Zheng Y, Walczak CE. Importin alpha/beta and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol Biol Cell 2003; 15:46-57. [PMID: 13679510 PMCID: PMC307526 DOI: 10.1091/mbc.e03-07-0454] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The small GTPase Ran is essential for spindle assembly. Ran is proposed to act through its nuclear import receptors importin alpha and/or importin beta to control the sequestration of proteins necessary for spindle assembly. To date, the molecular mechanisms by which the Ran pathway functions remain unclear. Using purified proteins, we have reconstituted Ran-regulated microtubule binding of the C-terminal kinesin XCTK2, a kinesin important for spindle assembly. We show that the tail of XCTK2 binds to microtubules and that this binding is inhibited in the presence of importin alpha and beta (alpha/beta) and restored by addition of Ran-GTP. The bipartite nuclear localization signal (NLS) in the tail of XCTK2 is essential to this process, because mutation of the NLS abolishes importin alpha/beta-mediated regulation of XCTK2 microtubule binding. Our data show that importin alpha/beta directly regulates the activity of XCTK2 and that one of the molecular mechanisms of Ran-regulated spindle assembly is identical to that used in classical NLS-driven nuclear transport.
Collapse
|