1
|
Dynamics of Actin Cytoskeleton and Their Signaling Pathways during Cellular Wound Repair. Cells 2022; 11:cells11193166. [PMID: 36231128 PMCID: PMC9564287 DOI: 10.3390/cells11193166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
The repair of wounded cell membranes is essential for cell survival. Upon wounding, actin transiently accumulates at the wound site. The loss of actin accumulation leads to cell death. The mechanism by which actin accumulates at the wound site, the types of actin-related proteins participating in the actin remodeling, and their signaling pathways are unclear. We firstly examined how actin accumulates at a wound site in Dictyostelium cells. Actin assembled de novo at the wound site, independent of cortical flow. Next, we searched for actin- and signal-related proteins targeting the wound site. Fourteen of the examined proteins transiently accumulated at different times. Thirdly, we performed functional analyses using gene knockout mutants or specific inhibitors. Rac, WASP, formin, the Arp2/3 complex, profilin, and coronin contribute to the actin dynamics. Finally, we found that multiple signaling pathways related to TORC2, the Elmo/Doc complex, PIP2-derived products, PLA2, and calmodulin are involved in the actin dynamics for wound repair.
Collapse
|
2
|
A method for visualizing fluorescence of flavonoid therapeutics in vivo in the model eukaryote Dictyostelium discoideum. Biotechniques 2019; 66:65-71. [DOI: 10.2144/btn-2018-0084] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Naturstoff reagent A (diphenylboric acid 2-aminoethyl ester [DPBA]) has been used historically in plant science to observe polyphenolic pigments, such as flavonoids, whose fluorescence requires enhancement to be visible by microscopy. Flavonoids are common dietary constituents and are the focus of considerable attention because of their potential as novel therapies for numerous diseases. The molecular basis of therapeutic activity is only gradually being established, and one strand of such research is making use of the social amoeba Dictyostelium discoideum. We extended the application of DPBA to flavonoid imaging in these preclinical studies, and report the first method for use of DPBA in this eukaryotic model microbe and its applicability alongside subcellular markers. This in vivo fluorescence imaging provided a useful adjunct to parallel chemical and genetic studies.
Collapse
|
3
|
Hashimura H, Morimoto YV, Yasui M, Ueda M. Collective cell migration of Dictyostelium without cAMP oscillations at multicellular stages. Commun Biol 2019; 2:34. [PMID: 30701199 PMCID: PMC6345914 DOI: 10.1038/s42003-018-0273-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023] Open
Abstract
In Dictyostelium discoideum, a model organism for the study of collective cell migration, extracellular cyclic adenosine 3',5'-monophosphate (cAMP) acts as a diffusible chemical guidance cue for cell aggregation, which has been thought to be important in multicellular morphogenesis. Here we revealed that the dynamics of cAMP-mediated signaling showed a transition from propagating waves to steady state during cell development. Live-cell imaging of cytosolic cAMP levels revealed that their oscillation and propagation in cell populations were obvious for cell aggregation and mound formation stages, but they gradually disappeared when multicellular slugs started to migrate. A similar transition of signaling dynamics occurred with phosphatidylinositol 3,4,5-trisphosphate signaling, which is upstream of the cAMP signal pathway. This transition was programmed with concomitant developmental progression. We propose a new model in which cAMP oscillation and propagation between cells, which are important at the unicellular stage, are unessential for collective cell migration at the multicellular stage.
Collapse
Affiliation(s)
- Hidenori Hashimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, 565-0871 Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874 Japan
| | - Yusuke V. Morimoto
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874 Japan
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502 Japan
| | - Masato Yasui
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874 Japan
| | - Masahiro Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, Suita, Osaka, 565-0871 Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874 Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871 Japan
| |
Collapse
|
4
|
Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells. Methods Mol Biol 2017; 1407:41-61. [PMID: 27271893 DOI: 10.1007/978-1-4939-3480-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XF(e)24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum.
Collapse
|
5
|
Chida J, Araki H, Maeda Y. Specific growth suppression of human cancer cells by targeted delivery of Dictyostelium mitochondrial ribosomal protein S4. Cancer Cell Int 2014; 14:56. [PMID: 24976792 PMCID: PMC4074393 DOI: 10.1186/1475-2867-14-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/09/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In general, growth and differentiation are mutually exclusive but are cooperatively regulated throughout development. Thus, the process of a cell's switching from growth to differentiation is of great importance not only for the development of organisms but also for malignant transformation, in which this process is reversed. We have previously demonstrated using a Dictyostelium model system that the Dictyostelium mitochondrial ribosomal protein S4 (Dd-mrp4) gene expression is essential for the initiation of cell differentiation: Dd-mrp4-null cells fail to initiate differentiation, while the initial step of cell differentiation and the subsequent morphogenesis are markedly enhanced in mrp4 (OE) cells overexpressing the Dd-mrp4 in the extramitochondrial cytoplasm. This raised a possibility that the ectopically enforced expression of the Dd-mrp4 in human cells might inhibit their growth, particularly of malignant tumor cells, by inducing cell differentiation. METHODS FOUR KINDS OF HUMAN TUMOR CELL LINES WERE TRANSFECTED BY THREE KIND OF VECTOR CONSTRUCTS (THE EMPTY VECTOR: pcDNA3.1 (Mock); pcDNA3.1-rps4 bearing Dictyostelium cytoplasmic ribosomal protein S4; pcDNA3.1-mrp4 bearing Dictyostelium mitochondrial ribosomal protein S4). As controls, four kinds of human primary cultured cells were similarly transfected by the above vector constructs. After transfection, growth kinetics of cells was analyzed using cell viability assay, and also the TUNEL method was used for evaluation of apoptotic cells. RESULTS Ectopically expressed Dd-mrp4 suppressed cell proliferation through inducing apoptotic cell death specifically in the human lung adenocarcinoma (A549), epithelial cervical cancer (HeLa), hepatocellular carcinoma (HepG2) and colonic carcinoma (Caco-2), but not in primary cultured normal cells, such as human brain microvascular endothelial cells (HBMECs); human umbilical vein endothelial cells (HUVECs) and human normal hepatocytes (hHeps™), with one exception (human cardiac fibloblasts (HCF)). CONCLUSION The present finding that the ectopically enforced expression of Dd-mrp4 in human several tumor cell lines specifically suppresses their proliferation suggests strongly that the Dd-mrp4 gene derived from Dictyostelium mitochondria may provide a new promising therapeutic strategy for disrupting cell viability pathways in human cancers.
Collapse
Affiliation(s)
- Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hikaru Araki
- Division of Enzyme Chemistry, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
6
|
Moving towards a paradigm: common mechanisms of chemotactic signaling in Dictyostelium and mammalian leukocytes. Cell Mol Life Sci 2014; 71:3711-47. [PMID: 24846395 DOI: 10.1007/s00018-014-1638-8] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 12/31/2022]
Abstract
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.
Collapse
|
7
|
Maeda Y, Chida J. Control of cell differentiation by mitochondria, typically evidenced in dictyostelium development. Biomolecules 2013; 3:943-66. [PMID: 24970198 PMCID: PMC4030964 DOI: 10.3390/biom3040943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/01/2013] [Accepted: 11/02/2013] [Indexed: 01/15/2023] Open
Abstract
In eukaryotic cells, mitochondria are self-reproducing organelles with their own DNA and they play a central role in adenosine triphosphate (ATP) synthesis by respiration. Increasing evidence indicates that mitochondria also have critical and multiple functions in the initiation of cell differentiation, cell-type determination, cell movement, and pattern formation. This has been most strikingly realized in development of the cellular slime mold Dictyostelium. For example, the expression of the mitochondrial ribosomal protein S4 (mt-rps4) gene is required for the initial differentiation. The Dictyostelium homologue (Dd-TRAP1) of TRAP-1 (tumor necrosis receptor-associated protein 1), a mitochondrial molecular chaperone belonging to the Hsp90 family, allows the prompt transition of cells from growth to differentiation through a novel prestarvation factor (PSF-3) in growth medium. Moreover, a cell-type-specific organelle named a prespore-specific vacuole (PSV) is constructed by mitochondrial transformation with the help of the Golgi complex. Mitochondria are also closely involved in a variety of cellular activities including CN-resistant respiration and apoptosis. These mitochondrial functions are reviewed in this article, with special emphasis on the regulation of Dictyostelium development.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| | - Junji Chida
- Division of Molecular Neurobiology, Institute for Enzyme Research, The University of Tokushima, Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
8
|
Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, De Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR. Dictyostelium, a microbial model for brain disease. Biochim Biophys Acta Gen Subj 2013; 1840:1413-32. [PMID: 24161926 DOI: 10.1016/j.bbagen.2013.10.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/05/2013] [Accepted: 10/10/2013] [Indexed: 12/25/2022]
Abstract
BACKGROUND Most neurodegenerative diseases are associated with mitochondrial dysfunction. In humans, mutations in mitochondrial genes result in a range of phenotypic outcomes which do not correlate well with the underlying genetic cause. Other neurodegenerative diseases are caused by mutations that affect the function and trafficking of lysosomes, endosomes and autophagosomes. Many of the complexities of these human diseases can be avoided by studying them in the simple eukaryotic model Dictyostelium discoideum. SCOPE OF REVIEW This review describes research using Dictyostelium to study cytopathological pathways underlying a variety of neurodegenerative diseases including mitochondrial, lysosomal and vesicle trafficking disorders. MAJOR CONCLUSIONS Generalised mitochondrial respiratory deficiencies in Dictyostelium produce a consistent pattern of defective phenotypes that are caused by chronic activation of a cellular energy sensor AMPK (AMP-activated protein kinase) and not ATP deficiency per se. Surprisingly, when individual subunits of Complex I are knocked out, both AMPK-dependent and AMPK-independent, subunit-specific phenotypes are observed. Many nonmitochondrial proteins associated with neurological disorders have homologues in Dictyostelium and are associated with the function and trafficking of lysosomes and endosomes. Conversely, some genes associated with neurodegenerative disorders do not have homologues in Dictyostelium and this provides a unique avenue for studying these mutated proteins in the absence of endogeneous protein. GENERAL SIGNIFICANCE Using the Dictyostelium model we have gained insights into the sublethal cytopathological pathways whose dysregulation contributes to phenotypic outcomes in neurodegenerative disease. This work is beginning to distinguish correlation, cause and effect in the complex network of cross talk between the various organelles involved. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- S J Annesley
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S Chen
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - L M Francione
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - O Sanislav
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - A J Chavan
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C Farah
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S W De Piazza
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - C L Storey
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - J Ilievska
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S G Fernando
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P K Smith
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - S T Lay
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086
| | - P R Fisher
- Department of Microbiology, La Trobe University, Plenty Rd., Bundoora, VIC, Australia, 3086.
| |
Collapse
|
9
|
Carilla-Latorre S, Annesley SJ, Muñoz-Braceras S, Fisher PR, Escalante R. Ndufaf5 deficiency in the Dictyostelium model: new roles in autophagy and development. Mol Biol Cell 2013; 24:1519-28. [PMID: 23536703 PMCID: PMC3655813 DOI: 10.1091/mbc.e12-11-0796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ndufaf5 is a conserved protein mutated in patients with mitochondrial complex I (CI) disease. A Dictyostelium model lacking functional Ndufaf5 provides new insights into the cytopathology of the disease, including a specific CI deficiency, AMPK-independent defects in growth and development, and a connection with autophagy. Ndufaf5 (also known as C20orf7) is a mitochondrial complex I (CI) assembly factor whose mutations lead to human mitochondrial disease. Little is known about the function of the protein and the cytopathological consequences of the mutations. Disruption of Dictyostelium Ndufaf5 leads to CI deficiency and defects in growth and development. The predicted sequence of Ndufaf5 contains a putative methyltransferase domain. Site-directed mutagenesis indicates that the methyltransferase motif is essential for its function. Pathological mutations were recreated in the Dictyostelium protein and expressed in the mutant background. These proteins were unable to complement the phenotypes, which further validates Dictyostelium as a model of the disease. Chronic activation of AMP-activated protein kinase (AMPK) has been proposed to play a role in Dictyostelium and human cytopathology in mitochondrial diseases. However, inhibition of the expression of AMPK gene in the Ndufaf5-null mutant does not rescue the phenotypes associated with the lack of Ndufaf5, suggesting that novel AMPK-independent pathways are responsible for Ndufaf5 cytopathology. Of interest, the Ndufaf5-deficient strain shows an increase in autophagy. This phenomenon was also observed in a Dictyostelium mutant lacking MidA (C2orf56/PRO1853/Ndufaf7), another CI assembly factor, suggesting that autophagy activation might be a common feature in mitochondrial CI dysfunction.
Collapse
Affiliation(s)
- Sergio Carilla-Latorre
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
10
|
Tang Y, Gomer RH. CnrN regulates Dictyostelium group size using a counting factor-independent mechanism. Commun Integr Biol 2012; 1:185-7. [PMID: 19704889 DOI: 10.4161/cib.1.2.7255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 10/22/2008] [Indexed: 11/19/2022] Open
Abstract
One of the simplest examples of a complex behavior is the aggregation of solitary Dictyostelium discoideum amoebae to form a 20,000-cell fruiting body. A field of starving amoebae first breaks up into territories. In each territory, the cells form a spider-like pattern of streams of cells. As part of a negative feedback loop, counting factor (CF), a secreted protein complex whose concentration increases with the size of the stream, prevents over-sized fruiting bodies from being formed by increasing cell motility and decreasing cell-cell adhesion, which causes the breakup of excessively large streams. Cells lacking the phosphatase CnrN (cnrN(-) cells) form small aggregation territories and few streams.1 In this report, we present computer simulations that suggest that in the absence of stream formation, CF should be unable to affect group size. As predicted, cnrN(-) group size is insensitive to the addition or depletion of CF. Together, the data indicate that CnrN regulates group size by regulating both the break-up of a field of cells into aggregation territories and stream formation during development, and that CnrN-mediated and CF-mediated group size regulation use different mechanisms.
Collapse
Affiliation(s)
- Yitai Tang
- Department of Biochemistry and Cell Biology; Rice University; Houston, Texas USA
| | | |
Collapse
|
11
|
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance for the development of organisms, and terminally differentiated cells such as nerve cells never divide. Meanwhile, the growth rate speeds up when cells turn malignant. The cellular slime mold Dictyostelium discoideum grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A critical checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been precisely specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of the GDT point, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and multiple functions of mitochondria in various respects of development including the initiation of differentiation have been directly realized in Dictyostelium cells, they are also reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| |
Collapse
|
12
|
Vlahou G, Eliáš M, von Kleist-Retzow JC, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol 2010; 90:342-55. [PMID: 21131095 DOI: 10.1016/j.ejcb.2010.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 01/12/2023] Open
Abstract
Ras-related GTPases of the Miro family have been implicated in mitochondrial homeostasis and microtubule-dependent transport. They consist of two GTP-binding domains separated by calcium-binding motifs and of a C-terminal transmembrane domain that targets the protein to the outer mitochondrial membrane. We disrupted the single Miro-encoding gene in Dictyostelium discoideum and observed a substantial growth defect that we attribute to a decreased mitochondrial mass and cellular ATP content. However, mutant cells even showed an increased rate of oxygen consumption, while glucose consumption, mitochondrial transmembrane potential and production of reactive oxygen species were unaltered. Processes characteristic of the multicellular stage of the D. discoideum life cycle were also unaltered. Although mitochondria occasionally use microtubules for transport in D. discoideum, their size and distribution were not visibly affected. We found Miro in all branches of the eukaryotic tree with the exception of a few protist lineages (mainly those lacking typical mitochondria). Trypanosomatids and ciliates possess structurally unique homologs lacking the N-terminal or the C-terminal GTPase domain, respectively. We propose that in D. discoideum, as in yeasts and plants, Miro plays roles in mitochondrial homeostasis, but the ability to build a complex that regulates its association to kinesin for microtubule-dependent transport probably arose in metazoans.
Collapse
Affiliation(s)
- Georgia Vlahou
- Zentrum für Biochemie, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | | | | | | | | |
Collapse
|
13
|
Francione LM, Annesley SJ, Carilla-Latorre S, Escalante R, Fisher PR. The Dictyostelium model for mitochondrial disease. Semin Cell Dev Biol 2010; 22:120-30. [PMID: 21129494 DOI: 10.1016/j.semcdb.2010.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/19/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Mitochondrial diseases are a diverse family of genetic disorders caused by mutations affecting mitochondrial proteins encoded in either the nuclear or the mitochondrial genome. By impairing mitochondrial oxidative phosphorylation, they compromise cellular energy production and the downstream consequences in humans are a bewilderingly complex array of signs and symptoms that can affect any of the major organ systems in unpredictable combinations. This complexity and unpredictability has limited our understanding of the cytopathological consequences of mitochondrial dysfunction. By contrast, in Dictyostelium the mitochondrial disease phenotypes are consistent, measurable "readouts" of dysregulated intracellular signalling pathways. When the underlying genetic defects would produce coordinate, generalized deficiencies in multiple mitochondrial respiratory complexes, the disease phenotypes are mediated by chronic activation of an energy-sensing protein kinase, AMP-activated protein kinase (AMPK). This chronic AMPK hyperactivity maintains mitochondrial mass and cellular ATP concentrations at normal levels, but chronically impairs growth, cell cycle progression, multicellular development, photosensory and thermosensory signal transduction. It also causes the cells to support greater proliferation of the intracellular bacterial pathogen, Legionella pneumophila. Notably however, phagocytic and macropinocytic nutrient uptake are impervious both to AMPK signalling and to these types of mitochondrial dysfunction. Surprisingly, a Complex I-specific deficiency (midA knockout) not only causes the foregoing AMPK-mediated defects, but also produces a dramatic deficit in endocytic nutrient uptake accompanied by an additional secondary defect in growth. More restricted and specific phenotypic outcomes are produced by knocking out genes for nuclear-encoded mitochondrial proteins that are not required for respiration. The Dictyostelium model for mitochondrial disease has thus revealed consistent patterns of sublethal dysregulation of intracellular signalling pathways that are produced by different types of underlying mitochondrial dysfunction.
Collapse
|
14
|
Choi CH, Patel H, Barber DL. Expression of actin-interacting protein 1 suppresses impaired chemotaxis of Dictyostelium cells lacking the Na+-H+ exchanger NHE1. Mol Biol Cell 2010; 21:3162-70. [PMID: 20668166 PMCID: PMC2938382 DOI: 10.1091/mbc.e09-12-1058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dictyostelium cells lacking the intracellular pH regulator NHE1 have defective chemotaxis. A modifier screen and reconstitution studies show expression of recombinant actin interacting protein 1 (Aip1) suppresses the Ddnhe1-phenotype. Aip1 promotes cofilin-dependent actin remodeling, which is likely a major determinant in pH-dependent chemotaxis. Increased intracellular pH is an evolutionarily conserved signal necessary for directed cell migration. We reported previously that in Dictyostelium cells lacking H+ efflux by a Na+-H+ exchanger (NHE; Ddnhe1−), chemotaxis is impaired and the assembly of filamentous actin (F-actin) is attenuated. We now describe a modifier screen that reveals the C-terminal fragment of actin-interacting protein 1 (Aip1) enhances the chemotaxis defect of Ddnhe1− cells but has no effect in wild-type Ax2 cells. However, expression of full-length Aip1 mostly suppresses chemotaxis defects of Ddnhe1− cells and restores F-actin assembly. Aip1 functions to promote cofilin-dependent actin remodeling, and we found that although full-length Aip1 binds cofilin and F-actin, the C-terminal fragment binds cofilin but not F-actin. Because pH-dependent cofilin activity is attenuated in mammalian cells lacking H+ efflux by NHE1, our current data suggest that full-length Aip1 facilitates F-actin assembly when cofilin activity is limited. We predict the C-terminus of Aip1 enhances defective chemotaxis of Ddnhe1− cells by sequestering the limited amount of active cofilin without promoting F-actin assembly. Our findings indicate a cooperative role of Aip1 and cofilin in pH-dependent cell migration, and they suggest defective chemotaxis in Ddnhe1− cells is determined primarily by loss of cofilin-dependent actin dynamics.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
15
|
Nagayama K, Ohmachi T. Mitochondrial processing peptidase activity is controlled by the processing of alpha-MPP during development in Dictyostelium discoideum. MICROBIOLOGY (READING, ENGLAND) 2010; 156:978-989. [PMID: 20019080 DOI: 10.1099/mic.0.034306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We investigated the expression of the alpha subunit of the Dictyostelium mitochondrial processing peptidase (Ddalpha-MPP) during development. Ddalpha-MPP mRNA is expressed at the highest levels in vegetatively growing cells and during early development, and is markedly downregulated after 10 h of development. The Ddalpha-MPP protein is expressed as two forms, designated alpha-MPP(H) and alpha-MPP(L), throughout the Dictyostelium life cycle. The larger form, alpha-MPP(H), is cleaved to produce the functional alpha-MPP(L) form. We were not able to isolate mutants in which the alpha-mpp gene had been disrupted. Instead, an antisense transformant, alphaA2, expressing alpha-MPP at a lower level than the wild-type AX-3 was isolated to examine the function of the alpha-MPP protein. Development of the alphaA2 strain was normal until the slug formation stage, but the slug stage was prolonged to approximately 24 h. In this prolonged slug stage, only alpha-MPP(H) was present, and alpha-MPP(L) protein and MPP activity were not detected. After 28 h, alpha-MPP(L) and MPP activity reappeared, and normal fruiting bodies were formed after a delay of approximately 8 h compared with normal development. These results indicate that MPP activity is controlled by the processing of alpha-MPP(H) to alpha-MPP(L) during development in Dictyostelium.
Collapse
Affiliation(s)
- Koki Nagayama
- Department of Biochemistry and Biotechnology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
- Science of Bioresources, United Graduate School of Agricultural Sciences, Iwate University, Morioka, Iwate 020-8551, Japan
| | - Tetsuo Ohmachi
- Department of Biochemistry and Biotechnology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan
| |
Collapse
|
16
|
Czarna M, Mathy G, Mac'Cord A, Dobson R, Jarmuszkiewicz W, Sluse-Goffart CM, Leprince P, De Pauw E, Sluse FE. Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of development. Proteomics 2010; 10:6-22. [PMID: 20013782 DOI: 10.1002/pmic.200900352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, a quantitative comparative proteomics approach has been used to analyze the Dictyostelium discoideum mitochondrial proteome variations during vegetative growth, starvation and the early stages of development. Application of 2-D DIGE technology allowed the detection of around 2000 protein spots on each 2-D gel with 180 proteins exhibiting significant changes in their expression level. In total, 96 proteins (51 unique and 45 redundant) were unambiguously identified. We show that the D. discoideum mitochondrial proteome adaptations mainly affect energy metabolism enzymes (the Krebs cycle, anaplerotic pathways, the oxidative phosphorylation system and energy dissipation), proteins involved in developmental and signaling processes as well as in protein biosynthesis and fate. The most striking observations were the opposite regulation of expression of citrate synthase and aconitase and the very large variation in the expression of the alternative oxidase that highlighted the importance of citrate and alternative oxidase in the physiology of the development of D. discoideum. Mitochondrial energy states measured in vivo with MitoTracker Orange CM Ros showed an increase in mitochondrial membrane polarization during D. discoideum starvation and starvation-induced development.
Collapse
Affiliation(s)
- Malgorzata Czarna
- Laboratory of Bioenergetics and Cellular Physiology, University of Liege, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Annesley SJ, Fisher PR. Dictyostelium discoideum--a model for many reasons. Mol Cell Biochem 2009; 329:73-91. [PMID: 19387798 DOI: 10.1007/s11010-009-0111-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/02/2009] [Indexed: 10/25/2022]
Abstract
The social amoeba or cellular slime mould Dictyostelium discoideum is a "professional" phagocyte that has long been recognized for its value as a biomedical model organism, particularly in studying the actomyosin cytoskeleton and chemotactic motility in non-muscle cells. The complete genome sequence of D. discoideum is known, it is genetically tractable, readily grown clonally as a eukaryotic microorganism and is highly accessible for biochemical, cell biological and physiological studies. These are the properties it shares with other microbial model organisms. However, Dictyostelium combines these with a unique life style, with motile unicellular and multicellular stages, and multiple cell types that offer for study an unparalleled variety of phenotypes and associated signalling pathways. These advantages have led to its recent emergence as a valuable model organism for studying the molecular pathogenesis and treatment of human disease, including a variety of infectious diseases caused by bacterial and fungal pathogens. Perhaps surprisingly, this organism, without neurons or brain, has begun to yield novel insights into the cytopathology of mitochondrial diseases as well as other genetic and idiopathic disorders affecting the central nervous system. Dictyostelium has also contributed significantly to our understanding of NDP kinase, as it was the Dictyostelium enzyme whose structure was first determined and related to enzymatic activity. The phenotypic richness and tractability of Dictyostelium should provide a fertile arena for future exploration of NDPK's cellular roles.
Collapse
Affiliation(s)
- Sarah J Annesley
- Department of Microbiology, La Trobe University, Bundoora, VIC 3086, Australia
| | | |
Collapse
|
18
|
A protein with similarity to PTEN regulates aggregation territory size by decreasing cyclic AMP pulse size during Dictyostelium discoideum development. EUKARYOTIC CELL 2008; 7:1758-70. [PMID: 18676953 DOI: 10.1128/ec.00210-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An interesting but largely unanswered biological question is how eukaryotic organisms regulate the size of multicellular tissues. During development, a lawn of Dictyostelium cells breaks up into territories, and within the territories the cells aggregate in dendritic streams to form groups of approximately 20,000 cells. Using random insertional mutagenesis to search for genes involved in group size regulation, we found that an insertion in the cnrN gene affects group size. Cells lacking CnrN (cnrN(-)) form abnormally small groups, which can be rescued by the expression of exogenous CnrN. Relayed pulses of extracellular cyclic AMP (cAMP) direct cells to aggregate by chemotaxis to form aggregation territories and streams. cnrN(-) cells overaccumulate cAMP during development and form small territories. Decreasing the cAMP pulse size by treating cnrN(-) cells with cAMP phosphodiesterase or starving cnrN(-) cells at a low density rescues the small-territory phenotype. The predicted CnrN sequence has similarity to phosphatase and tensin homolog (PTEN), which in Dictyostelium inhibits cAMP-stimulated phosphatidylinositol 3-kinase signaling pathways. CnrN inhibits cAMP-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation, Akt activation, actin polymerization, and cAMP production. Our results suggest that CnrN is a protein with some similarities to PTEN and that it regulates cAMP signal transduction to regulate territory size.
Collapse
|
19
|
Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, Dictyostelium discoideum, with a role in cytokinesis. Proc Natl Acad Sci U S A 2007; 104:16486-91. [PMID: 17940044 DOI: 10.1073/pnas.0706847104] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphosphate kinase 1 (PPK1), the principal enzyme responsible for reversible synthesis of polyphosphate (poly P) from the terminal phosphate of ATP, is highly conserved in bacteria and archaea. Dictyostelium discoideum, a social slime mold, is one of a few eukaryotes known to possess a PPK1 homolog (DdPPK1). Compared with PPK1 of Escherichia coli, DdPPK1 contains the conserved residues for ATP binding and autophosphorylation, but has an N-terminal extension of 370 aa, lacking homology with any known protein. Polyphosphate or ATP promote oligomerization of the enzyme in vitro. The DdPPK1 products are heterogeneous in chain length and shorter than those of E. coli. The unique DdPPK1 N-terminal domain was shown to be necessary for its enzymatic activity, cellular localization, and physiological functions. Mutants of DdPPK1, as previously reported, are defective in development, sporulation, and predation, and as shown here, in late stages of cytokinesis and cell division.
Collapse
|
20
|
Willard SS, Devreotes PN. Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum. Eur J Cell Biol 2007; 85:897-904. [PMID: 16962888 DOI: 10.1016/j.ejcb.2006.06.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils. In this review, we will discuss recent data on genes and pathways governing directional sensing and actin polymerization, with a particular emphasis on contributions from our laboratory.
Collapse
Affiliation(s)
- Stacey S Willard
- Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
21
|
Chen L, Iijima M, Tang M, Landree MA, Huang YE, Xiong Y, Iglesias PA, Devreotes PN. PLA2 and PI3K/PTEN pathways act in parallel to mediate chemotaxis. Dev Cell 2007; 12:603-14. [PMID: 17419997 PMCID: PMC1986835 DOI: 10.1016/j.devcel.2007.03.005] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/31/2006] [Accepted: 03/08/2007] [Indexed: 01/12/2023]
Abstract
Directed cell migration involves signaling events that lead to local accumulation of PI(3,4,5)P(3), but additional pathways act in parallel. A genetic screen in Dictyostelium discoideum to identify redundant pathways revealed a gene with homology to patatin-like phospholipase A(2). Loss of this gene did not alter PI(3,4,5)P(3) regulation, but chemotaxis became sensitive to reductions in PI3K activity. Likewise, cells deficient in PI3K activity were more sensitive to inhibition of PLA(2) activity. Deletion of the PLA(2) homolog and two PI3Ks caused a strong defect in chemotaxis and a reduction in receptor-mediated actin polymerization. In wild-type cells, chemoattractants stimulated a rapid burst in an arachidonic acid derivative. This response was absent in cells lacking the PLA(2) homolog, and exogenous arachidonic acid reduced their dependence on PI3K signaling. We propose that PLA(2) and PI3K signaling act in concert to mediate chemotaxis, and metabolites of PLA(2) may be important mediators of the response.
Collapse
Affiliation(s)
- Lingfeng Chen
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sánchez-Madrid F, Serrador JM. Mitochondrial redistribution: adding new players to the chemotaxis game. Trends Immunol 2007; 28:193-6. [PMID: 17400511 DOI: 10.1016/j.it.2007.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/27/2007] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
Leukocyte polarization and chemotaxis have a key role in the homeostasis of the immune system and in inflammation. Recent work shows that chemoattractants induce the redistribution of mitochondria towards the uropod of polarized migrating leukocytes through a mechanism involving microtubules and mitochondrial fission. These findings underscore the key role this organelle can have in leukocyte chemotaxis by fuelling motor proteins at their trailing edge.
Collapse
Affiliation(s)
- Francisco Sánchez-Madrid
- Departamento de Biología Vascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain.
| | | |
Collapse
|
23
|
Barth C, Le P, Fisher PR. Mitochondrial biology and disease in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:207-52. [PMID: 17725968 DOI: 10.1016/s0074-7696(07)63005-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular slime mold Dictyostelium discoideum has become an increasingly useful model for the study of mitochondrial biology and disease. Dictyostelium is an amoebazoan, a sister clade to the animal and fungal lineages. The mitochondrial biology of Dictyostelium exhibits some features which are unique, others which are common to all eukaryotes, and still others that are otherwise found only in the plant or the animal lineages. The AT-rich mitochondrial genome of Dictyostelium is larger than its mammalian counterpart and contains 56kb (compared to 17kb in mammals) encoding tRNAs, rRNAs, and 33 polypeptides (compared to 13 in mammals). It produces a single primary transcript that is cotranscriptionally processed into multiple monocistronic, dicistronic, and tricistronic mRNAs, tRNAs, and rRNAs. The mitochondrial fission mechanism employed by Dictyostelium involves both the extramitochondrial dynamin-based system used by plant, animal, and fungal mitochondria and the ancient FtsZ-based intramitochondrial fission process inherited from the bacterial ancestor. The mitochondrial protein-import apparatus is homologous to that of other eukaryote, and mitochondria in Dictyostelium play an important role in the programmed cell death pathways. Mitochondrial disease in Dictyostelium has been created both by targeted gene disruptions and by antisense RNA and RNAi inhibition of expression of essential nucleus-encoded mitochondrial proteins. This has revealed a regular pattern of aberrant mitochondrial disease phenotypes caused not by ATP insufficiency per se, but by chronic activation of the universal eukaryotic energy-sensing protein kinase AMPK. This novel insight into the cytopathological mechanisms of mitochondrial dysfunction suggests new possibilities for therapeutic intervention in mitochondrial and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Barth
- Department of Microbiology, La Trobe University, Melbourne VIC 3086, Australia
| | | | | |
Collapse
|
24
|
Kiefel BR, Gilson PR, Beech PL. Cell biology of mitochondrial dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:151-213. [PMID: 17147999 DOI: 10.1016/s0074-7696(06)54004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mitochondria are the product of an ancient endosymbiotic event between an alpha-proteobacterium and an archael host. An early barrier to overcome in this relationship was the control of the bacterium's proliferation within the host. Undoubtedly, the bacterium (or protomitochondrion) would have used its own cell division apparatus to divide at first and, today a remnant of this system remains in some "ancient" and diverse eukaryotes such as algae and amoebae, the most conserved and widespread of all bacterial division proteins, FtsZ. In many of the eukaryotes that still use FtsZ to constrict the mitochondria from the inside, the mitochondria still resemble bacteria in shape and size. Eukaryotes, however, have a mitochondrial morphology that is often highly fluid, and in their tubular networks of mitochondria, division is clearly complemented by mitochondrial fusion. FtsZ is no longer used by these complex eukaryotes, and may have been replaced by other proteins better suited to sustaining complex mitochondrial networks. Although proteins that divide mitochondria from the inside are just beginning to be characterized in higher eukaryotes, many division proteins are known to act on the outside of the organelle. The most widespread of these are the dynamin-like proteins, which appear to have been recruited very early in the evolution of mitochondria. The essential nature of mitochondria dictates that their loss is intolerable to human cells, and that mutations disrupting mitochondrial division are more likely to be fatal than result in disease. To date, only one disease (Charcot-Marie-Tooth disease 2A) has been mapped to a gene that is required for mitochondrial division, whereas two other diseases can be attributed to mutations in mitochondrial fusion genes. Apart from playing a role in regulating the morphology, which might be important for efficient ATP production, research has indicated that the mitochondrial division and fusion proteins can also be important during apoptosis; mitochondrial fragmentation is an early triggering (and under many stimuli, essential) step in the pathway to cell suicide.
Collapse
Affiliation(s)
- Ben R Kiefel
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Melbourne, Australia
| | | | | |
Collapse
|
25
|
Abstract
Dictyostelium is an accessible organism for studies of signaling via chemoattractant receptors. Chemoattractant-mediated signaling events and components are reviewed and presented as a series of connected modules, including excitation, inhibition, G protein-independent responses, early gene expression, inositol lipids, PH domain-containing proteins, cyclic AMP signaling, polarization acquisition, actin polymerization, and cortical myosin. The network incorporates information from biochemical, genetic, and cell biological experiments carried out on living cells. The modules and connections represent current understanding, and future information is expected to modify and build upon this structure.
Collapse
Affiliation(s)
- Carol L Manahan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
26
|
Maeda Y. Regulation of growth and differentiation in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2005; 244:287-332. [PMID: 16157183 DOI: 10.1016/s0074-7696(05)44007-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In general, growth and differentiation are mutually exclusive, but they are cooperatively regulated during the course of development. Thus, the process of a cell's transition from growth to differentiation is of general importance not only for the development of organisms but also for the initiation of malignant transformation, in which this process is reversed. The cellular slime mold Dictyostelium, a wonderful model organism, grows and multiplies as long as nutrients are supplied, and its differentiation is triggered by starvation. A strict checkpoint (growth/differentiation transition or GDT point), from which cells start differentiating in response to starvation, has been specified in the cell cycle of D. discoideum Ax-2 cells. Accordingly, integration of GDT point-specific events with starvation-induced events is needed to understand the mechanism regulating GDTs. A variety of intercellular and intracellular signals are involved positively or negatively in the initiation of differentiation, making a series of cross-talks. As was expected from the presence of GDT points, the cell's positioning in cell masses and subsequent cell-type choices occur depending on the cell's phase in the cell cycle at the onset of starvation. Since novel and somewhat unexpected multiple functions of mitochondria in cell movement, differentiation, and pattern formation have been well realized in Dictyostelium cells, they are reviewed in this article.
Collapse
Affiliation(s)
- Yasuo Maeda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
27
|
Nishida K, Misumi O, Yagisawa F, Kuroiwa H, Nagata T, Kuroiwa T. Triple immunofluorescent labeling of FtsZ, dynamin, and EF-Tu reveals a loose association between the inner and outer membrane mitochondrial division machinery in the red alga Cyanidioschyzon merolae. J Histochem Cytochem 2004; 52:843-9. [PMID: 15208351 DOI: 10.1369/jhc.4c6315.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the mitochondria of primitive eukaryotes, FtsZ and dynamin are part of the machinery involved in division of the inner and outer membranes, respectively. These genes also commonly function in the same manner during chloroplast division. In this study, a relationship between the localization of the inner and outer division machinery was directly shown for the first time. Triple immunofluorescent labeling was performed in the red alga Cyanidioschyzon merolae by a device using narrow bandpass filter sets and bright photostable dyes. FtsZ (CmFtsZ1) and dynamin (CmDnm1) localizations were examined simultaneously throughout the mitochondrial division cycle with an alternative mitochondrial marker protein, the mitochondrial translation elongation factor EF-Tu, whose localization was also shown to be identical to the mitochondrial matrix. FtsZ and dynamin did not necessarily co-localize when both were recruited to the mitochondrial constriction site, indicating that inner and outer dividing machineries are not in tight association during the late stage of division.
Collapse
Affiliation(s)
- Keiji Nishida
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Toshima-ku, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Gilson PR, Yu XC, Hereld D, Barth C, Savage A, Kiefel BR, Lay S, Fisher PR, Margolin W, Beech PL. Two Dictyostelium orthologs of the prokaryotic cell division protein FtsZ localize to mitochondria and are required for the maintenance of normal mitochondrial morphology. EUKARYOTIC CELL 2003; 2:1315-26. [PMID: 14665465 PMCID: PMC326642 DOI: 10.1128/ec.2.6.1315-1326.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Accepted: 08/13/2003] [Indexed: 11/20/2022]
Abstract
In bacteria, the protein FtsZ is the principal component of a ring that constricts the cell at division. Though all mitochondria probably arose through a single, ancient bacterial endosymbiosis, the mitochondria of only certain protists appear to have retained FtsZ, and the protein is absent from the mitochondria of fungi, animals, and higher plants. We have investigated the role that FtsZ plays in mitochondrial division in the genetically tractable protist Dictyostelium discoideum, which has two nuclearly encoded FtsZs, FszA and FszB, that are targeted to the inside of mitochondria. In most wild-type amoebae, the mitochondria are spherical or rod-shaped, but in fsz-null mutants they become elongated into tubules, indicating that a decrease in mitochondrial division has occurred. In support of this role in organelle division, antibodies to FszA and FszA-green fluorescent protein (GFP) show belts and puncta at multiple places along the mitochondria, which may define future or recent sites of division. FszB-GFP, in contrast, locates to an electron-dense, submitochondrial body usually located at one end of the organelle, but how it functions during division is unclear. This is the first demonstration of two differentially localized FtsZs within the one organelle, and it points to a divergence in the roles of these two proteins.
Collapse
Affiliation(s)
- Paul R Gilson
- Centre for Cellular and Molecular Biology, School of Biological and Chemical Sciences, Deakin University, Victoria 3125, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kotsifas M, Barth C, de Lozanne A, Lay ST, Fisher PR. Chaperonin 60 and mitochondrial disease in Dictyostelium. J Muscle Res Cell Motil 2003; 23:839-52. [PMID: 12952082 DOI: 10.1023/a:1024444215766] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The single Dictyostelium chaperonin 60 gene, hspA, was cloned, sequenced and characterized. Sequence comparisons and a three-dimensional model for the structure of the encoded protein showed that it exhibits the conserved sequence and structural features expected for its role as the Dictyostelium mitochondrial chaperonin 60. Dictyostelium hspA contains two introns and, unusually for a member of this major heat shock gene family, is not stress-inducible in response to heat, cold or cadmium ions. Although transcription of hspA is down regulated during early Dictyostelium development in response to starvation, the levels of the chaperonin 60 protein remain constant throughout the life cycle. Consistent with the essential role of chaperonin 60 in mitochondrial biogenesis, we were unable to isolate mutants in which the hspA gene had been disrupted. However, transformants were isolated that exhibited differing levels of antisense inhibition of chaperonin 60 expression, depending upon the number of copies of the antisense-expressing plasmid in the genome. Orientation in phototaxis (and thermotaxis) was severely impaired in all antisense transformants, while growth and morphogenesis were markedly defective only in transformants with higher levels of antisense inhibition. This pattern of phenotypes is similar to that reported previously to result from targeted disruption of the mitochondrial large subunit rRNA gene in a subpopulation of mitochondria. This suggests that, regardless of the nature of the underlying genetic defect, mitochondrial deficiency impairs signal transduction more sensitively than other cellular activities.
Collapse
Affiliation(s)
- Martha Kotsifas
- Department of Microbiology, La Trobe University, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
30
|
Fields SD, Arana Q, Heuser J, Clarke M. Mitochondrial membrane dynamics are altered in cluA- mutants of Dictyostelium. J Muscle Res Cell Motil 2003; 23:829-38. [PMID: 12952081 DOI: 10.1023/a:1024492031696] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In cluA- mutants of Dictyostelium, mitochondria are clustered near the cell center rather than being dispersed throughout the cytoplasm. We have examined two possible mechanisms that could account for this phenotype. First, we sought evidence that the cytoskeleton or a presumptive mitochondrion-cytoskeleton linkage was altered in mutant cells. We found that cytoskeletal structures in cluA- cells appeared normal by immunostaining, and that the distribution of peroxisomes in mutant cells was indistinguishable from that in wild type cells. Treatment of wild type cells with drugs that disrupted microtubules or actin filaments did not mimic the cluA- phenotype. Thus, cytoskeletal defects seemed unlikely to account for the mitochondrial clustering in cluA- cells. Observation of the movement of GFP-tagged mitochondria in wild type cells suggested that mitochondria are transported along microtubules, as in mammalian cells, rather than along actin filaments, as in budding yeast. Therefore, the similar phenotypes of cluA- Dictyostelium cells and clu1delta yeast cells argued against CluA/Clu1p acting as a mitochondrion-cytoskeleton linker. We next examined the ultrastructure of mitochondria in freeze-substituted, thin-sectioned cells. We found that the clustered mitochondria in cluA- cells are interconnected. Often, adjacent mitochondria are linked by narrow membranous strands, although sometimes the mitochondria are partially merged. The presence of narrow constrictions at presumptive division sites argues that the constriction step of division proceeds normally. Our data suggest that cluA- cells may be blocked at a very late step in fission of the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Stephen D Fields
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Disorders of mitochondrial function cause significant human disease and suffering. To date, correction of these mitochondria defects has depended on biochemical approaches and has not been achieved via gene therapies. Using previously described fusion proteins containing the transactivator of transcription (TAT) region from the HIV virus and green fluorescent protein (GFP), with and without a mitochondrial targeting sequence (MTS) from mitochondrial malate dehydrogenase (mMDH), we have investigated transduction across mitochondrial membranes. Both TAT-GFP and TAT-mMDH-GFP fusion proteins are protected from externally added protease when incubated with isolated mitochondria. Furthermore, both TAT fusion proteins rapidly enter cultured cells and transduce into mitochondria. However, the MTS allows processing of the fusion protein and is necessary for persistence in mitochondria over time. Neither degradation of import receptors nor disruption of the mitochondrial membrane potential or pH gradient inhibits protein transduction of either fusion protein. Furthermore, when injected into pregnant mice, TAT-mMDH-GFP is detectable throughout fetal and neonatal pups. These results indicate that TAT fusion proteins are able to traverse mitochondrial membranes through mechanisms that do not involve the regular import pathway, and that the addition of a MTS allows persistence of the fusion protein within mitochondria. TAT-MTS fusion proteins may represent a viable option as potential mitochondrial protein therapies.
Collapse
Affiliation(s)
- Victoria Del Gaizo
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1081, USA
| | | | | |
Collapse
|
32
|
Del Gaizo V, Payne RM. A novel TAT-mitochondrial signal sequence fusion protein is processed, stays in mitochondria, and crosses the placenta. Mol Ther 2003; 7:720-30. [PMID: 12788645 DOI: 10.1016/s1525-0016(03)00130-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in nuclear and mitochondrial genomes can lead to defects in mitochondrial function. To date, repair of these defects with exogenous proteins or gene transfer has been difficult with either viral or nonviral vectors. We hypothesized that TAT fusion proteins would cross both mitochondrial membranes and that incorporation of a mitochondrial signal sequence into a TAT fusion protein would allow processing and localization of exogenous proteins in mitochondria. A TAT-mitochondrial malate dehydrogenase signal sequence (mMDH)-enhanced green fluorescent protein (eGFP) fusion protein was constructed. TAT-mMDH-eGFP allowed rapid transduction and localization of fusion protein into mitochondria of multiple cell types. In contrast, TAT-GFP, without a mitochondrial signal sequence, rapidly transduced into cells and mitochondria, displayed pseudo-first-order kinetics, but did not remain there. Mice injected 5 days prior with TAT-mMDH-eGFP had detectable eGFP activity in multiple tissue types. Western blotting of cytosolic and mitochondrial fractions isolated from their livers confirmed eGFP localization to mitochondria and that the mMDH transit peptide was recognized and processed. Furthermore, TAT-mMDH-eGFP fusion protein injected into pregnant mice crossed the placenta and was detectable in both the fetus and the newborn pups. TAT fusion proteins containing a mitochondrial signal sequence are a viable method to localize proteins to mitochondria.
Collapse
Affiliation(s)
- Victoria Del Gaizo
- Division of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1081, USA
| | | |
Collapse
|
33
|
Gerisch G, Müller-Taubenberger A. GFP-fusion proteins as fluorescent reporters to study organelle and cytoskeleton dynamics in chemotaxis and phagocytosis. Methods Enzymol 2003; 361:320-37. [PMID: 12624918 DOI: 10.1016/s0076-6879(03)61017-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Günther Gerisch
- Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | |
Collapse
|
34
|
Morita T, Amagai A, Maeda Y. Unique behavior of a dictyostelium homologue of TRAP-1, coupling with differentiation of D. discoideum cells. Exp Cell Res 2002; 280:45-54. [PMID: 12372338 DOI: 10.1006/excr.2002.5620] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dd-TRAP1 is a Dictyostelium homologue of TRAP-1, a human protein that binds to the type 1 tumor necrosis factor (TNF) receptor. TRAP-1 has a putative mitochondrial localization sequence and shows significant homology to members of the HSP90 family. Although TRAP-1 is mainly localized to mitochondria in several mammalian cells, in certain tissues it is also localized at specific extramitochondrial sites. In Dictyostelium cells, Dd-TRAP1 is predominantly located in the cell membrane/cortex during growth and just after starvation. Double staining of vegetatively growing cells with the anti-Dd-TRAP1 antibody and TRITC-phalloidin has demonstrated colocalization of Dd-TRAP1 and F-actin at the leading edge of cortical protrusions such as pseudopodes. Coupled with differentiation, however, Dd-TRAP1 located at the cortical region is translocated to mitochondria in spite of the absence of the mitochondrial localization sequence at its N-terminus. The translocation of this protein raises interesting and fundamental questions regarding possible mechanisms by which Dd-TRAP1 is involved in cellular differentiation.
Collapse
Affiliation(s)
- Tsuyoshi Morita
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan.
| | | | | |
Collapse
|