1
|
Mitrovic K, Zivotic I, Kolic I, Djordjevic A, Zakula J, Filipovic Trickovic J, Zivkovic M, Stankovic A, Jovanovic I. Identification and functional interpretation of miRNAs affected by rare CNVs in CAKUT. Sci Rep 2022; 12:17746. [PMID: 36273030 PMCID: PMC9587983 DOI: 10.1038/s41598-022-22749-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/19/2022] [Indexed: 01/18/2023] Open
Abstract
Rare copy number variants (CNVs) are among the most common genomic disorders underlying CAKUT. miRNAs located in rare CNVs represent well-founded functional variants for human CAKUT research. The study aimed to identify and functionally interpret miRNAs most frequently affected by rare CNVs in CAKUT and to estimate the overall burden of rare CNVs on miRNA genes in CAKUT. The additional aim of this study was to experimentally confirm the effect of a rare CNV in CAKUT on candidate miRNA's expression and the subsequent change in mRNA levels of selected target genes. A database of CAKUT-associated rare CNV regions, created by literature mining, was used for mapping of the miRNA precursors. miRNAs and miRNA families, most frequently affected by rare CAKUT-associated CNVs, have been subjected to bioinformatic analysis. CNV burden analysis was performed to identify chromosomes with over/underrepresentation of miRNA genes in rare CNVs associated with CAKUT. A functional study was performed on HEK293 MIR484+/- KO and HEK293 WT cell lines, followed by the analysis of relative miRNA and mRNA target gene levels. 80% of CAKUT patients with underlying rare CNV had at least one miRNA gene overlapping the identified CNV. Network analysis of the most frequently affected miRNAs has revealed the dominant regulation of the two miRNAs, hsa-miR-484 and hsa-miR-185-5p. Additionally, miR-548 family members have shown substantial enrichment in rare CNVs in CAKUT. An over/underrepresentation of miRNA genes in rare CNVs associated with CAKUT was observed in multiple chromosomes, such as chr16, chr20, and chr21. A significant 0.37 fold downregulation of hsa-miR-484, followed by a notable upregulation of MDM2 and APAF1 and downregulation of NOTCH3 was detected in HEK293 MIR484+/- KO compared to HEK293 WT cell lines, supporting the study hypothesis. miRNA genes are frequently affected by rare CNVs in CAKUT patients. Understanding the potential of CNV-affected miRNAs to participate in CAKUT as genetic drivers represent a crucial implication for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Kristina Mitrovic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Zivotic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Kolic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Zakula
- grid.7149.b0000 0001 2166 9385Department of Molecular Biology and Endocrinology, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Filipovic Trickovic
- grid.7149.b0000 0001 2166 9385Department of Physical Chemistry, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja Zivkovic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Stankovic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivan Jovanovic
- grid.7149.b0000 0001 2166 9385Department of Radiobiology and Molecular Genetics, “Vinča” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
3
|
Letter to the Editor: "Protective effect of hydrogen sulfide on experimental testicular ischemia reperfusion in rats" Gains and troubles of an experimental study. J Pediatr Urol 2021; 17:132-133. [PMID: 33358114 DOI: 10.1016/j.jpurol.2020.11.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022]
|
4
|
Safari F, Farajnia S, Behzad Behbahani A, Zarredar H, Barekati-Mowahed M, Dehghani H. Caspase-7 deficiency in Chinese hamster ovary cells reduces cell proliferation and viability. Biol Res 2020; 53:52. [PMID: 33187557 PMCID: PMC7666471 DOI: 10.1186/s40659-020-00319-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chinese hamster ovary (CHO) cells are the most commonly used mammalian host cell in the commercial-scale production of biopharmaceutical proteins. Modification of genes involved in apoptosis may improve the productivity of CHO cells. Executive caspases, including caspases 3 and 7, play critical roles in apoptosis. The effects of the ablation of the caspase 7 gene on proliferation and viability of CHO cells remains unknown. In this study, we applied clustered regularly interspaced short palindromic repeat (CRISPR/Cas9) to target caspase 7 gene of CHO K1 cell via all in one and homology targeted integration strategies. Consequently, the effect of caspase 7 deficiency on cell proliferation, viability, and apoptosis was studied by MTT assay and flow cytometry. RESULTS Findings of gel electrophoresis, western blotting, and sequencing confirmed the caspase 7 gene silencing in CHO cells (CHO-KO). Proliferation assay revealed that caspase 7 deficiency in CHO cells resulted in the reduction of proliferation in various CHO-KO clones. Besides, the disruption of caspase 7 had negative effects on cell viability in exposure with NaBu which confirmed by MTT assay. Results of flow cytometry using Anexin V/PI demonstrated that Nabu treatment (11 mM) declined the percentage of live CHO-K1 and CHO-KO cells to 70.3% and 5.79%. These results verified that the CHO-K1 cells were more resistant to apoptosis than CHO-KO, however most of CHO-KO cells undergone early apoptosis (91.9%) which seems to be a fascinating finding. CONCLUSION These results reveal that caspase 7 may be involved in the cell cycle progression of CHO cells. Furthermore, it seems that targeting caspase 7 is not the ideal route as it had previously been imagined within the prevention of apoptosis but the relation between caspase 7 deficiency, cell cycle arrest, and the occurrence of early apoptosis will require more investigation.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave., Tabriz, Iran.
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abbas Behzad Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mazyar Barekati-Mowahed
- Department of Physiology & Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Jian Z, Guo H, Liu H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Oxidative stress, apoptosis and inflammatory responses involved in copper-induced pulmonary toxicity in mice. Aging (Albany NY) 2020; 12:16867-16886. [PMID: 32952128 PMCID: PMC7521514 DOI: 10.18632/aging.103585] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
At present, there are few studies focused on the relationship between copper (Cu) and oxidative stress, apoptosis, or inflammatory responses in animal and human lungs. This study was conducted to explore the effects of Cu on pulmonary oxidative stress, apoptosis and inflammatory responses in mice orally administered with 0 mg/kg (control), 10 mg/kg, 20 mg/kg, and 40 mg/kg of CuSO4 for 42 days. The results showed that CuSO4 increased ROS production, and MDA, 8-OHdG and NO contents as well as iNOS activities and mRNA expression levels. Meanwhile, CuSO4 reduced the activities and mRNA expression levels of antioxidant enzymes (GSH-Px, CAT, and SOD) and GSH contents, and ASA and AHR abilities. Also, CuSO4 induced apoptosis, which was accompanied by decreasing Bcl-2, Bcl-xL mRNA expression levels and protein expression levels, and increasing Bax, Bak, cleaved-caspase-3, cleaved-caspase-9 mRNA, and protein expression levels, and Bax/Bcl-2 ratio. Concurrently, CuSO4 caused inflammation by increasing MPO activities and activating the NF-κB signalling pathway, and down-regulating the mRNA and protein expression levels of anti-inflammatory cytokines (IL-2, IL-4, IL-10). In conclusion, the abovementioned findings demonstrated that over 10 mg/kg CuSO4 can cause oxidative stress, apoptosis, and inflammatory responses, which contribute to pulmonary lesions and dysfunction in mice.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Huan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China,Key Laboratory of Agricultural Information Engineering of Sichuan Province, Sichuan Agriculture University, Yaan 625014, Sichuan, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Yinglun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Xun Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| | - Ling Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang 611130, Chengdu, China,Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang 611130, Chengdu, China
| |
Collapse
|
6
|
Yang F, Qu W, Du M, Mai Z, Wang B, Ma Y, Wang X, Chen T. Stoichiometry and regulation network of Bcl-2 family complexes quantified by live-cell FRET assay. Cell Mol Life Sci 2020; 77:2387-2406. [PMID: 31492967 PMCID: PMC11104934 DOI: 10.1007/s00018-019-03286-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 01/07/2023]
Abstract
The stoichiometry and affinity of Bcl-2 family complexes are essential information for understanding how their interactome network is orchestrated to regulate mitochondrial permeabilization and apoptosis. Based on over-expression model system, FRET analysis was used to quantify the protein-protein interactions among Bax, Bcl-xL, Bad and tBid in healthy and apoptotic cells. Our data indicate that the stoichiometry and affinity of Bcl-2 complexes are dependent on their membrane environment. Bcl-xL, Bad and tBid can form hetero-trimers in mitochondria. Bcl-xL binds preferentially to Bad, then to tBid and Bax in mitochondria, whilst Bcl-xL displays higher affinity to Bad or tBid than to itself. Strikingly, Bax can bind to Bcl-xL in cytosol. In cytosol of apoptotic cells, Bcl-xL associates with Bax to form hetero-trimer with 1:2 stoichiometry, while Bcl-xL associates with Bad to form hetero-trimer with 2:1 stoichiometry and Bcl-xL associates with tBid to form hetero-dimer. In mitochondria, Bcl-xL associates with Bax/Bad to form hetero-dimer in healthy cells, while Bcl-xL associates with Bad to form hetero-tetramer with 3:1 stoichiometry in apoptotic cells.
Collapse
Affiliation(s)
- Fangfang Yang
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenfeng Qu
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Mengyan Du
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zihao Mai
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Bin Wang
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yunyun Ma
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xiaoping Wang
- Department of Pain Management, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science and College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
7
|
Handa K, Jindal R. Genotoxicity induced by hexavalent chromium leading to eryptosis in Ctenopharyngodon idellus. CHEMOSPHERE 2020; 247:125967. [PMID: 32069732 DOI: 10.1016/j.chemosphere.2020.125967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/02/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
The initiation of eryptosis as a result of genotoxic action of Cr(VI), seen through micronucleus and comet assay in the peripheral erythrocytes of Ctenopharyngodon idellus was evaluated through RT-qPCR. For this, fish was exposed to sublethal concentration of hexavalent chromium (5.30 and 10.63 mg/L), and the blood was sampled on different endpoints (15, 30 and 45 days). Accumulation of chromium in the erythrocytes was also studied, which depicted a significant increase in toxicant concentration and time dependent manner. Both concentrations of hexavalent chromium induced DNA damage, visible in the form of comet tails. The presence of micronuclei in the erythrocytes was accompanied with occurrence of nuclear bud (NBu), lobed nucleus (Lb), notched nucleus (Nt), vacuolated nucleus (Vn), binucleated cell (Bn) as nuclear abnormalities; and acanthocytes (Ac), echinocytes (Ec), notched cells (Nc), microcytes (Mc) and vacuolated cytoplasm (Vc) as cytoplasmic abnormalities. The expression of genes related to intrinsic apoptotic pathway induced by Cr(VI) presented significant (p < 0.05) upregulation in the expression of p53, Bax, Apaf-1, caspase9 and caspase3, and downregulation of Bcl2; inferring the initiation of apoptotic pathway. The ration of Bax and Bcl2 also appended the apoptotic state of the erythrocytes. From the present investigation, it can be concluded that genotoxicity induced by hexavalent chromium lead to eryptosis in C. idellus.
Collapse
Affiliation(s)
- Kriti Handa
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Farmer T, O'Neill KL, Naslavsky N, Luo X, Caplan S. Retromer facilitates the localization of Bcl-xL to the mitochondrial outer membrane. Mol Biol Cell 2019; 30:1138-1146. [PMID: 30840537 PMCID: PMC6724524 DOI: 10.1091/mbc.e19-01-0044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The anti-apoptotic Bcl-2 family protein Bcl-xL plays a critical role in cell survival by protecting the integrity of the mitochondrial outer membrane (MOM). The mechanism through which Bcl-xL is recruited to the MOM has not been fully discerned. The retromer is a conserved endosomal scaffold complex involved in membrane trafficking. Here we identify VPS35 and VPS26, two core components of the retromer, as novel regulators of Bcl-xL. We observed interactions and colocalization between Bcl-xL, VPS35, VPS26, and MICAL-L1, a protein involved in recycling endosome biogenesis that also interacts with the retromer. We also found that upon VPS35 depletion, levels of nonmitochondrial Bcl-xL were increased. In addition, retromer-depleted cells displayed more rapid Bax activation and apoptosis. These results suggest that the retromer regulates apoptosis by facilitating Bcl-xL's transport to the MOM. Importantly, our studies suggest a previously uncharacterized relationship between the machineries of cell death/survival and endosomal trafficking.
Collapse
Affiliation(s)
- Trey Farmer
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Katelyn L O'Neill
- Eppley Institute for Research in Cancer and Allied Diseases, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870.,Eppley Institute for Research in Cancer and Allied Diseases, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870
| |
Collapse
|
9
|
Synthesis and photocytotoxic activity of [1,2,3]triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines. Eur J Med Chem 2018; 162:176-193. [PMID: 30445266 DOI: 10.1016/j.ejmech.2018.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
[1,2,3]Triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines were synthesized with the aim to investigate their photocytotoxic activity. Upon irradiation, oxazolo-naphtapyridines induced light-dependent cell death at nanomolar/low micromolar concentrations (EC50 0.01-6.59 μM). The most photocytotoxic derivative showed very high selectivity and photocytotoxicity indexes (SI = 72-86, PTI>5000), along with a triplet excited state with exceptionally long lifetime (18.0 μs) and high molar absorptivity (29781 ± 180 M-1cm-1 at λmax 315 nm). The light-induced production of ROS promptly induced an unquenchable apoptotic process selectively in tumor cells, with mitochondrial and lysosomal involvement. Altogether, these results demonstrate that the most active compound acts as a promising singlet oxygen sensitizer for biological applications.
Collapse
|
10
|
Hirpara JL, Loh T, Ng SB, Chng WJ, Pervaiz S. Aberrant localization of apoptosis protease activating factor-1 in lipid raft sub-domains of diffuse large B cell lymphomas. Oncotarget 2018; 7:83964-83975. [PMID: 27863378 PMCID: PMC5356638 DOI: 10.18632/oncotarget.13336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/08/2016] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemotherapy remains a challenge in the clinical management of diffuse B cell lymphomas despite aggressive chemotherapy such as CHOP and monoclonal CD20. Here we provide evidence that the apoptosome adaptor protein, Apaf-1, is mislocalized in primary cells derived from patients with diffuse large B cell lymphomas (DLBCL). Whereas, the total expression of Apaf-1 did not change, its sub-cellular localization was significantly different in DLBCL, compared to T cell lymphomas as well as cells derived from reactive lymphadenopathy biopsies. As expected, Apaf-1 was detected in the cytosolic fractions of non-B cell lymphomas and non-cancerous tissues; however, in B cell derived lymphomas the protein was detected in membrane raft sub-domains rather than the cytosol. Disruption of lipid raft structures resulted in the redistribution of Apaf-1 to the cytosol and restored apoptosis sensitivity of DLBCL. Furthermore, we identified novel small molecule compounds that target DLBCL by promoting Apaf-1 release form lipid rafts via mechanisms that involve an increase in intracellular reactive oxygen species production. Taken together, our results implicate Apaf-1 mislocalization as a potential diagnostic and prognostic marker for DLBCL, and provide a novel therapeutic strategy for circumventing the drug refractory nature of this sub-class of B cell lymphoma.
Collapse
Affiliation(s)
- Jayshree L Hirpara
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Experimental Therapeutics Program, Cancer Science Institute, National University Healthcare System, Singapore
| | - Thomas Loh
- Department of Otolaryngology, National University Healthcare System, Singapore
| | - Siok Bian Ng
- Department of Pathology, National University Healthcare System, Singapore
| | - Wee Joo Chng
- Cancer Science Institute, National University Healthcare System, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.,National University Cancer Institute, National University Healthcare System,.,School of Biomedical Sciences, Curtin University, Perth, Australia
| |
Collapse
|
11
|
Birkinshaw RW, Czabotar PE. The BCL-2 family of proteins and mitochondrial outer membrane permeabilisation. Semin Cell Dev Biol 2017; 72:152-162. [PMID: 28396106 DOI: 10.1016/j.semcdb.2017.04.001] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/03/2017] [Accepted: 04/06/2017] [Indexed: 01/24/2023]
Abstract
Apoptosis is a form of programmed cell death critical for the development and homeostasis of multicellular organisms. A key event within the mitochondrial pathway to apoptosis is the permeabilisation of the mitochondrial outer membrane (MOM), a point of no return in apoptotic progression. This event is governed by a complex interplay of interactions between BCL-2 family members. Here we discuss the roles of opposing factions within the family. We focus on the structural details of these interactions, how they promote or prevent apoptosis and recent developments towards understanding the conformational changes of BAK and BAX that lead to MOM permeabilisation. These interactions and structural insights are of particular interest for drug discovery, as highlighted by the development of therapeutics that target pro-survival family members and restore apoptosis in cancer cells.
Collapse
Affiliation(s)
- Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
12
|
Shakeri R, Kheirollahi A, Davoodi J. Apaf-1: Regulation and function in cell death. Biochimie 2017; 135:111-125. [PMID: 28192157 DOI: 10.1016/j.biochi.2017.02.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/08/2023]
Abstract
Apoptosis, a form of programmed cell death, is responsible for eliminating damaged or unnecessary cells in multicellular organisms. Various types of intracellular stress trigger apoptosis by induction of cytochrome c release from mitochondria into the cytosol. Apoptotic protease activating factor-1 (Apaf-1) is a key molecule in the intrinsic or mitochondrial pathway of apoptosis, which oligomerizes in response to cytochrome c release and forms a large complex known as apoptosome. Procaspase-9, an initiator caspase in the mitochondrial pathway, is recruited and activated by the apoptosome leading to downstream caspase-3 processing. Various cellular proteins and small molecules can modulate apoptosome formation and function directly or indirectly. Despite recent progress in understanding the mitochondrial pathway of apoptosis, numerous questions such as the molecular mechanism of Apaf-1 oligomerization and caspase-9 activation remain poorly understood. In addition, reports have emerged showing non-apoptotic functions for Apaf-1. The current review summarizes the latest findings regarding structure-function relationship of Apaf-1 as well as its modifiers.
Collapse
Affiliation(s)
- Raheleh Shakeri
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Asma Kheirollahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Jamshid Davoodi
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran.
| |
Collapse
|
13
|
Spanò V, Giallombardo D, Cilibrasi V, Parrino B, Carbone A, Montalbano A, Frasson I, Salvador A, Richter SN, Doria F, Freccero M, Cascioferro S, Diana P, Cirrincione G, Barraja P. Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines with potent photo-antiproliferative activity. Eur J Med Chem 2017; 128:300-318. [PMID: 28213283 DOI: 10.1016/j.ejmech.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines were synthesized as a new class of tricyclic system in which the pyridine ring is annelated to a cycloheptapyrrole scaffold, with the aim of obtaining new photosensitizing agents with improved antiproliferative activity and lower undesired toxic effects. A versatile synthetic pathway was approached, which allowed the isolation of derivatives of the title ring system with a good substitution pattern on the pyrrole moiety. Photobiological studies revealed that the majority of the new compounds showed a potent cytotoxic effect upon photoactivation with light of the proper wavelength, especially when decorated with a 2-ethoxycabonyl group and a N-benzyl substituted moiety, with EC50 values reaching the submicromolar level. The mechanism of action was evaluated.
Collapse
Affiliation(s)
- Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniele Giallombardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vincenzo Cilibrasi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Ilaria Frasson
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Alessia Salvador
- Dipartimento di Scienze Farmeceutiche, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sara N Richter
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Filippo Doria
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
14
|
Spanò V, Frasson I, Giallombardo D, Doria F, Parrino B, Carbone A, Montalbano A, Nadai M, Diana P, Cirrincione G, Freccero M, Richter SN, Barraja P. Synthesis and antiproliferative mechanism of action of pyrrolo[3',2':6,7] cyclohepta[1,2-d]pyrimidin-2-amines as singlet oxygen photosensitizers. Eur J Med Chem 2016; 123:447-461. [PMID: 27490024 DOI: 10.1016/j.ejmech.2016.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
A new series of pyrrolo[3',2':6,7]cyclohepta[1,2-d]pyrimidin-2-amines, was conveniently prepared using a versatile and high yielding multistep sequence. A good number of derivatives was obtained and the cellular photocytotoxicity was evaluated in vitro against three different human tumor cell lines with EC50 (0.08-4.96 μM) values reaching the nanomolar level. Selected compounds were investigated by laser flash photolysis. The most photocytotoxic derivative, exhibiting a fairly long-lived triplet state (τ ∼ 7 μs) and absorbance in the UV-Vis, was tested in the photo-oxidations of 9,10-anthracenedipropionic acid (ADPA) by singlet oxygen. The photosentizing properties are responsible for the compounds' ability to photoinduce massive cell death with involvement of mitochondria.
Collapse
Affiliation(s)
- Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Ilaria Frasson
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Daniele Giallombardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Filippo Doria
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Matteo Nadai
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
15
|
Jagot-Lacoussiere L, Faye A, Bruzzoni-Giovanelli H, Villoutreix BO, Rain JC, Poyet JL. DNA damage-induced nuclear translocation of Apaf-1 is mediated by nucleoporin Nup107. Cell Cycle 2016; 14:1242-51. [PMID: 25695197 DOI: 10.1080/15384101.2015.1014148] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Beside its central role in the mitochondria-dependent cell death pathway, the apoptotic protease activating factor 1 (Apaf-1) is involved in the DNA damage response through cell-cycle arrest induced by genotoxic stress. This non-apoptotic function requires a nuclear translocation of Apaf-1 during the G1-to-S transition. However, the mechanisms that trigger the nuclear accumulation of Apaf-1 upon DNA damage remain to be investigated. Here we show that the main 4 isoforms of Apaf-1 can undergo nuclear translocation and restore Apaf-1 deficient MEFs cell cycle arrest in the S phase following genotoxic stress through activation of Chk-1. Interestingly, DNA damage-dependent nuclear accumulation of Apaf-1 occurs independently of p53 and the retinoblastoma (pRb) pathway. We demonstrated that Apaf-1 associates with the nucleoporin Nup107 and this association is necessary for Apaf-1 nuclear import. The CED-4 domain of Apaf-1 directly binds to the central domain of Nup107 in an ATR-regulated, phosphorylation-dependent manner. Interestingly, expression of the Apaf-1-interacting domain of Nup107 interfered with Apaf-1 nuclear translocation upon genotoxic stress, resulting in a marked reduction of Chk-1 activation and cell cycle arrest. Thus, our results confirm the crucial role of Apaf-1 nuclear relocalization in mediating cell-cycle arrest induced by genotoxic stress and implicate Nup107 as a critical regulator of the DNA damage-induced intra-S phase checkpoint response.
Collapse
Affiliation(s)
- Léonard Jagot-Lacoussiere
- a INSERM UMRS1160; Université Denis Diderot; Institut Universitaire d'Hématologie ; Hôpital Saint-Louis ; Paris , France
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cell death is a common and important feature of animal development, and cell death defects underlie many human disease states. The nematode Caenorhabditis elegans has proven fertile ground for uncovering molecular and cellular processes controlling programmed cell death. A core pathway consisting of the conserved proteins EGL-1/BH3-only, CED-9/BCL2, CED-4/APAF1, and CED-3/caspase promotes most cell death in the nematode, and a conserved set of proteins ensures the engulfment and degradation of dying cells. Multiple regulatory pathways control cell death onset in C. elegans, and many reveal similarities with tumor formation pathways in mammals, supporting the idea that cell death plays key roles in malignant progression. Nonetheless, a number of observations suggest that our understanding of developmental cell death in C. elegans is incomplete. The interaction between dying and engulfing cells seems to be more complex than originally appreciated, and it appears that key aspects of cell death initiation are not fully understood. It has also become apparent that the conserved apoptotic pathway is dispensable for the demise of the C. elegans linker cell, leading to the discovery of a previously unexplored gene program promoting cell death. Here, we review studies that formed the foundation of cell death research in C. elegans and describe new observations that expand, and in some cases remodel, this edifice. We raise the possibility that, in some cells, more than one death program may be needed to ensure cell death fidelity.
Collapse
Affiliation(s)
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, USA.
| |
Collapse
|
17
|
Moravcikova E, Krepela E, Prochazka J, Benkova K, Pauk N. Differential sensitivity to apoptosome apparatus activation in non-small cell lung carcinoma and the lung. Int J Oncol 2014; 44:1443-54. [PMID: 24626292 PMCID: PMC4027941 DOI: 10.3892/ijo.2014.2333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/18/2014] [Indexed: 01/01/2023] Open
Abstract
The intrinsic apoptosis pathway represents an important mechanism of stress-induced death of cancer cells. To gain insight into the functional status of the apoptosome apparatus in non-small cell lung carcinoma (NSCLC), we studied its sensitivity to activation, the assembly of apoptosome complexes and stability of their precursors, and the importance of X-linked inhibitor of apoptosis (XIAP) in the regulation of apoptosome activity, using cell-free cytosols from NSCLC cell lines and NSCLC tumours and lungs from 62 surgically treated patients. Treatment of cytosol samples with cytochrome c (cyt-c) and dATP induced proteolytic processing of procaspase-9 to caspase-9, which was followed by procaspase-3 processing to caspase-3, and by generation of caspase-3-like activity in 5 of 7 studied NSCLC cell lines. Further analysis demonstrated formation of high-Mr Apaf-1 complexes associated with cleaved caspase-9 in the (cyt-c + dATP)-responsive COLO-699 and CALU-1 cells. By contrast, in A549 cells, Apaf-1 and procaspase-9 co-eluted in the high-Mr fractions, indicating formation of an apoptosome complex unable of procaspase-9 processing. Thermal pre-treatment of cell-free cytosols in the absence of exogenous cyt-c and dATP lead to formation of Apaf-1 aggregates, unable to recruit and activate procaspase-9 in the presence of cyt-c and dATP, and to generate caspase-3-like activity. Further studies showed that the treatment with cyt-c and dATP induced a substantially higher increase of caspase-3-like activity in cytosol samples from NSCLC tumours compared to matched lungs. Tumour histology, grade and stage had no significant impact on the endogenous and the (cyt-c + dATP)-induced caspase-3-like activity. Upon addition into the cytosol, the XIAP-neutralizing peptides AVPIAQK and ATPFQEG only moderately heightened the (cyt-c + dATP)-induced caspase-3-like activity in some NSCLC tumours. Taken together, the present study provides evidence that the apoptosome apparatus is functional in the majority of NSCLCs and that its sensitivity to the (cyt-c + dATP)-mediated activation is often enhanced in NSCLCs compared to lungs. They also indicate that XIAP does not frequently and effectively suppress the activity of apoptosome apparatus in NSCLCs.
Collapse
Affiliation(s)
- Erika Moravcikova
- Laboratories of Molecular and Cell Biology, Department of Pneumology and Thoracic Surgery, Hospital Bulovka and Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Evzen Krepela
- Laboratories of Molecular and Cell Biology, Department of Pneumology and Thoracic Surgery, Hospital Bulovka and Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jan Prochazka
- Laboratories of Molecular and Cell Biology, Department of Pneumology and Thoracic Surgery, Hospital Bulovka and Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Kamila Benkova
- Department of Pathology, Hospital Bulovka, Prague, Czech Republic
| | - Norbert Pauk
- Division of Pneumology, Department of Pneumology and Thoracic Surgery, Hospital Bulovka and Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
18
|
Huang X, Qi Q, Hua X, Li X, Zhang W, Sun H, Li S, Wang X, Li B. Beclin 1, an autophagy-related gene, augments apoptosis in U87 glioblastoma cells. Oncol Rep 2014; 31:1761-7. [PMID: 24535641 DOI: 10.3892/or.2014.3015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/21/2014] [Indexed: 11/05/2022] Open
Abstract
Beclin 1 acts as a tumor suppressor and is an essential mediator of autophagy. Beclin 1 also interacts with Bcl-2 and can induce apoptosis by activating the mitochondrion permeabilizing function of proapoptotic multidomain proteins from the Bcl-2 family. Moreover, these Bcl-2 family members can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-XL at the level of the endoplasmic reticulum. We found that overexpression of Beclin 1 in U87 glioblastoma cells enhanced the capacity for cellular autophagy and induced apoptosis. Silencing of Beclin 1 decreased autophagic capacity but had little effect on apoptosis and cell proliferation. Beclin 1-Bcl-2 and Beclin 1-Bcl-xL complexes were detected by immunoprecipitation in cells that overexpressed Beclin 1. Furthermore, the levels of cytochrome c in the cytosol and the activity of caspases-3/-9 in the cytosol increased after overexpression of Beclin 1. Our results suggest that Beclin 1 induces apoptosis via binding to Bcl-2 and Bcl-xL, followed by the release of cytochrome c into the cytosol and activation of caspases-3/-9.
Collapse
Affiliation(s)
- Xin Huang
- Department of Neurosurgery, 171 Hospital, Jiujiang, Jiangxi 33200, P.R. China
| | - Qiangqian Qi
- Department of Neurosurgery, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai 200003, P.R. China
| | - Xuming Hua
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Xinyuan Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Wenchuan Zhang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Hui Sun
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Shiting Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Xiaoqiang Wang
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Bin Li
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
19
|
Health and cellular impacts of air pollutants: from cytoprotection to cytotoxicity. Biochem Res Int 2012; 2012:493894. [PMID: 22550588 PMCID: PMC3328890 DOI: 10.1155/2012/493894] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 12/11/2022] Open
Abstract
Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.
Collapse
|
20
|
Chemopreventive effects of non-steroidal anti-inflammatory drugs in early neoplasm of experimental colorectal cancer: an apoptosome study. J Gastrointest Cancer 2012; 42:195-203. [PMID: 20623380 DOI: 10.1007/s12029-010-9188-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Apoptosis is a highly regulated mechanism of cell death where pro-apoptotic proteins and caspases play an important role. Activation of pro-caspases at a definite time is essential to control the whole caspase cascade. Mitochondrion contains some pro-apoptotic proteins, which need to come out in cytoplasm for apoptotic function such as Cytochrome c (Cyt c), while the Bcl-2 protein family works as the guard of mitochondrial membrane and prevents the escape of Cyt c. Once Cyt c is out in cytoplasm, it binds with Apaf-1 (another pro-apoptotic protein also essential for proper cell differentiation) and pro-caspase-9, forming the Apoptosome complex. In this study, the role of two non-steroidal anti-inflammatory drugs (NSAIDs), Diclofenac and Celecoxib, in experimentally induced early neoplasm of colon via apoptosome mechanism had been studied. It has been recognized that the prolonged use of NSAIDs has its effect on reducing the risk of colorectal cancer through apoptotic pathways. However, the role of NSAIDs in respect of apoptosome is not clear. METHODS Western blotting and immunohistochemistry were performed, along with morphological and histological analysis. RESULTS According to the expression levels of Cytochrome c, Apaf-1, Caspases, and Bcl-2, it was observed that NSAIDs do follow the mitochondrial or intrinsic pathway of apoptosis. CONCLUSION The effects of Diclofenac and Celecoxib on the expression of pro- and anti-apoptotic proteins have been observed, which may constitute the mechanism by which the NSAIDs are efficient in controlling the proliferation of neoplasm in the colon.
Collapse
|
21
|
Vogel S, Raulf N, Bregenhorn S, Biniossek ML, Maurer U, Czabotar P, Borner C. Cytosolic Bax: does it require binding proteins to keep its pro-apoptotic activity in check? J Biol Chem 2012; 287:9112-27. [PMID: 22277657 DOI: 10.1074/jbc.m111.248906] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bax is kept inactive in the cytosol by refolding its C-terminal transmembrane domain into the hydrophobic binding pocket. Although energetic calculations predicted this conformation to be stable, numerous Bax binding proteins were reported and suggested to further stabilize inactive Bax. Unfortunately, most of them have not been validated in a physiological context on the endogenous level. Here we use gel filtration analysis of the cytosol of primary and established cells to show that endogenous, inactive Bax runs 20-30 kDa higher than recombinant Bax, suggesting Bax dimerization or the binding of a small protein. Dimerization was excluded by a lack of interaction of differentially tagged Bax proteins and by comparing the sizes of dimerized recombinant Bax with cytosolic Bax on blue native gels. Surprisingly, when analyzing cytosolic Bax complexes by high sensitivity mass spectrometry after anti-Bax immunoprecipitation or consecutive purification by gel filtration and blue native gel electrophoresis, we detected only one protein, called p23 hsp90 co-chaperone, which consistently and specifically co-purified with Bax. However, this protein could not be validated as a crucial inhibitory Bax binding partner as its over- or underexpression did not show any apoptosis defects. By contrast, cytosolic Bax exhibits a slight molecular mass shift on SDS-PAGE as compared with recombinant Bax, which suggests a posttranslational modification and/or a structural difference between the two proteins. We propose that in most healthy cells, cytosolic endogenous Bax is a monomeric protein that does not necessarily need a binding partner to keep its pro-apoptotic activity in check.
Collapse
Affiliation(s)
- Sandra Vogel
- Institute of Molecular Medicine and Cell Research, Center for Biochemistry and Molecular Cell Research, Albert Ludwigs University, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Rsk-mediated phosphorylation and 14-3-3ɛ binding of Apaf-1 suppresses cytochrome c-induced apoptosis. EMBO J 2012; 31:1279-92. [PMID: 22246185 DOI: 10.1038/emboj.2011.491] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/14/2011] [Indexed: 01/13/2023] Open
Abstract
Many pro-apoptotic signals trigger mitochondrial cytochrome c release, leading to caspase activation and ultimate cellular breakdown. Cell survival pathways, including the mitogen-activated protein kinase (MAPK) cascade, promote cell viability by impeding mitochondrial cytochrome c release and by inhibiting subsequent caspase activation. Here, we describe a mechanism for the inhibition of cytochrome c-induced caspase activation by MAPK signalling, identifying a novel mode of apoptotic regulation exerted through Apaf-1 phosphorylation by the 90-kDa ribosomal S6 kinase (Rsk). Recruitment of 14-3-3ɛ to phosphorylated Ser268 impedes the ability of cytochrome c to nucleate apoptosome formation and activate downstream caspases. High endogenous levels of Rsk in PC3 prostate cancer cells or Rsk activation in other cell types promoted 14-3-3ɛ binding to Apaf-1 and rendered the cells insensitive to cytochrome c, suggesting a potential role for Rsk signalling in apoptotic resistance of prostate cancers and other cancers with elevated Rsk activity. Collectively, these results identify a novel locus of apoptosomal regulation wherein MAPK signalling promotes Rsk-catalysed Apaf-1 phosphorylation and consequent binding of 14-3-3ɛ, resulting in decreased cellular responsiveness to cytochrome c.
Collapse
|
23
|
Ferraro E, Pesaresi MG, De Zio D, Cencioni MT, Gortat A, Cozzolino M, Berghella L, Salvatore AM, Oettinghaus B, Scorrano L, Pérez-Payà E, Cecconi F. Apaf1 plays a pro-survival role by regulating centrosome morphology and function. J Cell Sci 2011; 124:3450-63. [DOI: 10.1242/jcs.086298] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The apoptotic protease activating factor 1 (Apaf1) is the main component of the apoptosome, and a crucial factor in the mitochondria-dependent death pathway. Here we show that Apaf1 plays a role in regulating centrosome maturation. By analyzing Apaf1-depleted cells, we have found that Apaf1 loss induces centrosome defects that impair centrosomal microtubule nucleation and cytoskeleton organization. This, in turn, affects several cellular processes such as mitotic spindle formation, cell migration and mitochondrial network regulation. As a consequence, Apaf1-depleted cells are more fragile and have a lower threshold to stress than wild-type cells. In fact, we found that they exhibit low Bcl-2 and Bcl-XL expression and, under apoptotic treatment, rapidly release cytochrome c. We also show that Apaf1 acts by regulating the recruitment of HCA66, with which it interacts, to the centrosome. This function of Apaf1 is carried out during the cell life and is not related to its apoptotic role. Therefore, Apaf1 might also be considered a pro-survival molecule, whose absence impairs cell performance and causes a higher responsiveness to stressful conditions.
Collapse
Affiliation(s)
- Elisabetta Ferraro
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
- Dulbecco Telethon Institute, Department of Biology, University of Rome ‘Tor Vergata’, 00133, Rome, Italy
| | | | - Daniela De Zio
- Dulbecco Telethon Institute, Department of Biology, University of Rome ‘Tor Vergata’, 00133, Rome, Italy
| | | | - Anne Gortat
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain and IBV-CSIC, E-46010, Valencia, Spain
| | - Mauro Cozzolino
- Laboratory of Neurochemistry, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | | | | | - Bjorn Oettinghaus
- Department of Cell Physiology and Metabolism, University of Geneva, 1206, Geneva, Switzerland
| | - Luca Scorrano
- Department of Cell Physiology and Metabolism, University of Geneva, 1206, Geneva, Switzerland
| | - Enrique Pérez-Payà
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain and IBV-CSIC, E-46010, Valencia, Spain
| | - Francesco Cecconi
- Laboratory of Molecular Neuroembryology, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
- Dulbecco Telethon Institute, Department of Biology, University of Rome ‘Tor Vergata’, 00133, Rome, Italy
| |
Collapse
|
24
|
Shao C, Sun B, Colombini M, Devoe DL. Rapid microfluidic perfusion enabling kinetic studies of lipid ion channels in a bilayer lipid membrane chip. Ann Biomed Eng 2011; 39:2242-51. [PMID: 21556947 DOI: 10.1007/s10439-011-0323-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 05/02/2011] [Indexed: 01/23/2023]
Abstract
There is growing recognition that lipids play key roles in ion channel physiology, both through the dynamic formation and dissolution of lipid ion channels and by indirect regulation of protein ion channels. Because existing technologies cannot rapidly modulate the local (bio)chemical conditions at artificial bilayer lipid membranes used in ion channel studies, the ability to elucidate the dynamics of these lipid-lipid and lipid-protein interactions has been limited. Here we demonstrate a microfluidic system supporting exceptionally rapid perfusion of reagents to an on-chip bilayer lipid membrane, enabling the responses of lipid ion channels to dynamic changes in membrane boundary conditions to be probed. The thermoplastic microfluidic system allows initial perfusion of reagents to the membrane in less than 1 s, and enables kinetic behaviors with time constants below 10 s to be directly measured. Application of the platform is demonstrated toward kinetic studies of ceramide, a biologically important lipid known to self-assemble into transmembrane ion channels, in response to dynamic treatments of small ions (La(3+)) and proteins (Bcl-x(L) mutant). The results reveal the broader potential of the technology for studies of membrane biophysics, including lipid ion channel dynamics, lipid-protein interactions, and the regulation of protein ion channels by lipid micro domains.
Collapse
Affiliation(s)
- Chenren Shao
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
25
|
Guillemin Y, Lopez J, Gimenez D, Fuertes G, Valero JG, Blum L, Gonzalo P, Salgado J, Girard-Egrot A, Aouacheria A. Active fragments from pro- and antiapoptotic BCL-2 proteins have distinct membrane behavior reflecting their functional divergence. PLoS One 2010; 5:e9066. [PMID: 20140092 PMCID: PMC2816717 DOI: 10.1371/journal.pone.0009066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 01/17/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The BCL-2 family of proteins includes pro- and antiapoptotic members acting by controlling the permeabilization of mitochondria. Although the association of these proteins with the outer mitochondrial membrane is crucial for their function, little is known about the characteristics of this interaction. METHODOLOGY/PRINCIPAL FINDINGS Here, we followed a reductionist approach to clarify to what extent membrane-active regions of homologous BCL-2 family proteins contribute to their functional divergence. Using isolated mitochondria as well as model lipid Langmuir monolayers coupled with Brewster Angle Microscopy, we explored systematically and comparatively the membrane activity and membrane-peptide interactions of fragments derived from the central helical hairpin of BAX, BCL-xL and BID. The results show a connection between the differing abilities of the assayed peptide fragments to contact, insert, destabilize and porate membranes and the activity of their cognate proteins in programmed cell death. CONCLUSION/SIGNIFICANCE BCL-2 family-derived pore-forming helices thus represent structurally analogous, but functionally dissimilar membrane domains.
Collapse
Affiliation(s)
- Yannis Guillemin
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Jonathan Lopez
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Diana Gimenez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
| | - Gustavo Fuertes
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
| | - Juan Garcia Valero
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Loïc Blum
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR5246, University of Lyon, Villeurbanne, France
| | - Philippe Gonzalo
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
| | - Jesùs Salgado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Paterna, Valencia, España
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, Burjassot, Valencia, España
| | - Agnès Girard-Egrot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), CNRS UMR5246, University of Lyon, Villeurbanne, France
| | - Abdel Aouacheria
- Institut de Biologie et Chimie des Protéines (IBCP), CNRS UMR5086, University of Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
26
|
García-Sáez AJ, Fuertes G, Suckale J, Salgado J. Permeabilization of the Outer Mitochondrial Membrane by Bcl-2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:91-105. [DOI: 10.1007/978-1-4419-6327-7_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ 2009; 16:1419-25. [DOI: 10.1038/cdd.2009.118] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
28
|
Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol 2008; 6:e147. [PMID: 18547146 PMCID: PMC2422857 DOI: 10.1371/journal.pbio.0060147] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 05/02/2008] [Indexed: 11/23/2022] Open
Abstract
Although Bcl-XL and Bax are structurally similar, activated Bax forms large oligomers that permeabilize the outer mitochondrial membrane, thereby committing cells to apoptosis, whereas Bcl-XL inhibits this process. Two different models of Bcl-XL function have been proposed. In one, Bcl-XL binds to an activator, thereby preventing Bax activation. In the other, Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, as all three proteins are present simultaneously. We examined the mechanism of Bax activation by tBid and its inhibition by Bcl-XL using full-length recombinant proteins and measuring permeabilization of liposomes and mitochondria in vitro. Our results demonstrate that Bcl-XL and Bax are functionally similar. Neither protein bound to membranes alone. However, the addition of tBid recruited molar excesses of either protein to membranes, indicating that tBid activates both pro- and antiapoptotic members of the Bcl-2 family. Bcl-XL competes with Bax for the activation of soluble, monomeric Bax through interaction with membranes, tBid, or t-Bid-activated Bax, thereby inhibiting Bax binding to membranes, oligomerization, and membrane permeabilization. Experiments in which individual interactions were abolished by mutagenesis indicate that both Bcl-XL–tBid and Bcl-XL–Bax binding contribute to the antiapoptotic function of Bcl-XL. By out-competing Bax for the interactions leading to membrane permeabilization, Bcl-XL ties up both tBid and Bax in nonproductive interactions and inhibits Bax binding to membranes. We propose that because Bcl-XL does not oligomerize it functions like a dominant-negative Bax in the membrane permeabilization process. During development and under stress, cells can become committed to die via programmed cell death (apoptosis). In most cases, the permeabilization of the outer mitochondrial membrane is a key component of this commitment. The membrane permeablization step is both positively and negatively regulated by members of the Bcl-2 family of proteins. One member of this protein family with only a BH3 region, such as tBid, activates another family member, Bax, causing it to form large complexes that generate membrane-spanning pores, hence making the membrane permeable. Antiapoptotic members of the Bcl-2 family, such as Bcl-XL, are structurally similar to Bax but inhibit the membrane permeabilization process by an unknown mechanism. Two mutually exclusive models have been proposed to explain how the Bcl-2 family is operating: one states that Bcl-XL binds to tBid, thereby preventing Bax activation, while the second suggests that Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, where multiple members of all three protein families are present simultaneously. Here, we describe an in vitro system containing the three recombinant proteins and the use of mutagenesis to selectively remove individual interactions. We show that Bcl-XL inhibits Bax by competing with it for binding to membranes, tBid, and activated Bax. Because Bcl-XL does not form pores, it inhibits apoptosis by acting as if it is a dominant-negative version of Bax. Bcl-XL and Bax are structurally similar members of the Bcl-2 family of cell-death-related proteins, and they compete for binding to membranes, as well as to Bcl-2 family member tBid and activated Bax. Unlike Bax, Bcl-XL is unable to oligomerize and form pores in membranes, so it inhibits membrane permeabilization--a key step during commitment to apoptosis--by functioning like a dominant-negative Bax.
Collapse
Affiliation(s)
- Lieven P Billen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Candis L Kokoski
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian Leber
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David W Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
|
30
|
Wong WWL, Puthalakath H. Bcl-2 family proteins: the sentinels of the mitochondrial apoptosis pathway. IUBMB Life 2008; 60:390-7. [PMID: 18425793 DOI: 10.1002/iub.51] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bcl-2 family members are the arbiters of mitochondrial apoptotic pathway, which is conserved through evolution. The stoichiometry of pro- versus antiapoptotic Bcl-2 family members in the cell determines whether the cell lives or dies. This fine balance is regulated at the transcriptional or posttranslational level in response to various cellular cues. These signals are transmitted through the upstream molecules in the pathway, that is, the BH3-only molecules that results in the activation of the adaptor molecules, Bax and Bak, at the mitochondrial surface ensuing mitochondrial dysfunction and apoptosis. Understanding the activation process offers a great potential in the therapeutic intervention of many diseases such as cancer and autoimmune disorders.
Collapse
Affiliation(s)
- W Wei-Lynn Wong
- Department of Biochemistry, School of Molecular Sciences, La Trobe University, Bundoora, Victoria, Australia
| | | |
Collapse
|
31
|
Oberst A, Bender C, Green DR. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ 2008; 15:1139-46. [PMID: 18451868 DOI: 10.1038/cdd.2008.65] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mitochondrial pathway of cell death, in which apoptosis proceeds following mitochondrial outer membrane permeabilization, release of cytochrome c, and APAF-1 apoptosome-mediated caspase activation, represents the major pathway of physiological apoptosis in vertebrates. However, the well-characterized apoptotic pathways of the invertebrates C. elegans and D. melanogaster indicate that this apoptotic pathway is not universally conserved among animals. This review will compare the role of the mitochondria in the apoptotic programs of mammals, nematodes, and flies, and will survey our knowledge of the apoptotic pathways of other, less familiar model organisms in an effort to explore the evolutionary origins of the mitochondrial pathway of apoptosis.
Collapse
Affiliation(s)
- A Oberst
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
32
|
The phosphorylation of p25/TPPP by LIM kinase 1 inhibits its ability to assemble microtubules. Exp Cell Res 2008; 313:4091-106. [PMID: 18028908 DOI: 10.1016/j.yexcr.2007.08.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 07/20/2007] [Accepted: 08/14/2007] [Indexed: 11/21/2022]
Abstract
LIM kinase 1 (LIMK1) is a key regulator of actin dynamics as it phosphorylates and inactivates cofilin, an actin-depolymerizing factor. LIMK1 activity is also required for microtubule disassembly in endothelial cells. A search for LIMK1-interacting proteins identified p25alpha, a phosphoprotein that promotes tubulin polymerization. We found that p25 is phosphorylated by LIMK1 on serine residues in vitro and in cells. Immunoblotting analysis revealed that p25 is not a brain specific protein as previously reported, but is expressed in all mouse tissues. Immunofluorescence analysis demonstrated that endogenous p25 is co-localized with microtubules and is also found in the nucleus. Down-regulation of p25 by siRNA decreased microtubule levels while its overexpression in stable NIH-3T3 cell lines increased cell size and levels of stable tubulin. Bacterially expressed unphosphorylated p25 promotes microtubule assembly in vitro; however, when phosphorylated in cells, p25 lost its ability to assemble microtubule. Our results represent a surprising connection between the tubulin and the actin cytoskeleton mediated by LIMK1. We propose that the LIMK1 phosphorylation of p25 blocks p25 activity, thus promoting microtubule disassembly.
Collapse
|
33
|
Abstract
BCL-2 family proteins, which have either pro- or anti-apoptotic activities, have been studied intensively for the past decade owing to their importance in the regulation of apoptosis, tumorigenesis and cellular responses to anti-cancer therapy. They control the point of no return for clonogenic cell survival and thereby affect tumorigenesis and host-pathogen interactions and regulate animal development. Recent structural, phylogenetic and biological analyses, however, suggest the need for some reconsideration of the accepted organizational principles of the family and how the family members interact with one another during programmed cell death. Although these insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.
Collapse
|
34
|
Big wheel keeps on turning: apoptosome regulation and its role in chemoresistance. Cell Death Differ 2007; 15:443-52. [PMID: 17975549 DOI: 10.1038/sj.cdd.4402265] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Apoptosis, a form of programmed cell death, enables organisms to maintain tissue homeostasis through deletion of extraneous cells and also serves as a means to eliminate potentially harmful cells. Numerous stress signals have been shown to engage the intrinsic pathway of apoptosis, with the release from mitochondria of proapoptotic factors such as cytochrome c and the subsequent formation of a cytosolic complex between apoptotic protease-activating factor-1 (Apaf-1) and procaspase-9, known as the apoptosome. Recent studies have led to the identification of an array of factors that control the formation and activation of the apoptosome under physiological conditions. Moreover, deregulation of apoptosome function has been documented in various forms of human cancer, and may play a role in both carcinogenesis and chemoresistance. We discuss how the apoptosome is regulated in normal and disease states, and how targeting of apoptosome-dependent, post-mitochondrial stages of apoptosis may serve as a rational approach to cancer treatment.
Collapse
|
35
|
Skommer J, Wlodkowic D, Deptala A. Larger than life: Mitochondria and the Bcl-2 family. Leuk Res 2007; 31:277-86. [PMID: 16911824 DOI: 10.1016/j.leukres.2006.06.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 06/04/2006] [Accepted: 06/16/2006] [Indexed: 01/09/2023]
Abstract
The intrinsic pathway of apoptosis relies on mitochondrial membrane permeabilization, with Bcl-2 proteins serving as its master regulators. They form a complex network of interactions both within the family and with multiple cellular factors outside the family. The understanding of the processes that regulate mitochondrial breach, and mechanisms that direct the pro- and anti-apoptotic functions of Bcl-2 proteins, should assist the development of novel anticancer therapies. Thus, it is of no surprise that research in the field is gaining momentum. In this review we outline the current concepts on regulatory circuits governing mitochondrial rupture and action of Bcl-2 proteins during cell death, and how this burgeoning knowledge is being translated into the clinics with the hope to combat cancer.
Collapse
Affiliation(s)
- Joanna Skommer
- Department of Clinical Sciences, University of Kuopio, Harjulantie 1 C, 70211 Kuopio, Finland.
| | | | | |
Collapse
|
36
|
Jiang H, Hou C, Zhang S, Xie H, Zhou W, Jin Q, Cheng X, Qian R, Zhang X. Matrine upregulates the cell cycle protein E2F-1 and triggers apoptosis via the mitochondrial pathway in K562 cells. Eur J Pharmacol 2007; 559:98-108. [PMID: 17291488 DOI: 10.1016/j.ejphar.2006.12.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/11/2006] [Accepted: 12/14/2006] [Indexed: 12/28/2022]
Abstract
Matrine is a major component of Sophora Flavescens and has been reported to stimulate differentiation of erythroleukemia cells. Here we show that matrine inhibits cell proliferation or induces apoptosis in a cell type-specific manner. The latter effect was investigated in more detail in the p53 deficient erythroleukemia cell line, K562. Matrine exposure induced apoptosis in a time- and dose-dependent manner in these cells. Interestingly, co-treatment with etoposide potentiated apoptosis. Further analysis of matrine-induced apoptotic changes revealed that E2F-1 and Apaf-1 were upregulated, whereas Rb was downregulated after 24 h of exposure. This was followed by Bax translocation, cytochrome c release, and caspase-9 and -3 activation. These results demonstrate that matrine triggers apoptosis of K562 cells primarily through the mitochondrial pathway and that matrine is a potential anti-tumor drug.
Collapse
Affiliation(s)
- Hua Jiang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 YueYang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chou CH, Lee RS, Yang-Yen HF. An internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway. Mol Biol Cell 2006; 17:3952-63. [PMID: 16822835 PMCID: PMC1593170 DOI: 10.1091/mbc.e06-04-0319] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mcl-1 functions at an apical step in many regulatory programs that control cell death. Although the mitochondrion is one major subcellular organelle where Mcl-1 functions, the molecular mechanism by which Mcl-1 is targeted to mitochondria remains unclear. Here, we demonstrate that Mcl-1 is loosely associated with the outer membrane of mitochondria. Furthermore, we demonstrate that Mcl-1 interacts with the mitochondrial import receptor Tom70, and such interaction requires an internal domain of Mcl-1 that contains an EELD motif. A Tom70 antibody that blocks Mcl-1-Tom70 interaction blocks mitochondrial import of Mcl-1 in vitro. Furthermore, Mcl-1 is significantly less targeted to mitochondria in Tom70 knockdown than in the control cells. Similar targeting preference is also observed for the DM mutant of Mcl-1 whose mutation at the EELD motif markedly attenuates its Tom70 binding activity. Together, our results indicate that the internal EELD domain facilitates mitochondrial targeting of Mcl-1 via a Tom70-dependent pathway.
Collapse
Affiliation(s)
- Chiang-Hung Chou
- *Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Ru-Shuo Lee
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei 110, Taiwan; and
| | - Hsin-Fang Yang-Yen
- *Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Graduate Institute of Cell and Molecular Biology, Taipei Medical University, Taipei 110, Taiwan; and
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
38
|
Sauerwald TM, Figueroa B, Hardwick JM, Oyler GA, Betenbaugh MJ. Combining caspase and mitochondrial dysfunction inhibitors of apoptosis to limit cell death in mammalian cell cultures. Biotechnol Bioeng 2006; 94:362-72. [PMID: 16598795 DOI: 10.1002/bit.20874] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptosis is now recognized as a significant problem in mammalian cell culture. Therefore, in this study, a single gene and multigene approach to inhibit apoptosis has been examined. Stable Chinese hamster ovary (CHO) cell lines were generated to overexpress different single, dual, and triple combinations of three apoptosis inhibitor genes. Two upstream inhibitors involved in the mitochondrial pathway, Bcl-X(L) and Aven, were expressed in addition to a downstream inhibitor of caspases. The caspase inhibitor, a variant of XIAP containing only the caspase inhibitory BIR domains (XIAP-BIRs), has been shown previously to enhance viabilities in mammalian cultures. Stable clonal cell lines were generated and tested for three apoptotic insults: Sindbis virus infection, the chemical reagent etoposide, and spent medium. For all single gene experiments, the Bcl-X(L)-containing cell lines provided superior protection to either the Aven- or XIAP-BIRs-containing cell lines following initial exposure to the insults. However, the cell lines expressing two or more anti-apoptosis proteins were more effective at inhibiting cell death than those expressing just one anti-apoptosis gene. The cell lines overexpressing Bcl-X(L) in combination with XIAP-BIRs were especially effective in delaying cell death for all three apoptotic insults. Expression of all three anti-apoptosis genes in concert was only slightly more effective than using Bcl-X(L) and XIAP-BIRs for some insults. During exposure to spent medium, CHO-BIRS + Aven + BclX(L) was the best inhibitor of apoptosis (IAP) initially, whereas CHO-BIRs + BclX(L) was particularly effective at later times of the experiment. In conclusion, the utilization of a mitochondrial dysfunction inhibitor used in combination with a caspase inhibitor was more effective in thwarting the progression of apoptosis than either inhibitor expressed individually. Thus, the concurrent expression of multiple apoptosis inhibitors may be the most effective strategy to increase survival of mammalian cells in culture.
Collapse
Affiliation(s)
- Tina M Sauerwald
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
39
|
Jabbour AM, Puryer MA, Yu JY, Lithgow T, Riffkin CD, Ashley DM, Vaux DL, Ekert PG, Hawkins CJ. Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1. J Cell Sci 2006; 119:2572-82. [PMID: 16735440 DOI: 10.1242/jcs.02985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the anti-apoptotic activity of Bcl-2 has been extensively studied, its mode of action is still incompletely understood. In the nematode Caenorhabditis elegans, 131 of 1090 somatic cells undergo programmed cell death during development. Transgenic expression of human Bcl-2 reduced cell death during nematode development, and partially complemented mutation of ced-9, indicating that Bcl-2 can functionally interact with the nematode cell death machinery. Identification of the nematode target(s) of Bcl-2 inhibition would help clarify the mechanism by which Bcl-2 suppresses apoptosis in mammalian cells. Exploiting yeast-based systems and biochemical assays, we analysed the ability of Bcl-2 to interact with and regulate the activity of nematode apoptosis proteins. Unlike CED-9, Bcl-2 could not directly associate with the caspase-activating adaptor protein CED-4, nor could it inhibit CED-4-dependent yeast death. By contrast, Bcl-2 could bind the C. elegans pro-apoptotic BH3-only Bcl-2 family member EGL-1. These data prompt us to hypothesise that Bcl-2 might suppress nematode cell death by preventing EGL-1 from antagonising CED-9, rather than by inhibiting CED-4.
Collapse
Affiliation(s)
- Anissa M Jabbour
- Children's Cancer Centre, Royal Children's Hospital, Parkville 3052, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Manoharan A, Kiefer T, Leist S, Schrader K, Urban C, Walter D, Maurer U, Borner C. Identification of a 'genuine' mammalian homolog of nematodal CED-4: is the hunt over or do we need better guns? Cell Death Differ 2006; 13:1310-7. [PMID: 16691212 DOI: 10.1038/sj.cdd.4401948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- A Manoharan
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Marsden VS, Kaufmann T, O'reilly LA, Adams JM, Strasser A. Apaf-1 and caspase-9 are required for cytokine withdrawal-induced apoptosis of mast cells but dispensable for their functional and clonogenic death. Blood 2006; 107:1872-7. [PMID: 16291596 DOI: 10.1182/blood-2005-05-2160] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytokines promote survival of mast cells by inhibiting apoptotic pathways regulated by the Bcl-2 protein family. We previously showed that lymphocyte apoptosis can proceed via a Bcl-2-inhibitable pathway independent of the canonical initiator caspase, caspase-9, and its adaptor, Apaf-1. Here we report that mast cells lacking caspase-9 or Apaf-1 are refractory to apoptosis after cytotoxic insults but still lose effector function and ability to proliferate. In response to cytokine deprivation or DNA damage, fetal liver-derived mast cells lacking Apaf-1 or caspase-9 failed to undergo apoptosis. Nevertheless, the cytokine-starved cells were not functionally alive, because, unlike those overexpressing Bcl-2, they could not degranulate on Fcϵ receptor stimulation or resume proliferation on re-addition of cytokine. Furthermore, mast cells lacking Apaf-1 or caspase-9 had no survival advantage over wild-type counterparts in vivo. These results indicate that the Apaf-1/caspase-9-independent apoptotic pathway observed in lymphocytes is ineffective in cytokine-deprived mast cells. However, although Apaf-1 and caspase-9 are essential for mast cell apoptosis, neither is required for the functional or clonogenic death of the cells, which may be due to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Vanessa S Marsden
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | | | | | | | |
Collapse
|
42
|
Lakhani SA, Masud A, Kuida K, Porter GA, Booth CJ, Mehal WZ, Inayat I, Flavell RA. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 2006; 311:847-51. [PMID: 16469926 PMCID: PMC3738210 DOI: 10.1126/science.1115035] [Citation(s) in RCA: 907] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current model of apoptosis holds that upstream signals lead to activation of downstream effector caspases. We generated mice deficient in the two effectors, caspase 3 and caspase 7, which died immediately after birth with defects in cardiac development. Fibroblasts lacking both enzymes were highly resistant to both mitochondrial and death receptor-mediated apoptosis, displayed preservation of mitochondrial membrane potential, and had defective nuclear translocation of apoptosis-inducing factor (AIF). Furthermore, the early apoptotic events of Bax translocation and cytochrome c release were also delayed. We conclude that caspases 3 and 7 are critical mediators of mitochondrial events of apoptosis.
Collapse
Affiliation(s)
- Saquib A. Lakhani
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ali Masud
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Keisuke Kuida
- Vertex Pharmaceuticals, 130 Waverly Street, Cambridge, MA 02139, USA
| | - George A. Porter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Carmen J. Booth
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Wajahat Z. Mehal
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Irteza Inayat
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard A. Flavell
- Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
43
|
Yen JJY, Yang-Yen HF. Transcription Factors Mediating Interleukin‐3 Survival Signals. INTERLEUKINS 2006; 74:147-63. [PMID: 17027514 DOI: 10.1016/s0083-6729(06)74006-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interleukin-3 (IL-3) is one of the major hematopoietic cytokines that regulate the survival of hematopoietic cells of various lineages. Although the mechanism underlying the survival effect of IL-3 has been investigated intensively for more than a decade, our knowledge of the survival-signaling network remains incomplete. Binding of IL-3 to its cognate receptors initiates rapid tyrosine phosphorylation of Janus kinases (JAKs) and of signal transducer and activator of transcription (STAT) proteins, as well as activation of the phosphatidylinositol-3 kinase (PI-3K)/Akt and Ras/Raf/MAPK kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways. These signals culminate in induction of a constellation of antiapoptotic genes and prevent cell death from occurring. Thus IL-3 signaling has substantial effects on kinase activation and gene transcription. Previous articles have summarized the roles of these kinase pathways in cell proliferation and survival. In this chapter, we will focus on the role of several newly characterized transcriptional factors, which are targets of these initial kinase cascades and bridge the gap between kinases and survival effector genes, in transducing the IL-3 survival signal. The biological significance of the existence of these multiple survival-specific transcription pathways will also be discussed.
Collapse
|
44
|
Affiliation(s)
- Il-Seon Park
- Division of Molecular Life Science, Center for Cell Signaling Research, Ewha Womans University, Seoul 120-750, The Republic of Korea.
| | | |
Collapse
|
45
|
Abstract
The apoptotic demolition of the nucleus is accomplished by diverse proapoptotic factors, most of which are activated in the cytoplasm and gain access to the nucleoplasm during the cell death process. The nucleus is also the main target for genotoxic insult, a potent apoptotic trigger. Signals generated in the nucleus by DNA damage have to propagate to all cellular compartments to ensure the coordinated execution of cell demise. The nucleocytoplasmic shuttling of signalling and execution factors is thus an integral part of the apoptotic programme. Several proteins implicated in apoptotic cell death have been shown to migrate in and out of the nucleus following apoptosis induction. This review summarises the current knowledge on nucleocytoplasmic trafficking of apoptosis-relevant proteins. The effects of apoptosis induction on the nucleocytoplasmic transport machinery are also discussed. Finally, a potential role of nuclear transport as a critical control point of the apoptotic signal cascade is proposed.
Collapse
Affiliation(s)
- E Ferrando-May
- Molecular Toxicology Group, Faculty of Biology, University of Konstanz, PO Box X911, 78457 Konstanz, Germany.
| |
Collapse
|
46
|
Joly E, Bendayan M, Roduit R, Saha AK, Ruderman NB, Prentki M. Malonyl-CoA decarboxylase is present in the cytosolic, mitochondrial and peroxisomal compartments of rat hepatocytes. FEBS Lett 2005; 579:6581-6. [PMID: 16298369 DOI: 10.1016/j.febslet.2005.10.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
A role for cytosolic malonyl-CoA decarboxylase (MCD) as a regulator of fatty acid oxidation has been postulated. However, there is no direct evidence that MCD is present in the cytosol. To address this issue, we performed cell fractionation and electron microscopic colloidal gold studies of rat liver to determine the location and activity of MCD. By both methods, substantial amounts of MCD protein and activity were found in the cytosol, mitochondria and peroxisomes, the latter with the highest specific activity. MCD species with different electrophoretic mobility were observed in the three fractions. The data demonstrate that active MCD is present in the cytosol, mitochondria and peroxisomes of rat liver, consistent with the view that MCD participates in the regulation of cytosolic malonyl-CoA levels and of hepatic fatty acid oxidation.
Collapse
Affiliation(s)
- Erik Joly
- Molecular Nutrition Unit and the Montreal Diabetes Research Center, Centre de recherche du CHUM, Pavillon de Sève, Y-4603, 1560 Sherbrooke Est, and the Department of Nutrition and Biochemistry, Université de Montréal, Montréal PQ, Canada, H3T 1C5
| | | | | | | | | | | |
Collapse
|
47
|
Campioni M, Santini D, Tonini G, Murace R, Dragonetti E, Spugnini EP, Baldi A. Role of Apaf-1, a key regulator of apoptosis, in melanoma progression and chemoresistance. Exp Dermatol 2005; 14:811-8. [PMID: 16232302 DOI: 10.1111/j.1600-0625.2005.00360.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apoptosis protease-activating factor-1 (Apaf-1) is a key regulator of the mitochondrial apoptotic pathway, being the central element of the multimeric apoptosome formed by procaspase 9, cytochrome c, and Apaf-1 itself. In this review, the principal aspects about Apaf-1 gene structure and function, and its role in the apoptotic machinery, are described. Moreover, the most recent findings about the involvement of this molecule in melanoma progression and chemoresistance, as well as the clinico-pathological relevance of these findings in the treatment of this deadly disease, are reported.
Collapse
Affiliation(s)
- Mara Campioni
- Department of Biochemistry and Biophysic F. Cedrangolo, Section of Pathology, Second University of Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Potokar M, Kreft M, Chowdhury HH, Vardjan N, Zorec R. Subcellular localization of Apaf-1 in apoptotic rat pituitary cells. Am J Physiol Cell Physiol 2005; 290:C672-7. [PMID: 16207793 DOI: 10.1152/ajpcell.00331.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key step in the intrinsic apoptotic pathway is the assembly of the apoptosome complex. The apoptosome components are well known; however, the physiology of the assembly of the apoptosome complex at the cellular level is still poorly defined. The aim of this work was to study the subcellular distribution of the apoptosome scaffold protein apoptotic protease-activating factor 1 (Apaf-1) before and after triggering apoptosis in single somatotrophs. Somatotrophs are the subject of extensive pituitary tissue remodeling in different physiological situations in which the quality and the number of pituitary cells are determined by cell proliferation and apoptosis. We show herein that 2 h after triggering apoptosis with rotenone, Apaf-1 redistributed to the proximity of mitochondria. In addition, the degree of colocalization between Apaf-1 and fluorescently labeled caspase-9 significantly increased during the same period. Furthermore, we show herein for the first time in single cells that the colocalization between Apaf-1 and cytochrome c increases only transiently, indicating a transient interaction between cytochrome c and Apaf-1 during the activation of apoptosis in these cells.
Collapse
Affiliation(s)
- Maja Potokar
- Institute of Pathophysiology, Medical Faculty, University of Ljubljana, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
49
|
Kornbluth S, White K. Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm). J Cell Sci 2005; 118:1779-87. [PMID: 15860727 DOI: 10.1242/jcs.02377] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Studies in a wide variety of organisms have produced a general model for the induction of apoptosis in which multiple signaling pathways lead ultimately to activation of the caspase family of proteases. Once activated, these enzymes cleave key cellular substrates to promote the orderly dismantling of dying cells. A broad similarity exists in the cell death pathways operating in different organisms and there is a clear evolutionary conservation of apoptotic regulators such as caspases, Bcl-2 family members, inhibitor of apoptosis (IAP) proteins, IAP antagonists and caspase activators. Despite this, studies in Caenorhabditis elegans, Drosophila and vertebrates have revealed some apparent differences both in the way apoptosis is regulated and in the way individual molecules contribute to the propagation of the death signal. For example, whereas cytochrome c released from mitochondria clearly promotes caspase activation in vertebrates, there is no documented role for cytochrome c in C. elegans apoptosis and its role in Drosophila is highly controversial. In addition, the apoptotic potency of IAP antagonists appears to be greater in Drosophila than in vertebrates, indicating that IAPs may be of different relative importance in different organisms. Thus, although Drosophila, worms and humans share a host of apoptotic regulators, the way in which they function may not be identical.
Collapse
Affiliation(s)
- Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
50
|
Yakovlev AG, Faden AI. Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies. NeuroRx 2005; 1:5-16. [PMID: 15717003 PMCID: PMC534908 DOI: 10.1602/neurorx.1.1.5] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
It has been increasingly recognized that cell death phenotypes and their molecular mechanisms are highly diverse. Necrosis is no longer considered a single entity, passively mediated by energy failure. Moreover, caspase-dependent apoptosis is not the only pathway involved in programmed cell death or even the only apoptotic mechanism. Recent experimental work emphasizes the diverse and interrelated nature of cell death mechanisms. Thus, there are both caspase-dependent and caspase-independent forms of apoptosis, which may differ morphologically as well as mechanistically. There are also necrotic-like phenotypes that require de novo protein synthesis and are, therefore, forms of programmed cell death. In addition, forms of cell death showing certain morphological features of both necrosis and apoptosis have been identified, leading to the term aponecrosis. Considerable experimental evidence also shows that modulation of one form of cell death may lead to another. Together, these observations underscore the need to substantially revise our conceptions about neuroprotection strategies. Use of multiple treatments that target different cell death cascades, or single agents that moderate multiple cell death pathways, is likely to lead to more effective neuroprotection for clinical disorders.
Collapse
Affiliation(s)
- Alexander G Yakovlev
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|