1
|
El Mabrouk H, Othman H, Boussofarra L, Gribaa M, Saad A, Denguezli M, Has C, H'mida D. Genetic Insights Into Epidermolysis Bullosa: Identification of Novel Variants in Tunisian Patients. Am J Med Genet A 2025; 197:e63967. [PMID: 39688128 DOI: 10.1002/ajmg.a.63967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Epidermolysis Bullosa (EB) is a group of genetic skin disorders characterized by extreme skin fragility and blistering. In North African countries, including Tunisia, complex genetic and phenotypic diversity is entangled with a scarcity of scientific research on EB. This lack of knowledge presents a distinct challenge in terms of diagnostic accuracy and patient care. Our study cohort includes 10 Tunisian patients with EB whose genetic profiles were investigated by exome sequencing. In silico analysis was conducted to determine the functional impact of three novel variants. We revealed ten genetic variants, including three novel ones within the COL7A1 and DST genes. The in silico analysis shed light on the potential structural and functional implications of these novel variants. By establishing the correlation between clinical features and genetic alterations, we have expanded the existing database of disease-causing variants associated with EB in Northern Africa. Our study fills a critical knowledge gap in the North African context, where the scarcity of clinical database and genetic testing in addition to the genetic diversity necessitates comprehensive research. Our findings have the potential to improve diagnosis and management strategies for EB patients in low and middle-income countries across the region, especially through the integration of exome sequencing and in silico analysis.
Collapse
Affiliation(s)
- Haifa El Mabrouk
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
| | - Houcemeddine Othman
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
| | - Lobna Boussofarra
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| | - Moez Gribaa
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| | - Ali Saad
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| | - Mohamed Denguezli
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
- Department of Dermatology and Venerology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
| | - Cristina Has
- Department of Dermatology and Venerology, Medical Center University of Freiburg, Freiburg, Germany
| | - Dorra H'mida
- Laboratory of Human Cytogenetics, Molecular Genetics, and Reproductive Biology, Farhat Hached University Hospital, University of Sousse, Sousse, Tunisia
- Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
| |
Collapse
|
2
|
Huang C, Liu S, Li W, Zhao S, Ren X, Zhuo F, Zhang K, Li X, Wu J, Zhu Z, Chen C, Zhang W, Yu B. Paxbp1 Is Indispensable for the Maintenance of Epidermal Homeostasis. J Invest Dermatol 2025; 145:864-875.e5. [PMID: 39236903 DOI: 10.1016/j.jid.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The mammalian epidermis is a structurally complex tissue that serves critical barrier functions, safeguarding the organism from the external milieu. The development of the epidermis is governed by sophisticated regulatory processes. However, the precise mechanism maintaining epidermal homeostasis remains incompletely elucidated. Recent studies have identified Paxbp1, an evolutionarily conserved protein, as being involved in the developmental regulation of various cells, tissues, and organs. Nonetheless, its role in skin development has not been explored. In this study, we report that the targeted deletion of Paxbp1 in epidermal keratinocytes mediated by keratin 14-Cre leads to severe disruption in skin architecture. Mice deficient in Paxbp1 exhibited a substantially reduced epidermal thickness and pronounced separation at the dermal-epidermal junction upon birth. Mechanistically, we demonstrate that the absence of Paxbp1 hinders cellular proliferation, marked by a halt in cell cycle transition, suppressed gene expression of proliferation, and a compromised DNA replication pathway in basal keratinocytes, resulting in the thinning of the skin epidermis. Moreover, molecules and pathways associated with hemidesmosome assembly were impaired in Paxbp1-deficient keratinocytes, culminating in the detachment of the skin epidermal layer. Therefore, our study highlights an indispensable role of Paxbp1 in the maintenance of epidermal homeostasis.
Collapse
Affiliation(s)
- Cong Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Shenglin Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, College of Biological and Food Engineering, Huaihua University, Huaihua, Hunan Province, China
| | - Wenting Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Shizheng Zhao
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong Province, China
| | - Xuanyao Ren
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fan Zhuo
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kaoyuan Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Xiahong Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Jingwen Wu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Zimo Zhu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Chao Chen
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Wei Zhang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Bo Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|
3
|
Pironon N, Welfringer-Morin A, Leclerc-Mercier S, Bourrat E, Hovnanian A. Epidermolysis Bullosa Simplex due to a Novel BPAG1-e Homozygous Pathogenic Variant Revealed by Bullous Scabies. Acta Derm Venereol 2024; 104:adv40691. [PMID: 39670436 DOI: 10.2340/actadv.v104.40691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/03/2024] [Indexed: 12/14/2024] Open
Affiliation(s)
- Nathalie Pironon
- Laboratory of genetic skin diseases, Université Paris Cité, Inserm, UMR 1163, Institut Imagine, Paris, France
| | | | | | - Emmanuelle Bourrat
- Department of Dermatology, AP-HP, Hôpital Saint-Louis, Paris, France; Centre de référence maladies rares MAGEC Nord Site Saint-Louis, Hôpital Saint-Louis, Paris, France
| | - Alain Hovnanian
- Université Paris Cité, Inserm, UMR 1163, Institut Imagine, Laboratory of genetic skin diseases, Paris, France; Department of Genomic Medicine of Rare Diseases, AP-HP, Hôpital Necker-Enfants Malades, Paris, France.
| |
Collapse
|
4
|
Song Y, Parada G, Lee JTH, Hemberg M. Mining alternative splicing patterns in scRNA-seq data using scASfind. Genome Biol 2024; 25:197. [PMID: 39075577 PMCID: PMC11285346 DOI: 10.1186/s13059-024-03323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Single-cell RNA-seq (scRNA-seq) is widely used for transcriptome profiling, but most analyses focus on gene-level events, with less attention devoted to alternative splicing. Here, we present scASfind, a novel computational method to allow for quantitative analysis of cell type-specific splicing events using full-length scRNA-seq data. ScASfind utilizes an efficient data structure to store the percent spliced-in value for each splicing event. This makes it possible to exhaustively search for patterns among all differential splicing events, allowing us to identify marker events, mutually exclusive events, and events involving large blocks of exons that are specific to one or more cell types.
Collapse
Affiliation(s)
- Yuyao Song
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Guillermo Parada
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Yoshioka N, Kurose M, Sano H, Tran DM, Chiken S, Tainaka K, Yamamura K, Kobayashi K, Nambu A, Takebayashi H. Sensory-motor circuit is a therapeutic target for dystonia musculorum mice, a model of hereditary sensory and autonomic neuropathy 6. SCIENCE ADVANCES 2024; 10:eadj9335. [PMID: 39058787 PMCID: PMC11277474 DOI: 10.1126/sciadv.adj9335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Mutations in Dystonin (DST), which encodes cytoskeletal linker proteins, cause hereditary sensory and autonomic neuropathy 6 (HSAN-VI) in humans and the dystonia musculorum (dt) phenotype in mice; however, the neuronal circuit underlying the HSAN-VI and dt phenotype is unresolved. dt mice exhibit dystonic movements accompanied by the simultaneous contraction of agonist and antagonist muscles and postnatal lethality. Here, we identified the sensory-motor circuit as a major causative neural circuit using a gene trap system that enables neural circuit-selective inactivation and restoration of Dst by Cre-mediated recombination. Sensory neuron-selective Dst deletion led to motor impairment, degeneration of proprioceptive sensory neurons, and disruption of the sensory-motor circuit. Restoration of Dst expression in sensory neurons using Cre driver mice or a single postnatal injection of Cre-expressing adeno-associated virus ameliorated sensory degeneration and improved abnormal movements. These findings demonstrate that the sensory-motor circuit is involved in the movement disorders in dt mice and that the sensory circuit is a therapeutic target for HSAN-VI.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Transdisciplinary Research Programs, Niigata University, Niigata, Japan
| | - Masayuki Kurose
- Department of Physiology, School of Dentistry, Iwate Medical University, Yahaba, Japan
- Division of Oral Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiromi Sano
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
- Division of Behavioral Neuropharmacology, International Center for Brain Science, Fujita Health University, Toyoake, Japan
| | - Dang Minh Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Satomi Chiken
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences, SOKENDAI, Okazaki, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
6
|
Yoshioka N. Roles of dystonin isoforms in the maintenance of neural, muscle, and cutaneous tissues. Anat Sci Int 2024; 99:7-16. [PMID: 37603210 DOI: 10.1007/s12565-023-00739-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
Dystonin (DST), also known as bullous pemphigoid antigen 1 (BPAG1), encodes cytoskeletal linker proteins belonging to the plakin family. The DST gene produces several isoforms, including DST-a, DST-b, and DST-e, which are expressed in neural, muscle, and cutaneous tissues, respectively. Pathogenic DST mutations cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) and epidermolysis bullosa simplex (EBS); therefore, it is important to elucidate the roles of DST isoforms in multiple organs. Recently, we have used several Dst mutant mouse strains, in which the expression of Dst isoforms is disrupted in distinct patterns, to gain new insight into how DST functions in multiple tissues. This review provides an overview of the roles played by tissue-specific DST isoforms in neural, muscle, and cutaneous tissues.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi, Chuo-ku, Niigata, 951-8510, Japan.
| |
Collapse
|
7
|
Sproule TJ, Wilpan RY, Wilson JJ, Low BE, Kabata Y, Ushiki T, Abe R, Wiles MV, Roopenian DC, Sundberg JP. Dystonin modifiers of junctional epidermolysis bullosa and models of epidermolysis bullosa simplex without dystonia musculorum. PLoS One 2023; 18:e0293218. [PMID: 37883475 PMCID: PMC10602294 DOI: 10.1371/journal.pone.0293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The Lamc2jeb junctional epidermolysis bullosa (EB) mouse model has been used to demonstrate that significant genetic modification of EB symptoms is possible, identifying as modifiers Col17a1 and six other quantitative trait loci, several with strong candidate genes including dystonin (Dst/Bpag1). Here, CRISPR/Cas9 was used to alter exon 23 in mouse skin specific isoform Dst-e (Ensembl GRCm38 transcript name Dst-213, transcript ID ENSMUST00000183302.5, protein size 2639AA) and validate a proposed arginine/glutamine difference at amino acid p1226 in B6 versus 129 mice as a modifier of EB. Frame shift deletions (FSD) in mouse Dst-e exon 23 (Dst-eFSD/FSD) were also identified that cause mice carrying wild-type Lamc2 to develop a phenotype similar to human EB simplex without dystonia musculorum. When combined, Dst-eFSD/FSD modifies Lamc2jeb/jeb (FSD+jeb) induced disease in unexpected ways implicating an altered balance between DST-e (BPAG1e) and a rarely reported rodless DST-eS (BPAG1eS) in epithelium as a possible mechanism. Further, FSD+jeb mice with pinnae removed are found to provide a test bed for studying internal epithelium EB disease and treatment without severe skin disease as a limiting factor while also revealing and accelerating significant nasopharynx symptoms present but not previously noted in Lamc2jeb/jeb mice.
Collapse
Affiliation(s)
| | - Robert Y. Wilpan
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - John J. Wilson
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Benjamin E. Low
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Yudai Kabata
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Riichiro Abe
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Michael V. Wiles
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
8
|
Lalonde R, Strazielle C. The DST gene in neurobiology. J Neurogenet 2023; 37:131-138. [PMID: 38465459 DOI: 10.1080/01677063.2024.2319880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
DST is a gene whose alternative splicing yields epithelial, neuronal, and muscular isoforms. The autosomal recessive Dstdt (dystonia musculorum) spontaneous mouse mutation causes degeneration of spinocerebellar tracts as well as peripheral sensory nerves, dorsal root ganglia, and cranial nerve ganglia. In addition to Dstdt mutants, axonopathy and neurofilament accumulation in perikarya are features of two other murine lines with spontaneous Dst mutations, targeted Dst knockout mice, DstTg4 transgenic mice carrying two deleted Dst exons, DstGt mice with trapped actin-binding domain-containing isoforms, and conditional Schwann cell-specific Dst knockout mice. As a result of nerve damage, Dstdt mutants display dystonia and ataxia, as seen in several genetically modified models and their motor coordination deficits have been quantified along with the spontaneous Dst nonsense mutant, the conditional Schwann cell-specific Dst knockout, the conditional DstGt mutant, and the Dst-b isoform specific Dst mutant. Recent findings in humans have associated DST mutations of the Dst-b isoform with hereditary sensory and autonomic neuropathies type 6 (HSAN-VI). These data should further encourage the development of genetic techniques to treat or prevent ataxic and dystonic symptoms.
Collapse
Affiliation(s)
- Robert Lalonde
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes (EA7300), Faculté de Médecine, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Université de Lorraine, Laboratoire Stress, Immunité, Pathogènes (EA7300), Faculté de Médecine, Vandœuvre-les-Nancy, France
- CHRU Nancy, Vandœuvre-les-Nancy, France
| |
Collapse
|
9
|
Sproule TJ, Philip VM, Chaudhry NA, Roopenian DC, Sundberg JP. Seven naturally variant loci serve as genetic modifiers of Lamc2jeb induced non-Herlitz junctional Epidermolysis Bullosa in mice. PLoS One 2023; 18:e0288263. [PMID: 37437067 PMCID: PMC10337971 DOI: 10.1371/journal.pone.0288263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023] Open
Abstract
Epidermolysis Bullosa (EB) is a group of rare genetic disorders that compromise the structural integrity of the skin such that blisters and subsequent erosions occur after minor trauma. While primary genetic risk of all subforms of EB adhere to Mendelian patterns of inheritance, their clinical presentations and severities can vary greatly, implying genetic modifiers. The Lamc2jeb mouse model of non-Herlitz junctional EB (JEB-nH) demonstrated that genetic modifiers can contribute substantially to the phenotypic variability of JEB and likely other forms of EB. The innocuous changes in an 'EB related gene', Col17a1, have shown it to be a dominant modifier of Lamc2jeb. This work identifies six additional Quantitative Trait Loci (QTL) that modify disease in Lamc2jeb/jeb mice. Three QTL include other known 'EB related genes', with the strongest modifier effect mapping to a region including the epidermal hemi-desmosomal structural gene dystonin (Dst-e/Bpag1-e). Three other QTL map to intervals devoid of known EB-associated genes. Of these, one contains the nuclear receptor coactivator Ppargc1a as its primary candidate and the others contain related genes Pparg and Igf1, suggesting modifier pathways. These results, demonstrating the potent disease modifying effects of normally innocuous genetic variants, greatly expand the landscape of genetic modifiers of EB and therapeutic approaches that may be applied.
Collapse
Affiliation(s)
| | - Vivek M. Philip
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | | | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
10
|
Fischer NG, Aparicio C. Junctional epithelium and hemidesmosomes: Tape and rivets for solving the "percutaneous device dilemma" in dental and other permanent implants. Bioact Mater 2022; 18:178-198. [PMID: 35387164 PMCID: PMC8961425 DOI: 10.1016/j.bioactmat.2022.03.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/12/2022] [Indexed: 02/06/2023] Open
Abstract
The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the "device"/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth's imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth's enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
Collapse
Affiliation(s)
- Nicholas G. Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN, 55455, USA
- Division of Basic Research, Faculty of Odontology, UIC Barcelona – Universitat Internacional de Catalunya, C/. Josep Trueta s/n, 08195, Sant Cugat del Valles, Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), C/. Baldiri Reixac 10-12, 08028, Barcelona, Spain
| |
Collapse
|
11
|
Yoshioka N, Kurose M, Yano M, Tran DM, Okuda S, Mori-Ochiai Y, Horie M, Nagai T, Nishino I, Shibata S, Takebayashi H. Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy. eLife 2022; 11:78419. [PMID: 35942699 PMCID: PMC9365387 DOI: 10.7554/elife.78419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/18/2022] [Indexed: 12/03/2022] Open
Abstract
Dystonin (DST), which encodes cytoskeletal linker proteins, expresses three tissue-selective isoforms: neural DST-a, muscular DST-b, and epithelial DST-e. DST mutations cause different disorders, including hereditary sensory and autonomic neuropathy 6 (HSAN-VI) and epidermolysis bullosa simplex; however, etiology of the muscle phenotype in DST-related diseases has been unclear. Because DST-b contains all of the DST-a-encoding exons, known HSAN-VI mutations could affect both DST-a and DST-b isoforms. To investigate the specific function of DST-b in striated muscles, we generated a Dst-b-specific mutant mouse model harboring a nonsense mutation. Dst-b mutant mice exhibited late-onset protein aggregate myopathy and cardiomyopathy without neuropathy. We observed desmin aggregation, focal myofibrillar dissolution, and mitochondrial accumulation in striated muscles, which are common characteristics of myofibrillar myopathy. We also found nuclear inclusions containing p62, ubiquitin, and SUMO proteins with nuclear envelope invaginations as a unique pathological hallmark in Dst-b mutation-induced cardiomyopathy. RNA-sequencing analysis revealed changes in expression of genes responsible for cardiovascular functions. In silico analysis identified DST-b alleles with nonsense mutations in populations worldwide, suggesting that some unidentified hereditary myopathy and cardiomyopathy are caused by DST-b mutations. Here, we demonstrate that the Dst-b isoform is essential for long-term maintenance of striated muscles.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Transdisciplinary Research Programs, Niigata University, Niigata, Japan
| | - Masayuki Kurose
- Department of Physiology, School of Dentistry, Iwate Medical University, Iwate, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Dang Minh Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Shujiro Okuda
- Medical AI Center, School of Medicine, Niigata University, Niigata, Japan
| | - Yukiko Mori-Ochiai
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masao Horie
- Department of Nursing, Niigata College of Nursing, Jōetsu, Japan
| | - Toshihiro Nagai
- Electron Microscope Laboratory, Keio University, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University, Tokyo, Japan.,Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Coordination of Research Facilities, Niigata University, Niigata, Japan
| |
Collapse
|
12
|
Cole C, Borradori L, Amber KT. Deciphering the Contribution of BP230 Autoantibodies in Bullous Pemphigoid. Antibodies (Basel) 2022; 11:antib11030044. [PMID: 35892704 PMCID: PMC9326648 DOI: 10.3390/antib11030044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Bullous pemphigoid (BP) is a subepidermal autoimmune blistering disease predominantly affecting elderly patients and carries significant morbidity and mortality. Patients typically suffer from severe itch with eczematous lesions, urticarial plaques, and/or tense blisters. BP is characterized by the presence of circulating autoantibodies against two components of the hemidesmosome, BP180 and BP230. The transmembrane BP180, also known as type XVII collagen or BPAG2, represents the primary pathogenic autoantigen in BP, whereas the intracellular BP230 autoantigen is thought to play a minor role in disease pathogenesis. Although experimental data exist suggesting that anti-BP230 antibodies are secondarily formed following initial tissue damage mediated by antibodies targeting extracellular antigenic regions of BP180, there is emerging evidence that anti-BP230 IgG autoantibodies alone directly contribute to tissue damage. It has been further claimed that a subset of patients has a milder variant of BP driven solely by anti-BP230 autoantibodies. Furthermore, the presence of anti-BP230 autoantibodies might correlate with distinct clinical features. This review summarizes the current understanding of the role of BP230 and anti-BP230 antibodies in BP pathogenesis.
Collapse
Affiliation(s)
- Connor Cole
- Division of Dermatology, Rush University Medical Center, Chicago, IL 60612, USA;
- Correspondence:
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | - Kyle T. Amber
- Division of Dermatology, Rush University Medical Center, Chicago, IL 60612, USA;
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Frustaci A, Francone M, Verardo R, Scialla R, Bagnato G, Alfarano M, Chimenti C, Frustaci E, Sansone L, Russo M. Pemphigus-associated cardiomyopathy: report of autoimmune myocarditis and review of literature. ESC Heart Fail 2021; 8:3690-3695. [PMID: 34432378 PMCID: PMC8497363 DOI: 10.1002/ehf2.13474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/11/2021] [Accepted: 06/01/2021] [Indexed: 01/05/2023] Open
Abstract
Pemphigus is a rare disease characterized by bullous lesions of the skin and mucous membranes. The aetiology is autoimmune and related to the formation of IgG autoantibodies against desmogleins, which are structural proteins of desmosomes that ensure the stability of contacts between cells. Cardiac involvement in patients with pemphigus is poorly documented. We report the data in the literature on this topic and a case of pemphigus-associated autoimmune myocarditis with damage of intercalated disc responding to immunosuppressive therapy. The occurrence of cardiomyopathy with left ventricular dysfunction in patients affected by pemphigus should be appropriately screened with endomyocardial biopsy as it could be the myocardial extension of a potentially reversible autoimmune disorder.
Collapse
Affiliation(s)
- Andrea Frustaci
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University, Viale del Policlinico 155, Rome, 00161, Italy
| | - Marco Francone
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University, Rome, Italy
| | - Romina Verardo
- Cellular and Molecular Cardiology Lab, IRCCS L. Spallanzani, Rome, Italy
| | - Rossella Scialla
- Cellular and Molecular Cardiology Lab, IRCCS L. Spallanzani, Rome, Italy
| | - Giulia Bagnato
- Cellular and Molecular Cardiology Lab, IRCCS L. Spallanzani, Rome, Italy
| | - Maria Alfarano
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University, Viale del Policlinico 155, Rome, 00161, Italy
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiologist and Cardiovascular Sciences, Sapienza University, Viale del Policlinico 155, Rome, 00161, Italy
| | - Emanuela Frustaci
- Cellular and Molecular Cardiology Lab, IRCCS L. Spallanzani, Rome, Italy
| | - Luigi Sansone
- Laboratory of Molecular and Cellular Pathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Matteo Russo
- MEBIC Consortium, San Raffaele Open University and IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
14
|
Ganani D, Malovitski K, Sarig O, Gat A, Sprecher E, Samuelov L. Epidermolysis bullosa simplex due to bi-allelic DST mutations: Case series and review of the literature. Pediatr Dermatol 2021; 38:436-441. [PMID: 33471381 DOI: 10.1111/pde.14477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 11/09/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Epidermolysis bullosa simplex (EBS) is a heterogeneous group of inherited disorders characterized by skin fragility due to intraepidermal separation. Most cases result from heterozygous mutations in KRT5 or KRT14; however, a minority of affected individuals carry mutations in non-keratin genes including DST encoding an epithelial isoform of dystonin. DST-associated EBS is transmitted as an autosomal recessive trait. Here, we report a series of EBS patients carrying bi-allelic DST mutations and review previously reported cases aiming to delineate phenotype-genotype correlations. METHODS Whole-exome and direct sequencing were used for variant analysis. Review of previously reported cases was performed. RESULTS Mutation analysis revealed DST mutations in five patients belonging to three families. Two variants have not been previously reported: c.7097dupA (p.Tyr2366X) and c.7429delC (p.Leu2477Serfs*13). We identified an additional six cases in the literature, bringing the total number of individuals affected with EBS due to DST variants to 11. Patients displayed distinctive phenotypes regardless of the causative variant. CONCLUSIONS The current study expands the clinical and genetic spectrum of DST-associated EBS subtype.
Collapse
Affiliation(s)
- Dalit Ganani
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Andrea Gat
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Wiche G, Castañón MJ. Cytoskeleton | Intermediate Filament Linker Proteins: Plectin and BPAG1. ENCYCLOPEDIA OF BIOLOGICAL CHEMISTRY III 2021:200-219. [DOI: 10.1016/b978-0-12-819460-7.00263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
16
|
Lynch-Godrei A, Repentigny YD, Ferrier A, Gagnon S, Kothary R. Dystonin loss-of-function leads to impaired autophagosome-endolysosome pathway dynamics. Biochem Cell Biol 2020; 99:364-373. [PMID: 33347391 DOI: 10.1139/bcb-2020-0557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neuronal dystonin protein (DST-a) is a large cytoskeletal linker important for integrating the various components of the cytoskeleton. Recessive Dst mutations lead to a sensory neuropathy in mice, known as dystonia musculorum (Dstdt). The disease is characterized by ataxia, autonomic disturbances, and ultimately, death, which are associated with massive degeneration of the sensory neurons in the dorsal root ganglion (DRG). Recent investigation of Dstdt sensory neurons revealed an accumulation of autophagosomes and a disruption in autophagic flux, which was believed to be due to insufficient availability of motor protein. Motor protein levels and the endolysosomal pathway were assessed in pre-symptomatic (postnatal day 5; P5) and symptomatic (P15) stage wild-type and Dstdt DRGs. Levels of mRNA encoding molecular motors were reduced, although no significant reduction in the protein level was detected. An increase in lysosomal marker LAMP1 in medium-large size Dstdt-27J sensory neurons was observed, along with an accumulation of electron-light single-membraned vesicles in Dstdt-27J DRG tissue at the late stages of disease. These vesicles are likely to have been autolysosomes, and their presence in only late-stage Dstdt-27J sensory neurons is suggestive of a pathological defect in autophagy. Further investigation is necessary to confirm vesicle identity, and to determine the role of Dst-a in normal autophagic flux.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Andrew Ferrier
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.,Centre for Neuromuscular Disease, University of Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
17
|
Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients 2020; 12:nu12113309. [PMID: 33137917 PMCID: PMC7692466 DOI: 10.3390/nu12113309] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Breastfeeding is associated with short and long-term health benefits. Long-term effects might be mediated by epigenetic mechanisms, yet the literature on this topic is scarce. We performed the first epigenome-wide association study of infant feeding, comparing breastfed vs non-breastfed children. We measured DNA methylation in children from peripheral blood collected in childhood (age 7 years, N = 640) and adolescence (age 15–17 years, N = 709) within the Accessible Resource for Integrated Epigenomic Studies (ARIES) project, part of the larger Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Cord blood methylation (N = 702) was used as a negative control for potential pre-natal residual confounding. Results: Two differentially-methylated sites presented directionally-consistent associations with breastfeeding at ages 7 and 15–17 years, but not at birth. Twelve differentially-methylated regions in relation to breastfeeding were identified, and for three of them there was evidence of directional concordance between ages 7 and 15–17 years, but not between birth and age 7 years. Conclusions: Our findings indicate that DNA methylation in childhood and adolescence may be predicted by breastfeeding, but further studies with sufficiently large samples for replication are required to identify robust associations.
Collapse
|
18
|
Chen YJ, Juan CK, Chang YT, Wu CY, Ho HJ, Tseng HC. Association between inflammatory bowel disease and bullous pemphigoid: a population-based case-control study. Sci Rep 2020; 10:12727. [PMID: 32728039 PMCID: PMC7391771 DOI: 10.1038/s41598-020-69475-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
The coexistence of inflammatory bowel disease (IBD) and bullous pemphigoid (BP) has been reported. No large-scale study to date has explored the relationship between these diseases. This population-based case-control study examined the association between IBD and BP by using a nationwide database. A total of 5,263 BP patients and 21,052 age- and gender-, hospital visit number-matched controls were identified in the National Health Insurance Research Database of Taiwan (1997-2013). Demographic characteristics and comorbidities including IBD were compared. Logistic regression was conducted to examine the predicting factors for BP. The mean age at diagnosis was 74.88 years and 54.3% of subjects were male. BP patients tended to have more cardiovascular risk factors, autoimmune and neurologic comorbidities, and hematologic cancers than matched controls. There were 20 cases of IBD (0.38%), mostly ulcerative colitis (N = 17, 0.32%) among BP patients, compared to 33 IBD cases (0.16%) among controls (p < 0.001). Ulcerative colitis was found to be significantly associated with BP [adjusted odds ratio (OR) 3.60, 95% confidence interval (CI) 1.91-6.77, p < 0.001] on multivariate analysis. Treatment for IBD was not associated with BP development. Information about diet, lifestyle, alcohol consumption, and smoking habit was not available. We concluded that UC is independently associated with BP.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Dermatology, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Blvd., Taichung, 407, Taiwan. .,Faculty of Medicine and Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Taiwan Microbiota Consortium, Taipei, Taiwan.
| | - Chao-Kuei Juan
- Department of Dermatology, Taichung Veterans General Hospital, No. 1650, Sec. 4, Taiwan Blvd., Taichung, 407, Taiwan.,Faculty of Medicine and Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yun-Ting Chang
- Faculty of Medicine and Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chun-Ying Wu
- Faculty of Medicine and Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Biomedical Informatics, Institute of Clinical Medicine, Institute of Public Health, National Yang-Ming University, Taipei, Taiwan. .,Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, No. 155, Sec. 2, Linong St., Beitou District, Taipei, 112, Taiwan. .,Department of Public Health, China Medical University, Taichung, Taiwan. .,National Institute of Cancer Research, National Health Research Institute, Miaoli, Taiwan. .,Taiwan Microbiota Consortium, Taipei, Taiwan.
| | - Hsiu J Ho
- Institute of Biomedical Informatics, Institute of Clinical Medicine, Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.,Taiwan Microbiota Consortium, Taipei, Taiwan
| | - Hsiao-Ching Tseng
- Institute of Biomedical Informatics, Institute of Clinical Medicine, Institute of Public Health, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
19
|
Yoshioka N, Kabata Y, Kuriyama M, Bizen N, Zhou L, Tran DM, Yano M, Yoshiki A, Ushiki T, Sproule TJ, Abe R, Takebayashi H. Diverse dystonin gene mutations cause distinct patterns of Dst isoform deficiency and phenotypic heterogeneity in Dystonia musculorum mice. Dis Model Mech 2020; 13:dmm041608. [PMID: 32482619 PMCID: PMC7325434 DOI: 10.1242/dmm.041608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/11/2020] [Indexed: 02/02/2023] Open
Abstract
Loss-of-function mutations in dystonin (DST) can cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) or epidermolysis bullosa simplex (EBS). Recently, DST-related diseases were recognized to be more complex than previously thought because a patient exhibited both neurological and skin manifestations, whereas others display only one or the other. A single DST locus produces at least three major DST isoforms: DST-a (neuronal isoform), DST-b (muscular isoform) and DST-e (epithelial isoform). Dystonia musculorum (dt) mice, which have mutations in Dst, were originally identified as spontaneous mutants displaying neurological phenotypes. To reveal the mechanisms underlying the phenotypic heterogeneity of DST-related diseases, we investigated two mutant strains with different mutations: a spontaneous Dst mutant (Dstdt-23Rbrc mice) and a gene-trap mutant (DstGt mice). The Dstdt-23Rbrc allele possesses a nonsense mutation in an exon shared by all Dst isoforms. The DstGt allele is predicted to inactivate Dst-a and Dst-b isoforms but not Dst-e There was a decrease in the levels of Dst-a mRNA in the neural tissue of both Dstdt-23Rbrc and DstGt homozygotes. Loss of sensory and autonomic nerve ends in the skin was observed in both Dstdt-23Rbrc and DstGt mice at postnatal stages. In contrast, Dst-e mRNA expression was reduced in the skin of Dstdt-23Rbrc mice but not in DstGt mice. Expression levels of Dst proteins in neural and cutaneous tissues correlated with Dst mRNAs. Because Dst-e encodes a structural protein in hemidesmosomes (HDs), we performed transmission electron microscopy. Lack of inner plaques and loss of keratin filament invasions underneath the HDs were observed in the basal keratinocytes of Dstdt-23Rbrc mice but not in those of DstGt mice; thus, the distinct phenotype of the skin of Dstdt-23Rbrc mice could be because of failure of Dst-e expression. These results indicate that distinct mutations within the Dst locus can cause different loss-of-function patterns among Dst isoforms, which accounts for the heterogeneous neural and skin phenotypes in dt mice and DST-related diseases.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Transdiciplinary Research Programs, Niigata University, Niigata 950-2181, Japan
| | - Yudai Kabata
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Momona Kuriyama
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Li Zhou
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata 951-8510, Japan
| | - Dang M Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | | | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | | | - Riichiro Abe
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
20
|
Hammers CM, Stanley JR. Recent Advances in Understanding Pemphigus and Bullous Pemphigoid. J Invest Dermatol 2020; 140:733-741. [DOI: 10.1016/j.jid.2019.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|
21
|
Lynch-Godrei A, De Repentigny Y, Yaworski RA, Gagnon S, Butcher J, Manoogian J, Stintzi A, Kothary R. Characterization of gastrointestinal pathologies in the dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Neurogastroenterol Motil 2020; 32:e13773. [PMID: 31814231 DOI: 10.1111/nmo.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/15/2019] [Accepted: 11/14/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dystonia musculorum (Dstdt ) is a murine disease caused by recessive mutations in the dystonin (Dst) gene. Loss of dorsal root ganglion (DRG) sensory neurons, ataxia, and dystonic postures before death by postnatal day 18 (P18) is a hallmark feature. Recently we observed gas accumulation and discoloration in the small intestine and cecum in Dstdt mice by P15. The human disease resulting from dystonin loss-of-function, known as hereditary sensory and autonomic neuropathy type VI (HSAN-VI), has also been associated with gastrointestinal (GI) symptoms including chronic diarrhea and abdominal pain. As neuronal dystonin isoforms are expressed in the GI tract, we hypothesized that dystonin loss-of-function in Dstdt-27J enteric nervous system (ENS) neurons resulted in neurodegeneration associated with the GI abnormalities. METHODS We characterized the nature of the GI abnormalities observed in Dstdt mice through histological analysis of the gut, assessing the ENS for signs of neurodegeneration, evaluation of GI motility and absorption, and by profiling the microbiome. KEY RESULTS Though gut histology, ENS viability, and GI absorption were normal, slowed GI motility, thinning of the colon mucous layer, and reduced microbial richness/evenness were apparent in Dstdt-27J mice by P15. Parasympathetic GI input showed signs of neurodegeneration, while sympathetic did not. CONCLUSIONS & INFERENCES Dstdt-27J GI defects are not linked to ENS neurodegeneration, but are likely a result of an imbalance in autonomic control over the gut. Further characterization of HSAN-VI patient GI symptoms is necessary to determine potential treatments targeting symptom relief.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca A Yaworski
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - James Butcher
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Juliana Manoogian
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Bott CJ, Winckler B. Intermediate filaments in developing neurons: Beyond structure. Cytoskeleton (Hoboken) 2020; 77:110-128. [PMID: 31970897 DOI: 10.1002/cm.21597] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022]
Abstract
Neuronal development relies on a highly choreographed progression of dynamic cellular processes by which newborn neurons migrate, extend axons and dendrites, innervate their targets, and make functional synapses. Many of these dynamic processes require coordinated changes in morphology, powered by the cell's cytoskeleton. Intermediate filaments (IFs) are the third major cytoskeletal elements in vertebrate cells, but are rarely considered when it comes to understanding axon and dendrite growth, pathfinding and synapse formation. In this review, we first introduce the many new and exciting concepts of IF function, discovered mostly in non-neuronal cells. These roles include dynamic rearrangements, crosstalk with microtubules and actin filaments, mechano-sensing and -transduction, and regulation of signaling cascades. We then discuss the understudied roles of neuronally expressed IFs, with a particular focus on IFs expressed during development, such as nestin, vimentin and α-internexin. Lastly, we illustrate how signaling modulation by the unconventional IF nestin shapes neuronal morphogenesis in unexpected and novel ways. Even though the first IF knockout mice were made over 20 years ago, the study of the cell biological functions of IFs in the brain still has much room for exciting new discoveries.
Collapse
Affiliation(s)
- Christopher J Bott
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
23
|
Lynch-Godrei A, Kothary R. HSAN-VI: A spectrum disorder based on dystonin isoform expression. NEUROLOGY-GENETICS 2020; 6:e389. [PMID: 32042917 PMCID: PMC6975176 DOI: 10.1212/nxg.0000000000000389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/19/2019] [Indexed: 11/15/2022]
Abstract
Hereditary sensory and autonomic neuropathy (HSAN-VI) is a recessive genetic disorder that arises because of mutations in the human dystonin gene (DST, previously known as bullous pemphigoid antigen 1). Although initial characterization of HSAN-VI reported it as a sensory neuropathy that was lethal in infancy, we now know of a number of heterozygous mutations in DST that result in milder forms of the disease. Akin to what we observe in the mouse model dystonia musculorum (Dstdt), we believe that the heterogeneity of HSAN-VI can be attributed to a number of dystonin isoforms that the mutation affects. Lack of neuronal isoform dystonin-a2 is likely the universal determinant of HSAN-VI because all reported human cases are null for this isoform, as are all Dstdt mouse alleles. Compensatory mechanisms by intact dystonin-a isoforms also likely play a role in regulating disease severity, although we have yet to determine what specific effect dystonin-a1 and dystonin-a3 have on the pathogenesis of HSAN-VI.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program (A.L.-G., R.K.), Ottawa Hospital Research Institute; Department of Cellular and Molecular Medicine (A.L.-G., R.K.) and Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Department of Medicine (R.K.), University of Ottawa; and Centre for Neuromuscular Disease (R.K.), University of Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program (A.L.-G., R.K.), Ottawa Hospital Research Institute; Department of Cellular and Molecular Medicine (A.L.-G., R.K.) and Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa; Department of Medicine (R.K.), University of Ottawa; and Centre for Neuromuscular Disease (R.K.), University of Ottawa, Canada
| |
Collapse
|
24
|
A Glance at the Nuclear Envelope Spectrin Repeat Protein 3. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1651805. [PMID: 31828088 PMCID: PMC6886330 DOI: 10.1155/2019/1651805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 12/27/2022]
Abstract
Nuclear envelope spectrin repeat protein 3 (nesprin-3) is an evolutionarily-conserved structural protein, widely-expressed in vertebrate cells. Along with other nesprin family members, nesprin-3 acts as an essential component of the linker of nucleoskeleton and cytoskeleton (LINC) complex. Naturally, nesprin-3 shares many functions with LINC, including the localization of various cellular structures and bridging of the nucleoskeleton and cytoskeleton, observed in vitro. When nesprin-3 was knocked down in vivo, using zebrafish and mouse models, however, the animals were minimally affected. This paradoxical observation should not limit the physiological importance of nesprin-3, as recently, nesprin-3 has reignited the interest of the research community in studies on cancer cells migration. Moreover, nesprin-3 also plays an active role in certain developmental conditions such as adipogenesis and spermatogenesis, although more studies are needed. Meanwhile, the various protein binding partners of nesprin-3 should also be emphasized, as they are necessary for maintaining the structure of nesprin-3 and enabling it to carry out its various physiological and pathological functions. Nesprin-3 promises to further our understanding of these complex cellular events. Therefore, this review will focus on nesprin-3, examining it from a genetic, structural, and functional perspective. The final part of the review will in turn address the limitations of existing research and the future perspectives for the study of nesprin-3.
Collapse
|
25
|
Ujiie H, Yoshimoto N, Natsuga K, Muramatsu K, Iwata H, Nishie W, Shimizu H. Immune Reaction to Type XVII Collagen Induces Intramolecular and Intermolecular Epitope Spreading in Experimental Bullous Pemphigoid Models. Front Immunol 2019; 10:1410. [PMID: 31275329 PMCID: PMC6593113 DOI: 10.3389/fimmu.2019.01410] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023] Open
Abstract
Bullous pemphigoid (BP), the most common autoimmune blistering disease, is induced by autoantibodies to type XVII collagen (COL17). Previous studies demonstrated that COL17 harbors several epitopes targeted by autoreactive T and B cells and that the target epitopes change sequentially during the disease course. To elucidate the details of the humoral immune response to COL17, we used an active BP mouse model in which BP is induced by the adoptive transfer of spleen cells from wild-type mice immunized with human COL17-expressing skin grafting to immunodeficient COL17-humanized (Rag-2-/-, mouse Col17-/-, human COL17+) mice. By immunoblot analysis, antibodies to the NC16A domain and other extracellular domains (ECDs) of COL17 were detected earlier than antibodies to intracellular domains (ICDs) in the active BP model. Time course analysis by enzyme-linked immunosorbent assay demonstrated a delayed peak of antibodies to ICD epitopes in active BP model. The blockade of CD40-CD40 ligand interaction soon after the adoptive transfer suppressed the production of antibodies to the non-collagenous 16A (NC16A) domain but not to an ICD epitope, suggesting the sequential activation from T and B cells against the ECD epitopes including the NC16A domain to those against ICD epitopes in vivo. Both wild-type mice immunized with a fragment of the NC16A domain and the recipients of those spleen cells produced IgG antibodies to ICD and ECD epitopes, showing intramolecular epitope spreading from the NC16A domain to other epitopes of COL17. Furthermore, we found that a portion of the active BP model mice show intermolecular epitope spreading from human COL17 to murine BP230. The appearance of antibodies to ICD epitopes of COL17 or of antibodies to murine BP230 did not correlate with the skin changes in the mice, suggesting that those antibodies have low pathogenicity. These results suggest that the immune response to the ECD epitopes of COL17, especially to the NC16A domain, triggers intramolecular, and intermolecular epitope spreading to ICD epitopes of COL17 and to murine BP230. These novel findings provide insight into the mechanism of epitope spreading in organ-specific, antibody-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Lynch-Godrei A, De Repentigny Y, Gagnon S, Trung MT, Kothary R. Dystonin-A3 upregulation is responsible for maintenance of tubulin acetylation in a less severe dystonia musculorum mouse model for hereditary sensory and autonomic neuropathy type VI. Hum Mol Genet 2019; 27:3598-3611. [PMID: 29982604 DOI: 10.1093/hmg/ddy250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 07/02/2018] [Indexed: 12/14/2022] Open
Abstract
Hereditary sensory and autonomic neuropathy type VI (HSAN-VI) is a recessive human disease that arises from mutations in the dystonin gene (DST; also known as Bullous pemphigoid antigen 1 gene). A milder form of HSAN-VI was recently described, resulting from loss of a single dystonin isoform (DST-A2). Similarly, mutations in the mouse dystonin gene (Dst) result in severe sensory neuropathy, dystonia musculorum (Dstdt). Two Dstdt alleles, Dstdt-Tg4 and Dstdt-27J, differ in the severity of disease. The less severe Dstdt-Tg4 mice have disrupted expression of Dst-A1 and -A2 isoforms, while the more severe Dstdt-27J allele affects Dst-A1, -A2 and -A3 isoforms. As dystonin is a cytoskeletal-linker protein, we evaluated microtubule network integrity within sensory neurons from Dstdt-Tg4 and Dstdt-27J mice. There is a significant reduction in tubulin acetylation in Dstdt-27J indicative of microtubule instability and severe microtubule disorganization within sensory axons. However, Dstdt-Tg4 mice have no change in tubulin acetylation, and microtubule organization was only mildly impaired. Thus, microtubule instability is not central to initiation of Dstdt pathogenesis, though it may contribute to disease severity. Maintenance of microtubule stability in Dstdt-Tg4 dorsal root ganglia could be attributed to an upregulation in Dst-A3 expression as a compensation for the absence of Dst-A1 and -A2 in Dstdt-Tg4 sensory neurons. Indeed, knockdown of Dst-A3 in these neurons resulted in a decrease in tubulin acetylation. These findings shed light on the possible compensatory role of dystonin isoforms within HSAN-VI, which might explain the heterogeneity in symptoms within the reported forms of the disease.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Yves De Repentigny
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sabrina Gagnon
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - My Tran Trung
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada
| |
Collapse
|
27
|
Manso JA, Gómez-Hernández M, Carabias A, Alonso-García N, García-Rubio I, Kreft M, Sonnenberg A, de Pereda JM. Integrin α6β4 Recognition of a Linear Motif of Bullous Pemphigoid Antigen BP230 Controls Its Recruitment to Hemidesmosomes. Structure 2019; 27:952-964.e6. [PMID: 31006587 DOI: 10.1016/j.str.2019.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/13/2019] [Accepted: 03/22/2019] [Indexed: 11/25/2022]
Abstract
Mechanical stability of epithelia requires firm attachment to the basement membrane via hemidesmosomes. Dysfunction of hemidesmosomal proteins causes severe skin-blistering diseases. Two plakins, plectin and BP230 (BPAG1e), link the integrin α6β4 to intermediate filaments in epidermal hemidesmosomes. Here, we show that a linear sequence within the isoform-specific N-terminal region of BP230 binds to the third and fourth FnIII domains of β4. The crystal structure of the complex and mutagenesis analysis revealed that BP230 binds between the two domains of β4. BP230 induces closing of the two FnIII domains that are locked in place by an interdomain ionic clasp required for binding. Disruption of BP230-β4 binding prevents recruitment of BP230 to hemidesmosomes in human keratinocytes, revealing a key role of this interaction for hemidesmosome assembly. Phosphomimetic substitutions in β4 and BP230 destabilize the complex. Thus, our study provides insights into the architecture of hemidesmosomes and potential mechanisms of regulation.
Collapse
Affiliation(s)
- José A Manso
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - María Gómez-Hernández
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Arturo Carabias
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Noelia Alonso-García
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain
| | - Inés García-Rubio
- Centro Universitario de la Defensa, Ctra. Huesca s/n, 50090 Zaragoza, Spain
| | - Maaike Kreft
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Arnoud Sonnenberg
- Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - José M de Pereda
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas - University of Salamanca, Campus Unamuno, 37007 Salamanca, Spain.
| |
Collapse
|
28
|
Chen CT, Hu HY, Chang YT, Li CP, Wu CY. Cancer is not a risk factor for bullous pemphigoid: 10-year population-based cohort study. Br J Dermatol 2018; 180:553-558. [PMID: 30216411 DOI: 10.1111/bjd.17197] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Bullous pemphigoid (BP) is the most common autoimmune bullous disease. Whether there is an increased risk for subsequent BP among patients with cancer is still unclear. OBJECTIVES To evaluate the risk for subsequent BP in patients with cancer. METHODS This nationwide population-based cohort study was based on data obtained from the Taiwan National Health Insurance Database between 2000 and 2011. A total of 36 838 patients with cancer and 147 352 age-, sex- and index-date-matched controls were recruited. The hazard ratio (HR) of subsequent BP in the patients with cancer was analysed using a Fine-Gray competing risk regression model with mortality as the competing event. RESULTS The incidence of BP per 100 000 person-years was 17·2 in the patients with cancer and 19·8 in the controls; therefore, the crude incidence rate ratio was 0·87 [95% confidence interval (CI) 0·53-1·36]. The HR of subsequent BP in the patients with cancer was 0·47 (95% CI 0·23-0·94) using the Fine-Gray competing risk regression model. Age (HR 1·05, 95% CI 1·03-1·07), diabetes mellitus (HR 1·69, 95% CI 1·10-2·59) and cerebrovascular disease (HR 2·14, 95% CI 1·36-3·34) were independent risk factors for BP. CONCLUSIONS The incidence of BP in patients with cancer was not higher than in the control group. Cancer is not a risk factor for BP.
Collapse
Affiliation(s)
- C T Chen
- Department of Dermatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - H Y Hu
- National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Public Health and Department of Public Health, National Yang-Ming University, Taipei, Taiwan
| | - Y T Chang
- Department of Dermatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - C P Li
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - C Y Wu
- Department of Dermatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming University School of Medicine, Taipei, Taiwan
| |
Collapse
|
29
|
Muramatsu K, Ujiie H, Kobayashi I, Nishie W, Izumi K, Ito T, Yoshimoto N, Natsuga K, Iwata H, Shimizu H. Regulatory T-cell dysfunction induces autoantibodies to bullous pemphigoid antigens in mice and human subjects. J Allergy Clin Immunol 2018; 142:1818-1830.e6. [PMID: 29704593 DOI: 10.1016/j.jaci.2018.03.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/12/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Regulatory T (Treg) cells play a crucial role in peripheral immune tolerance in multiple organs, including the skin. Thus far, the effect of peripheral immune tolerance failure on autoantibody-related autoimmune reactions to the skin is unclear. OBJECTIVE We sought to elucidate the target autoantigens in the skin under the condition of Treg cell dysfunction caused by forkhead box P3 (Foxp3) gene mutations in scurfy mice and patients with immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. METHODS Sera and skin from scurfy mice and sera from patients with IPEX syndrome were analyzed to detect target autoantigens by using immunofluorescence studies, ELISAs, and immunoblotting. The pathogenicity of scurfy IgG was examined by using a passive transfer experiment. CD4+ T cells from scurfy mice were transferred to immunodeficient mice to examine their pathogenicity. Signal transducer and activator of transcription 6 (Stat6)-/- scurfy mice were analyzed to further clarify the molecular pathway of autoantibody production. Follicular helper T-cell counts are measured in Stat6-/- scurfy mice and scurfy mice. RESULTS Scurfy mice spontaneously generated IgG autoantibodies to the dermal-epidermal junction, which had been class-switched from IgM within 12 days after birth. The target autoantigens were murine BP230 and type XVII collagen (COL17). The scurfy polyclonal autoantibodies did not induce skin fragility in neonatal mice. Autoantibody production was induced by CD4+ T cells from scurfy mice and was ameliorated by Stat6 gene knockout in association with a decrease of follicular helper T cells. We also identified autoantibodies to COL17 and BP230 in patients with IPEX syndrome and found an association between production of autoantibodies to COL17 and an eczematous skin phenotype. CONCLUSIONS Dysregulation of Treg cells generates autoantibodies to COL17 and BP230 in vivo.
Collapse
Affiliation(s)
- Ken Muramatsu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Ichiro Kobayashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kentaro Izumi
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Takamasa Ito
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Norihiro Yoshimoto
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| |
Collapse
|
30
|
Hu L, Huang Z, Wu Z, Ali A, Qian A. Mammalian Plakins, Giant Cytolinkers: Versatile Biological Functions and Roles in Cancer. Int J Mol Sci 2018; 19:ijms19040974. [PMID: 29587367 PMCID: PMC5979291 DOI: 10.3390/ijms19040974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a highly lethal disease that is characterized by aberrant cell proliferation, migration, and adhesion, which are closely related to the dynamic changes of cytoskeletons and cytoskeletal-adhesion. These will further result in cell invasion and metastasis. Plakins are a family of giant cytolinkers that connect cytoskeletal elements with each other and to junctional complexes. With various isoforms composed of different domain structures, mammalian plakins are broadly expressed in numerous tissues. They play critical roles in many cellular processes, including cell proliferation, migration, adhesion, and signaling transduction. As these cellular processes are key steps in cancer development, mammalian plakins have in recent years attracted more and more attention for their potential roles in cancer. Current evidence shows the importance of mammalian plakins in various human cancers and demonstrates mammalian plakins as potential biomarkers for cancer. Here, we introduce the basic characteristics of mammalian plakins, review the recent advances in understanding their biological functions, and highlight their roles in human cancers, based on studies performed by us and others. This will provide researchers with a comprehensive understanding of mammalian plakins, new insights into the development of cancer, and novel targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zixiang Wu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
31
|
Goletz S, Zillikens D, Schmidt E. Structural proteins of the dermal-epidermal junction targeted by autoantibodies in pemphigoid diseases. Exp Dermatol 2017; 26:1154-1162. [PMID: 28887824 DOI: 10.1111/exd.13446] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Abstract
The dermal-epidermal junction consists of a network of several interacting structural proteins that strengthen adhesion and mediate signalling events. This structural network consists of hemidesmosomal-anchoring filament complexes connecting the basal keratinocytes to the basement membrane. The anchoring filaments in turn interact with the anchoring fibrils to attach the basement membrane to the underlying dermis. Several of these structural proteins are recognized by autoantibodies in pemphigoid diseases, a heterogeneous group of clinically and immunopathologically diverse entities. Targeted proteins include the two intracellular plakins, plectin isoform 1a and BP230 (also called bullous pemphigoid antigen (BPAG) 1 isoform e (BPAG1e)). Plectin 1a and BP230 are connected to the intermediate filaments and to the cell surface receptor α6β4 integrin, which in turn is connected to laminin 332, a component of the anchoring filaments. Further essential adhesion proteins are BP180, a transmembrane protein, laminin γ1 and type VII collagen. Latter protein is the major constituent of the anchoring fibrils. Mutations in the corresponding genes of these adhesion molecules lead to inherited epidermolysis bullosa emphasizing the importance of these proteins for the integrity of the dermal-epidermal junction. This review will provide an overview on the structure and function of the proteins situated in the dermal-epidermal junction targeted by autoantibodies.
Collapse
Affiliation(s)
- Stephanie Goletz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
32
|
Hossain MI, Horie M, Yoshioka N, Kurose M, Yamamura K, Takebayashi H. Motoneuron degeneration in the trigeminal motor nucleus innervating the masseter muscle in Dystonia musculorum mice. Neurochem Int 2017; 119:159-170. [PMID: 29061384 DOI: 10.1016/j.neuint.2017.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022]
Abstract
Dystonia musculorum (dt) mice, which have a mutation in the Dystonin (Dst) gene, are used as animal models to investigate the human disease known as hereditary sensory and autonomic neuropathy type VI. Massive neuronal cell death is observed, mainly in the peripheral nervous system (PNS) of dt mice. We and others have recently reported a histopathological feature of these mice that neurofilament (NF) accumulates in various areas of the central nervous system (CNS), including motor pathways. Although dt mice show motor disorder and growth retardation, the causes for these are still unknown. Here we performed histopathological analyses on motor units of the trigeminal motor nucleus (Mo5 nucleus), because they are a good system to understand neuronal responses in the mutant CNS, and abnormalities in this system may lead to problems in mastication, with subsequent growth retardation. We report that motoneurons with NF accumulation in the Mo5 nuclei of DstGt homozygous mice express the stress-induced genes CHOP, ATF3, and lipocalin 2 (Lcn2). We also show a reduced number of Mo5 motoneurons and a reduced size of Mo5 nuclei in DstGt homozygous mice, possibly due to apoptosis, given the presence of cleaved caspase 3-positive Mo5 motoneurons. In the mandibular (V3) branches of the trigeminal nerve, which contains axons of Mo5 motoneurons and trigeminal sensory neurons, there was infiltration of Iba1-positive macrophages. Finally, we report atrophy of the masseter muscles in DstGt homozygous mice, which showed abnormal nuclear localization of myofibrils and increased expression of atrogin-1 mRNA, a muscle atrophy-related gene and weaker masseter muscle strength with uncontrolled muscle activity by electromyography (EMG). Taken together, our findings strongly suggest that mastication in dt mice is affected due to abnormalities of Mo5 motoneurons and masseter muscles, leading to growth retardation at the post-weaning stages.
Collapse
Affiliation(s)
- M Ibrahim Hossain
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Masao Horie
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan; Transdisciplinary Research Program, Niigata University, Niigata 951-8510, Japan
| | - Masayuki Kurose
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
33
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
34
|
Zhang J, Yue J, Wu X. Spectraplakin family proteins - cytoskeletal crosslinkers with versatile roles. J Cell Sci 2017; 130:2447-2457. [PMID: 28679697 PMCID: PMC5558266 DOI: 10.1242/jcs.196154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The different cytoskeletal networks in a cell are responsible for many fundamental cellular processes. Current studies have shown that spectraplakins, cytoskeletal crosslinkers that combine features of both the spectrin and plakin families of crosslinkers, have a critical role in integrating these different cytoskeletal networks. Spectraplakin genes give rise to a variety of isoforms that have distinct functions. Importantly, all spectraplakin isoforms are uniquely able to associate with all three elements of the cytoskeleton, namely, F-actin, microtubules and intermediate filaments. In this Review, we will highlight recent studies that have unraveled their function in a wide range of different processes, from regulating cell adhesion in skin keratinocytes to neuronal cell migration. Taken together, this work has revealed a diverse and indispensable role for orchestrating the function of different cytoskeletal elements in vivo.
Collapse
Affiliation(s)
- Jamie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
35
|
Horie M, Yoshioka N, Takebayashi H. BPAG1 in muscles: Structure and function in skeletal, cardiac and smooth muscle. Semin Cell Dev Biol 2017; 69:26-33. [PMID: 28736206 DOI: 10.1016/j.semcdb.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Abstract
BPAG1, also known as Dystonin or BP230, belongs to the plakin family of proteins, which has multiple cytoskeleton-binding domains. Several BPAG1 isoforms are produced by a single BPAG1 genomic locus using different promoters and exons. For example, BPAG1a, BPAG1b, and BPAG1e are predominantly expressed in the nervous system, muscle, and skin, respectively. Among BPAG1 isoforms, BPAG1e is well studied because it was first identified as an autoantigen in patients with bullous pemphigoid, an autoimmune skin disease. BPAG1e is a component of hemidesmosomes, the adhesion complexes that promote dermal-epidermal cohesion. In the nervous system, the role of BPAG1a is also well studied because disruption of BPAG1a results in a phenotype identical to that of Dystonia musculorum (dt) mutants, which show progressive motor disorder. However, the expression and function of BPAG1 in muscles is not well studied. The aim of this review is to provide an overview of and highlight some recent findings on the expression and function of BPAG1 in muscles, which can assist future studies designed to delineate the role and regulation of BPAG1 in the dt mouse phenotype and in human hereditary sensory and autonomic neuropathy type 6 (HSAN6).
Collapse
Affiliation(s)
- Masao Horie
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
36
|
Ali A, Hu L, Zhao F, Qiu W, Wang P, Ma X, Zhang Y, Chen L, Qian A. BPAG1, a distinctive role in skin and neurological diseases. Semin Cell Dev Biol 2017. [PMID: 28627382 DOI: 10.1016/j.semcdb.2017.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Spectraplakins are multifunctional cytoskeletal linker proteins that act as important communicators, connecting cytoskeletal components with each other and to cellular junctions. Bullous pemphigoid antigen 1 (BPAG1)/dystonin is a member of spectraplakin family and expressed in various tissues. Alternative splicing of BPAG1 gene produces various isoforms with unique structure and domains. BPAG1 plays crucial roles in numerous biological processes, such as cytoskeleton organization, cell polarization, cell adhesion, and cell migration as well as signaling transduction. Genetic mutation of BPAG1 isoforms is the miscreant of epidermolysis bullosa and multifarious, destructive neurological diseases. In this review, we summarize the recent advances of BPAG1's role in various biological processes and in skin and neurological diseases.
Collapse
Affiliation(s)
- Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Wuxia Qiu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Pai Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Lei Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, PR China; Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, 518057, PR China; Northwestern Polytechnical University-Hong Kong Baptist University Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Xi'an, 710072, PR China.
| |
Collapse
|
37
|
Frequency of Neurological Disorders in Bullous Pemphigoid Patients: A Cross-Sectional Study. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2017. [PMID: 28630891 PMCID: PMC5463116 DOI: 10.1155/2017/6053267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Bullous pemphigoid (BP) is an autoimmune subepidermal blistering skin disorder which occurs mostly in the elderly. Several studies have reported an association between BP and neurological disorders (ND). Objective The purpose of this study was to evaluate the association between BP and neurological disorders in Iranian patients. Methods In this cross-sectional study, 87 patients with BP were enrolled. They were compared to 184 controls. Statistical analysis was done by SPSS statistical software version 19. Results Out of 87 patients with BP, 17 (19.5%) had at least one neurological disease. Cerebrovascular accident (CVA) was the most common neurological disease that was seen in 7 patients (8.0%) in the case group and 4 (2.1%) in the control group. The incidence of CVA was significantly different between BP patients and the control group (P = 0.022). Dementia was observed in 6 patients in the case group (16.8%) and 2 (1.0%) in the control group. The incidence of dementia was significantly different between BP patients and the control group (P = 0.008). In this study, the incidences of Parkinson's disease (P = 0.830), epilepsy (P = 0.067), and multiple sclerosis (P = 0.326) were not statistically significant between the two groups. Conclusion The incidence of CVA and dementia in patients with BP compared to the control group was significantly higher.
Collapse
|
38
|
Manganelli F, Parisi S, Nolano M, Tao F, Paladino S, Pisciotta C, Tozza S, Nesti C, Rebelo AP, Provitera V, Santorelli FM, Shy ME, Russo T, Zuchner S, Santoro L. Novel mutations in dystonin provide clues to the pathomechanisms of HSAN-VI. Neurology 2017; 88:2132-2140. [PMID: 28468842 DOI: 10.1212/wnl.0000000000003992] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/10/2017] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVE To describe a second hereditary sensory autonomic neuropathy type VI (HSAN-VI) family harboring 2 novel heterozygous mutations in the dystonin (DST) gene and to evaluate their effect on neurons derived from induced pluripotent stem cells (iPSC). METHODS The family consisted of 3 affected siblings from nonconsanguineous healthy parents. All members underwent clinical and electrophysiologic evaluation and genetic analysis. Two patients underwent quantitative sensory testing (QST), cardiovascular reflexes, dynamic sweat test, and skin biopsy to evaluate somatic and autonomic cutaneous innervation and to get fibroblast cultures for developing iPSC-derived neurons. RESULTS Onset occurred in the first decade, with painless and progressive mutilating distal ulcerations leading to amputation and joint deformity. Sensation to pain, touch, and vibration was reduced. Autonomic disturbances included hypohidrosis, pupillary abnormalities, and gastrointestinal and sexual dysfunction. Nerve conduction studies showed a severe axonal sensory neuropathy. QST and autonomic functional studies were abnormal. Skin biopsy revealed a lack of sensory and autonomic nerve fibers. Genetic analysis revealed 2 pathogenic mutations in the DST gene affecting exclusively the DST neuronal isoform-a2. Neurons derived from iPSC showed absence or very low levels of DST protein and short and dystrophic neuritis or no projections at all. CONCLUSIONS Unlike the previous HSAN-VI family, our description indicates that DST mutations may be associated with a nonlethal and nonsyndromic phenotype. Neuronal loss affects large and small sensory nerve fibers as well as autonomic ones. Induced-PSC findings suggest that dystonin defect might alter proper development of the peripheral nerves. Dystonin-a2 plays a major role in the HSAN-VI phenotype.
Collapse
Affiliation(s)
- Fiore Manganelli
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Silvia Parisi
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Maria Nolano
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Feifei Tao
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Simona Paladino
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Chiara Pisciotta
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Stefano Tozza
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Claudia Nesti
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Adriana P Rebelo
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Vincenzo Provitera
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Filippo M Santorelli
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Michael E Shy
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Tommaso Russo
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Stephan Zuchner
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City
| | - Lucio Santoro
- From the Departments of Neurosciences, Reproductive Sciences, and Odontostomatology (F.M., C.P., S.T., L.S.) and Department of Molecular Medicine and Medical Biotechnologies (S. Parisi, S. Paladino, T.R.), University of Naples "Federico II"; Neurology Department (M.N., V.P.), "Salvatore Maugeri" Foundation IRCCS-Medical Center of Telese, Telese Terme, Italy; Department of Human Genetics and Hussman Institute for Human Genomics (F.T., A.P.R., S.Z.), Miller School of Medicine, University of Miami, FL; Molecular Medicine Laboratory (C.N., F.M.S.), Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy; and Department of Neurology (M.E.S.), University of Iowa Carver College of Medicine, Iowa City.
| |
Collapse
|
39
|
Amber KT, Zikry J, Hertl M. A multi-hit hypothesis of bullous pemphigoid and associated neurological disease: Is HLA-DQB1*03:01, a potential link between immune privileged antigen exposure and epitope spreading? HLA 2017; 89:127-134. [PMID: 28101965 DOI: 10.1111/tan.12960] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/14/2022]
Abstract
Bullous pemphigoid (BP) is the most common autoimmune blistering disease and is linked to IgG recognition of 2 hemidesmosomal antigens, that is, BP230 (BP antigen 1) and BP180 (BP antigen 2, collagen XVII). The association of BP with other systemic diseases, particularly neurocognitive diseases, provides a potential clue in the underlying pathogenesis of BP. The role of HLA-DQB1*03:01 binding to the immunogenic portion of BP180 provides a potential mechanism by which exposure to neuronal collagen BP180 may lead to cutaneous disease. In our proposed multi-hit hypothesis, patients with underlying neuronal disease are exposed to previously sequestered self-antigen, most importantly BP180. Patients with the HLA-DQB1*03:01 allele show an increased T-cell avidity to several epitopes of BP180, particularly the BP180-NC16a domain. Thus, they have a genetic susceptibility to developing BP upon exposure to the target antigen. In a patient with dysregulation of Th1/Th2 balance, anergy is lost and T-cells are subsequently primed resulting in the development of functional autoimmunity against the BP180-NC16a domain leading to clinically overt disease.
Collapse
Affiliation(s)
- K T Amber
- Department of Dermatology, University of California Irvine, Irvine, California
| | - J Zikry
- Department of Dermatology, University of California Irvine, Irvine, California
| | - M Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Germany
| |
Collapse
|
40
|
Characterization of novel dystonia musculorum mutant mice: Implications for central nervous system abnormality. Neurobiol Dis 2016; 96:271-283. [DOI: 10.1016/j.nbd.2016.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022] Open
|
41
|
Hu L, Su P, Li R, Yin C, Zhang Y, Shang P, Yang T, Qian A. Isoforms, structures, and functions of versatile spectraplakin MACF1. BMB Rep 2016; 49:37-44. [PMID: 26521939 PMCID: PMC4914211 DOI: 10.5483/bmbrep.2016.49.1.185] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/20/2022] Open
Abstract
Spectraplakins are crucially important communicators, linking cytoskeletal components to each other and cellular junctions. Microtubule actin crosslinking factor 1 (MACF1), also known as actin crosslinking family 7 (ACF7), is a member of the spectraplakin family. It is expressed in numerous tissues and cells as one extensively studied spectraplakin. MACF1 has several isoforms with unique structures and well-known function to be able to crosslink F-actin and microtubules. MACF1 is one versatile spectraplakin with various functions in cell processes, embryo development, tissue-specific functions, and human diseases. The importance of MACF1 has become more apparent in recent years. Here, we summarize the current knowledge on the presence and function of MACF1 and provide perspectives on future research of MACF1 based on our studies and others. [BMB Reports 2016; 49(1): 37-44]
Collapse
Affiliation(s)
- Lifang Hu
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peihong Su
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Runzhi Li
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chong Yin
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yan Zhang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tuanmin Yang
- Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, P. R. China
| | - Airong Qian
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
42
|
Abstract
This review discusses the spectrin superfamily of proteins that function to connect cytoskeletal elements to each other, the cell membrane, and the nucleus. The signature domain is the spectrin repeat, a 106-122-amino-acid segment comprising three α-helices. α-actinin is considered to be the ancestral protein and functions to cross-link actin filaments. It then evolved to generate spectrin and dystrophin that function to link the actin cytoskeleton to the cell membrane, as well as the spectraplakins and plakins that link cytoskeletal elements to each other and to junctional complexes. A final class comprises the nesprins, which are able to bind to the nuclear membrane. This review discusses the domain organization of the various spectrin family members, their roles in protein-protein interactions, and their roles in disease, as determined from mutations, and it also describes the functional roles of the family members as determined from null phenotypes.
Collapse
Affiliation(s)
- Ronald K H Liem
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
43
|
Seehusen F, Kiel K, Jottini S, Wohlsein P, Habierski A, Seibel K, Vogel T, Urlaub H, Kollmar M, Baumgärtner W, Teichmann U. Axonopathy in the Central Nervous System Is the Hallmark of Mice with a Novel Intragenic Null Mutation of Dystonin. Genetics 2016; 204:191-203. [PMID: 27401753 PMCID: PMC5012385 DOI: 10.1534/genetics.116.186932] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/03/2016] [Indexed: 01/13/2023] Open
Abstract
Dystonia musculorum is a neurodegenerative disorder caused by a mutation in the dystonin gene. It has been described in mice and humans where it is called hereditary sensory autonomic neuropathy. Mutated mice show severe movement disorders and die at the age of 3-4 weeks. This study describes the discovery and molecular, clinical, as well as pathological characterization of a new spontaneously occurring mutation in the dystonin gene in C57BL/6N mice. The mutation represents a 40-kb intragenic deletion allele of the dystonin gene on chromosome 1 with exactly defined deletion borders. It was demonstrated by Western blot, mass spectrometry, and immunohistology that mice with a homozygous mutation were entirely devoid of the dystonin protein. Pathomorphological lesions were restricted to the brain stem and spinal cord and consisted of swollen, argyrophilic axons and dilated myelin sheaths in the white matter and, less frequently, total chromatolysis of neurons in the gray matter. Axonal damage was detected by amyloid precursor protein and nonphosphorylated neurofilament immunohistology. Axonopathy in the central nervous system (CNS) represents the hallmark of this disease. Mice with the dystonin mutation also showed suppurative inflammation in the respiratory tract, presumably due to brain stem lesion-associated food aspiration, whereas skeletal muscles showed no pathomorphological changes. This study describes a novel mutation in the dystonin gene in mice leading to axonopathy in the CNS. In further studies, this model may provide new insights into the pathogenesis of neurodegenerative diseases and may elucidate the complex interactions of dystonin with various other cellular proteins especially in the CNS.
Collapse
Affiliation(s)
- Frauke Seehusen
- Department of Pathology, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Kirsten Kiel
- Animal Facility, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Stefano Jottini
- Department of Pathology, University of Veterinary Medicine, D-30559 Hannover, Germany Department of Animal Health, Pathology Unit, Faculty of Veterinary Medicine, University of Parma, I-43100, Italy
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Andre Habierski
- Department of Pathology, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Katharina Seibel
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Tanja Vogel
- Institute of Anatomy and Cell Biology, University of Freiburg, D-79104, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytics, Department of Clinical Chemistry, University Medical Center Göttingen, D-37075, Germany
| | - Martin Kollmar
- Department of NMR-Based Structural Biology, Research Group Systems Biology of Motor Proteins, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, D-30559 Hannover, Germany Center for Systems Neuroscience, University of Veterinary Medicine, D-30559 Hannover, Germany
| | - Ulrike Teichmann
- Animal Facility, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
44
|
Nakane S, Izumi Y, Oda M, Kaji R, Matsuo H. A Potential Link between Amyotrophic Lateral Sclerosis and Bullous Pemphigoid: Six New Cases and a Systematic Review of the Literature. Intern Med 2016; 55:1985-90. [PMID: 27477403 DOI: 10.2169/internalmedicine.55.5578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective Bullous pemphigoid in amyotrophic lateral sclerosis (BP-ALS) is rare and poorly understood. We herein assessed the association between ALS and BP using clinical and biological findings. Methods The clinical features of six new BP-ALS cases were described and collated with cases from a systematic literature review. Results Our six cases were combined with three other published cases. The mean disease duration (from ALS onset to the occurrence of BP) was 5.6±3.1 years. All patients had limb-onset ALS. Four of the 9 patients received riluzole, with the use of riluzole ranging from a few days to 3 years. When BP occurred, the status of the ALS patients was paretic and/or bedridden in all cases. BP occurred throughout the body, and we confirmed that the bullous lesions were located not only at the compression site, but also at the anterior part of the chest, abdomen, and limbs. Treatment for BP was successful, as oral prednisone and/or local corticosteroids were effective in 8 cases. Conclusion These six new cases, in combination with previous cases, expand our knowledge of the relationship between dermatological lesions and ALS. The pathogenesis of BP-ALS is poorly understood, however, some immunological aberrance is likely.
Collapse
Affiliation(s)
- Shunya Nakane
- Department of Neurology and Clinical Research, Nagasaki Kawatana Medical Center, Japan
| | | | | | | | | |
Collapse
|
45
|
Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination. PLoS One 2016; 11:e0149201. [PMID: 26886550 PMCID: PMC4757544 DOI: 10.1371/journal.pone.0149201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/28/2016] [Indexed: 01/12/2023] Open
Abstract
Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic protein expression in both cerebral cortex and spinal cord. Together these data suggest that, unlike Schwann cells, oligodendrocytes do not have an intrinsic requirement for neuronal dystonin for differentiation and myelination.
Collapse
|
46
|
Künzli K, Favre B, Chofflon M, Borradori L. One gene but different proteins and diseases: the complexity of dystonin and bullous pemphigoid antigen 1. Exp Dermatol 2015; 25:10-6. [DOI: 10.1111/exd.12877] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Kseniia Künzli
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Bertrand Favre
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| | - Michel Chofflon
- Department of Clinical Neurosciences; Geneva University Hospitals; Geneva Switzerland
| | - Luca Borradori
- Department of Dermatology; Inselspital; Bern University Hospital; Bern Switzerland
| |
Collapse
|
47
|
Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins. Methods Enzymol 2015; 569:117-37. [PMID: 26778556 DOI: 10.1016/bs.mie.2015.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.
Collapse
|
48
|
Abstract
The neuronal isoforms of bullous pemphigoid antigen 1 (BPAG1, and also known as dystonin) are a group of large cytoskeletal linker proteins predominantly expressed in sensory neurons. The major neuronal isoforms consist of the spectraplakins (BPAG1/dystonin-a1, -a2, -a3), which have an N-terminus actin-binding domain and a C-terminus microtubule-binding domain. These proteins have crucial roles in cytoskeletal organization and stability, organelle integrity, and intracellular transport. BPAG1 loss-of-function in mice results in a lethal movement disorder known as dystonia musculorum (dt), which is likely caused by rapid sensory neuron degeneration. A human disease termed hereditary and sensory autonomic neuropathy type VI was also identified to be associated with mutations in the BPAG1 gene (DST). This chapter provides an overview of the type of experiments used for analysis of the different isoforms of BPAG1.
Collapse
Affiliation(s)
- Anisha Lynch-Godrei
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Center for Neuromuscular Disease, Ottawa, Ontario, Canada.
| |
Collapse
|
49
|
Ferrier A, De Repentigny Y, Lynch-Godrei A, Gibeault S, Eid W, Kuo D, Zha X, Kothary R. Disruption in the autophagic process underlies the sensory neuropathy in dystonia musculorum mice. Autophagy 2015; 11:1025-36. [PMID: 26043942 PMCID: PMC4590603 DOI: 10.1080/15548627.2015.1052207] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022] Open
Abstract
A homozygous mutation in the DST (dystonin) gene causes a newly identified lethal form of hereditary sensory and autonomic neuropathy in humans (HSAN-VI). DST loss of function similarly leads to sensory neuron degeneration and severe ataxia in dystonia musculorum (Dst(dt)) mice. DST is involved in maintaining cytoskeletal integrity and intracellular transport. As autophagy is highly reliant upon stable microtubules and motor proteins, we assessed the influence of DST loss of function on autophagy using the Dst(dt-Tg4) mouse model. Electron microscopy (EM) revealed an accumulation of autophagosomes in sensory neurons from these mice. Furthermore, we demonstrated that the autophagic flux was impaired. Levels of LC3-II, a marker of autophagosomes, were elevated. Consequently, Dst(dt-Tg4) sensory neurons displayed impaired protein turnover of autophagosome substrate SQTSM1/p62 and of polyubiquitinated proteins. Interestingly, in a previously described Dst(dt-Tg4) mouse model that is partially rescued by neuronal specific expression of the DST-A2 isoform, autophagosomes, autolysosomes, and damaged organelles were reduced when compared to Dst(dt-Tg4) mutant mice. LC3-II, SQTSM1, polyubiquitinated proteins and autophagic flux were also restored to wild-type levels in the rescued mice. Finally, a significant decrease in DNAIC1 (dynein, axonemal, intermediate chain 1; the mouse ortholog of human DNAI1), a member of the DMC (dynein/dynactin motor complex), was noted in Dst(dt-Tg4) dorsal root ganglia and sensory neurons. Thus, DST-A2 loss of function perturbs late stages of autophagy, and dysfunctional autophagy at least partially underlies Dst(dt) pathogenesis. We therefore conclude that the DST-A2 isoform normally facilitates autophagy within sensory neurons to maintain cellular homeostasis.
Collapse
Key Words
- ANOVA, analysis of variance
- BPAG1
- CASP3, caspase 3, apoptosis-related cysteine peptidase
- DMC
- DMC, dynein/dynactin motor complex
- DMEM, Dulbecco's modified Eagle's medium
- DNAIC1, dynein, axonemal, intermediate chain 1
- DRG, dorsal root ganglion
- DST, dystonin
- Dstdt, dystonia musculorum
- EM, electron microscopy
- FBS, fetal bovine serum
- HSAN-VI
- HSAN-VI, hereditary sensory and autonomic neuropathy type VI
- MACF1, microtubule-actin crosslinking factor 1
- MAP1B
- MAP1B, microtubule-associated protein 1B
- MAP1LC3/LC3, microtubule associated-protein 1 light chain 3
- MT, microtubule
- P, postnatal day
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PrP, prion protein
- RT-PCR, reverse transcription-polymerase chain reaction
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- SQTSM1/p62, sequestosome 1
- TCA, trichloroacetic acid
- TUBB3, tubulin, β, 3 class III
- WT, wild type
- autophagosome
- dynein
- dystonin
- microtubules
- trafficking
Collapse
Affiliation(s)
- Andrew Ferrier
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa, ON, Canada
| | | | - Anisha Lynch-Godrei
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa, ON, Canada
| | | | - Walaa Eid
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Biochemistry; Microbiology; and Immunology; University of Ottawa; Ottawa, ON, Canada
| | - Daniel Kuo
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
| | - Xiaohui Zha
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Biochemistry; Microbiology; and Immunology; University of Ottawa; Ottawa, ON, Canada
- Department of Medicine; University of Ottawa; Ottawa, ON, Canada
| | - Rashmi Kothary
- Ottawa Hospital Research Institute; Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa, ON, Canada
- Department of Medicine; University of Ottawa; Ottawa, ON, Canada
- University of Ottawa Center for Neuromuscular Disease; Ottawa, ON, Canada
| |
Collapse
|
50
|
Turcan I, Jonkman MF. Blistering disease: insight from the hemidesmosome and other components of the dermal-epidermal junction. Cell Tissue Res 2014; 360:545-69. [PMID: 25502077 DOI: 10.1007/s00441-014-2021-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The hemidesmosome is a specialized transmembrane complex that mediates the binding of epithelial cells to the underlying basement membrane. In the skin, this multiprotein structure can be regarded as the chief adhesion unit at the site of the dermal-epidermal junction. Focal adhesions are additional specialized attachment structures located between hemidesmosomes. The integrity of the skin relies on well-assembled and functional hemidesmosomes and focal adhesions (also known as integrin adhesomes). However, if these adhesion structures are impaired, e.g., as a result of circulating autoantibodies or inherited genetic mutations, the mechanical strength of the skin is compromised, leading to blistering and/or tissue inflammation. A particular clinical presentation emerges subject to the molecule that is targeted. None of these junctional complexes are simply compounds of adhesion molecules; they also play a significant role in signalling pathways involved in the differentiation and migration of epithelial cells such as during wound healing and in tumour invasion. We summarize current knowledge about hereditary and acquired blistering diseases emerging from pathologies of the hemidesmosome and its neighbouring proteins as components of the dermal-epidermal junction.
Collapse
Affiliation(s)
- Iana Turcan
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands,
| | | |
Collapse
|