1
|
Ko MY, Park H, Chon SH, Kim YB, Cha SW, Lee BS, Hyun SA, Ka M. Differential regulations of neural activity and survival in primary cortical neurons by PFOA or PFHpA. CHEMOSPHERE 2024; 352:141379. [PMID: 38316277 DOI: 10.1016/j.chemosphere.2024.141379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Perfluorinated compounds (PFCs), organofluoride compounds comprising carbon-fluorine and carbon-carbon bonds, are used as water and oil repellents in textiles and pharmaceutical tablets; however, they are associated with potential neurotoxic effects. Moreover, the impact of PFCs on neuronal survival, activity, and regulation within the brain remains unclear. Additionally, the mechanisms through which PFCs induce neuronal toxicity are not well-understood because of the paucity of data. This study elucidates that perfluorooctanoic acid (PFOA) and perfluoroheptanoic acid (PFHpA) exert differential effects on the survival and activity of primary cortical neurons. Although PFOA triggers apoptosis in cortical neurons, PFHpA does not exhibit this effect. Instead, PFHpA modifies dendritic spine morphogenesis and synapse formation in primary cortical neuronal cultures, additionally enhancing neural activity and synaptic transmission. This research uncovers a novel mechanism through which PFCs (PFHpA and PFOA) cause distinct alterations in dendritic spine morphogenesis and synaptic activity, shedding light on the molecular basis for the atypical behaviors noted following PFC exposure. Understanding the distinct effects of PFHpA and PFOA could guide regulatory policies on PFC usage and inform clinical approaches to mitigate their neurotoxic effects, especially in vulnerable population.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Collage of Veterinary of Medicine, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Sun-Hwa Chon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Yong-Bum Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Nonclinical Studies, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
2
|
Mishra E, Thakur MK. Vitamin B 12-folic acid supplementation improves memory by altering mitochondrial dynamics, dendritic arborization, and neurodegeneration in old and amnesic male mice. J Nutr Biochem 2024; 124:109536. [PMID: 37981108 DOI: 10.1016/j.jnutbio.2023.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
Memory impairment during aging and amnesia is attributed to compromised mitochondrial dynamics and mitophagy and other mitochondrial quality control mechanisms. Mitochondrial dynamics involves the continuous process of fission and fusion of mitochondria within a cell and is a fundamental mechanism for regulating mitochondrial quality and function. An extensive range of potential nutritional supplements has been shown to improve mitochondrial health, synaptic plasticity, and cognitive functions. Previous findings revealed that supplementation of vitamin B12-folic acid reduces locomotor deficits and mitochondrial abnormalities but enhances mitochondrial and neuronal health. The present study aims to explore the impact of combined vitamin B12-folic acid supplementation on mitochondrial dynamics, neuronal health, and memory decline in old age and scopolamine-induced amnesia, which remains elusive. The results demonstrated that supplementation led to a noteworthy increase in recognition and spatial memory and expression of memory-related protein BDNF in old and amnesic mice. Moreover, the decrease in the fragmented mitochondrial number was validated by the downregulation of mitochondrial fission p-Drp1 (S616) protein and the increase in elongated mitochondria by the upregulation of mitochondrial fusion Mfn2 protein. The increased spine density and dendritic arborization in old and amnesic mice upon supplementation were confirmed by the enhanced expression level of PSD95 and synaptophysin. Furthermore, supplementation reduced ROS production, inhibited Caspase-3 activation, mitigated neurodegeneration, and enhanced mitochondrial membrane potential, ATP production, Vdac1 expression, myelination, in old and amnesic mice. Collectively, our findings imply that combined supplementation of vitamin B12-folic acid improves mitochondrial dynamics and neuronal health, and leads to recovery of memory during old age and amnesia.
Collapse
Affiliation(s)
- Ela Mishra
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| | - Mahendra Kumar Thakur
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
3
|
Rimbault C, Breillat C, Compans B, Toulmé E, Vicente FN, Fernandez-Monreal M, Mascalchi P, Genuer C, Puente-Muñoz V, Gauthereau I, Hosy E, Claverol S, Giannone G, Chamma I, Mackereth CD, Poujol C, Choquet D, Sainlos M. Engineering paralog-specific PSD-95 recombinant binders as minimally interfering multimodal probes for advanced imaging techniques. eLife 2024; 13:e69620. [PMID: 38167295 PMCID: PMC10803022 DOI: 10.7554/elife.69620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the constant advances in fluorescence imaging techniques, monitoring endogenous proteins still constitutes a major challenge in particular when considering dynamics studies or super-resolution imaging. We have recently evolved specific protein-based binders for PSD-95, the main postsynaptic scaffold proteins at excitatory synapses. Since the synthetic recombinant binders recognize epitopes not directly involved in the target protein activity, we consider them here as tools to develop endogenous PSD-95 imaging probes. After confirming their lack of impact on PSD-95 function, we validated their use as intrabody fluorescent probes. We further engineered the probes and demonstrated their usefulness in different super-resolution imaging modalities (STED, PALM, and DNA-PAINT) in both live and fixed neurons. Finally, we exploited the binders to enrich at the synapse genetically encoded calcium reporters. Overall, we demonstrate that these evolved binders constitute a robust and efficient platform to selectively target and monitor endogenous PSD-95 using various fluorescence imaging techniques.
Collapse
Affiliation(s)
- Charlotte Rimbault
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Christelle Breillat
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Benjamin Compans
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Estelle Toulmé
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Filipe Nunes Vicente
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Monica Fernandez-Monreal
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Patrice Mascalchi
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Camille Genuer
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Virginia Puente-Muñoz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Isabel Gauthereau
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Eric Hosy
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Gregory Giannone
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Ingrid Chamma
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | | | - Christel Poujol
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4BordeauxFrance
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297BordeauxFrance
| |
Collapse
|
4
|
Ghobadi M, Akbari S, Bayat M, Moosavi SMS, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Hooshmandi E, Haghani M. Gens PSD-95 and GSK-3β expression improved by hair follicular stem cells-conditioned medium enhances synaptic transmission and cognitive abilities in the rat model of vascular dementia. Brain Behav 2024; 14:e3351. [PMID: 38376050 PMCID: PMC10757903 DOI: 10.1002/brb3.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Vascular dementia (VaD) is a common type of dementia. The aim of this study was to investigate the cellular and molecular mechanism of conditioned medium (CM) in VaD. MATERIAL AND METHODS The rats were divided into four groups of control (n = 9), sham-operation (n = 10), VaD with vehicle (n = 9), and VaD with CM (n = 12) that received CM on days 4, 14, and 24 after 2VO. Before sacrificing the rats, cognitive performance was assessed through the open-field (OP), passive-avoidance, and Morris-water maze. The field-potential recording was used to investigate basal synaptic transmission (BST) and long-term potentiation (LTP). Subsequently, the hippocampus was dissected, and real-time PCR was used to quantify the expression levels of β1-catenin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-β), glycogen synthase kinase-3β (GSK-3β), postsynaptic density protein 95 (PSD-95), and NR2B genes. RESULTS The results indicated impaired performance in behavioral tests in 2VO rats, coupled with reductions in BST and LTP induction. The expression levels of β1-catenin, IGF-1, PSD-95, and TGF-β genes decreased, whereas NR2B and GSK-3β expression increased. Treatment with CM restores the expression of PSD-95 and GSK-3β as well as fear-memory, spatial learning, and grooming number without a positive effect on memory retrieval, time spent on the periphery and center of OP. The BST recovered upon administration of CM but, the LTP induction was still impaired. CONCLUSION The recovery of BST in VaD rats appears to be the most important outcome of this study which is caused by the improvement of gene expression and leads to the restoration of fear memory.
Collapse
Affiliation(s)
- Mojtaba Ghobadi
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
| | - Somayeh Akbari
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| | - Mahnaz Bayat
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | | | | | - Sareh Pandamooz
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Etrat Hooshmandi
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | - Masoud Haghani
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| |
Collapse
|
5
|
Xie W, Xing N, Qu J, Liu D, Pang Q. The Physiological Function of nNOS-Associated CAPON Proteins and the Roles of CAPON in Diseases. Int J Mol Sci 2023; 24:15808. [PMID: 37958792 PMCID: PMC10647562 DOI: 10.3390/ijms242115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this review, the structure, isoform, and physiological role of the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) are summarized. There are three isoforms of CAPON in humans, including long CAPON protein (CAPON-L), short CAPON protein (CAPON-S), and CAPON-S' protein. CAPON-L includes three functional regions: a C-terminal PDZ-binding motif, carboxypeptidase (CPE)-binding region, and N-terminal phosphotyrosine (PTB) structural domain. Both CAPON-S and CAPON-S' only contain the C-terminal PDZ-binding motif. The C-terminal PDZ-binding motif of CAPON can bind with neuronal nitric oxide synthase (nNOS) and participates in regulating NO production and neuronal development. An overview is given on the relationship between CAPON and heart diseases, diabetes, psychiatric disorders, and tumors. This review will clarify future research directions on the signal pathways related to CAPON, which will be helpful for studying the regulatory mechanism of CAPON. CAPON may be used as a drug target, which will provide new ideas and solutions for treating human diseases.
Collapse
Affiliation(s)
| | | | | | - Dongwu Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| | - Qiuxiang Pang
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| |
Collapse
|
6
|
Hooshmandi E, Akbari S, Pandamooz S, Ghobadi M, Ghasemi R, Maghsoudi N, Rai SN, Borhani-Haghighi A, Salehi MS, Azarpira N, YousefiNejad A, Haghani M, Bayat M. Combined use of hair follicle stem cells and CEPO (carbamylated erythropoietin)-Fc in a rat model of chronic cerebral hypoperfusion: A behavioral, electrophysiological, and molecular study. Behav Brain Res 2023; 454:114655. [PMID: 37666305 DOI: 10.1016/j.bbr.2023.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND In dementia, synaptic dysfunction appears before neuronal loss. Stem cell therapy could potentially provide a promising strategy for the treatment of dementia models. The carbamylated erythropoietin fusion protein (CEPO-Fc) has shown synaptotrophic effects. This study aimed to determine the efficiency of the combined use of hair follicle stem cells (HFSC) and CEPO-Fc in the basal synaptic transmission (BST) and long-term plasticity (LTP) of chronic cerebral hypoperfusion (CCH) rats. METHODS We divided 64 adult rats into control, sham, CCH+vehicle, CCH+CEPO, CCH+HFSC, and CCH+HFSC+CEPO groups. The CEPO-Fc was injected three times/week for 30 days. HFSC transplantation was done on days 4, 14, and 21 after surgery. The Morris water maze test and passive avoidance were used to assess memory. BST and LTP were assessed by a field-potential recording of the CA1 region. The hippocampal mRNA expression of IGF-1, TGF-β1, β1-Catenine, NR2B, PSD-95, and GSk-3β was evaluated by quantitative RT-PCR. RESULTS Following combination therapy, spatial memory retention, and BST showed significant improvement relative to HFSC and CEPO-Fc groups. These effects were also confirmed by recovered mRNA expression of β1-catenin, TGF-β1, and NR2B. GSK-3β expression was downregulated in all treatment groups. The upregulated PSD-95 was identified in HFSC and combination groups compared to the vehicle group. CONCLUSIONS These findings indicate that the combined use of HFSC and CEPO-Fc may be more advantageous for treating memory disruption in the CCH model than CEPO-Fc or HFSC alone. This type of combination therapy may hopefully lead to a new approach to treatment for dementia.
Collapse
Affiliation(s)
- Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Somayeh Akbari
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran; Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Mojtaba Ghobadi
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center and Physiology Department, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, the Islamic Republic of Iran
| | | | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Mohammad Rasoul-Allah Research Tower, Shiraz, the Islamic Republic of Iran
| | - Amirhossein YousefiNejad
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Masoud Haghani
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran; Histomorphometry and Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran
| | - Mahnaz Bayat
- Department of Physiology, The Medical School, Shiraz University of Medical Sciences, Shiraz, the Islamic Republic of Iran.
| |
Collapse
|
7
|
Edwards N, Combrinck C, McCaughey-Chapman A, Connor B. Directly reprogrammed fragile X syndrome dorsal forebrain precursor cells generate cortical neurons exhibiting impaired neuronal maturation. Front Cell Neurosci 2023; 17:1254412. [PMID: 37810261 PMCID: PMC10552551 DOI: 10.3389/fncel.2023.1254412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The neurodevelopmental disorder fragile X syndrome (FXS) is the most common monogenic cause of intellectual disability associated with autism spectrum disorder. Inaccessibility to developing human brain cells is a major barrier to studying FXS. Direct-to-neural precursor reprogramming provides a unique platform to investigate the developmental profile of FXS-associated phenotypes throughout neural precursor and neuron generation, at a temporal resolution not afforded by post-mortem tissue and in a patient-specific context not represented in rodent models. Direct reprogramming also circumvents the protracted culture times and low efficiency of current induced pluripotent stem cell strategies. Methods We have developed a chemically modified mRNA (cmRNA) -based direct reprogramming protocol to generate dorsal forebrain precursors (hiDFPs) from FXS patient-derived fibroblasts, with subsequent differentiation to glutamatergic cortical neurons and astrocytes. Results We observed differential expression of mature neuronal markers suggesting impaired neuronal development and maturation in FXS- hiDFP-derived neurons compared to controls. FXS- hiDFP-derived cortical neurons exhibited dendritic growth and arborization deficits characterized by reduced neurite length and branching consistent with impaired neuronal maturation. Furthermore, FXS- hiDFP-derived neurons exhibited a significant decrease in the density of pre- and post- synaptic proteins and reduced glutamate-induced calcium activity, suggesting impaired excitatory synapse development and functional maturation. We also observed a reduced yield of FXS- hiDFP-derived neurons with a significant increase in FXS-affected astrocytes. Discussion This study represents the first reported derivation of FXS-affected cortical neurons following direct reprogramming of patient fibroblasts to dorsal forebrain precursors and subsequently neurons that recapitulate the key molecular hallmarks of FXS as it occurs in human tissue. We propose that direct to hiDFP reprogramming provides a unique platform for further study into the pathogenesis of FXS as well as the identification and screening of new drug targets for the treatment of FXS.
Collapse
Affiliation(s)
| | | | | | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Sritawan N, Sirichoat A, Aranarochana A, Pannangrong W, Wigmore P, Welbat JU. Protective effect of metformin on methotrexate induced reduction of rat hippocampal neural stem cells and neurogenesis. Biomed Pharmacother 2023; 162:114613. [PMID: 37001179 DOI: 10.1016/j.biopha.2023.114613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Adult neurogenesis is a process in which the adult neural stem cells produce newborn neurons that are implicated in terms of learning and memory. Methotrexate (MTX) is a chemotherapeutic drug, which has a negative effect on memory and hippocampal neurogenesis in animal models. Metformin is an antidiabetic drug with strong antioxidant capacities. We found that metformin ameliorates MTX induced deteriorations of memory and hippocampal neurogenesis in adult rats. In this study, we focus to investigate neural stem cells, biomarkers of apoptosis, and the protein for synaptogenesis, which involves in the transcription factors of the hippocampus in rats that received metformin and MTX. Male Sprague-Dawley rats were composed of control, MTX, metformin, and MTX+metformin groups. MTX (75 mg/kg, i.v.) was given on days 7 and 14, whereas metformin (200 mg/kg, i.p.) was given for 14 days. Hippocampal neural stem cells in the subgranular zone (SGZ) were quantified using immunofluorescence staining of Sox2 and nestin. Protein expression including PSD95, Casepase-3, Bax, Bcl-2, CREB, and pCREB were determined using Western blotting. MTX-treated rats displayed decreases in Sox2 and nestin-positive cells in the SGZ. Increases in Caspase-3 and Bax levels and decreases in PSD95, Bcl-2, CREB, and pCREB protein expressions in the hippocampus were also detected. However, these negative impacts of MTX were ameliorated by co-treatment with metformin. These consequences postulate that metformin has a potential to increase neural stem cells, synaptic plasticity, decreased apoptotic activities, and transcription factors, resulting in upregulation of hippocampal neurogenesis in MTX-treated rats.
Collapse
Affiliation(s)
- Nataya Sritawan
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Apiwat Sirichoat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Anusara Aranarochana
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Wanassanan Pannangrong
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Peter Wigmore
- School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jariya Umka Welbat
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Neurogenesis Research Group, Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
9
|
Ziółkowska M, Borczyk M, Cały A, Tomaszewski KF, Nowacka A, Nalberczak-Skóra M, Śliwińska MA, Łukasiewicz K, Skonieczna E, Wójtowicz T, Wlodarczyk J, Bernaś T, Salamian A, Radwanska K. Phosphorylation of PSD-95 at serine 73 in dCA1 is required for extinction of contextual fear. PLoS Biol 2023; 21:e3002106. [PMID: 37155709 DOI: 10.1371/journal.pbio.3002106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/18/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
The updating of contextual memories is essential for survival in a changing environment. Accumulating data indicate that the dorsal CA1 area (dCA1) contributes to this process. However, the cellular and molecular mechanisms of contextual fear memory updating remain poorly understood. Postsynaptic density protein 95 (PSD-95) regulates the structure and function of glutamatergic synapses. Here, using dCA1-targeted genetic manipulations in vivo, combined with ex vivo 3D electron microscopy and electrophysiology, we identify a novel, synaptic mechanism that is induced during attenuation of contextual fear memories and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data provide the proof that PSD-95-dependent synaptic plasticity in dCA1 is required for updating of contextual fear memory.
Collapse
Affiliation(s)
- Magdalena Ziółkowska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Borczyk
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department Molecular Neuropharmacology, Maj Institute of Pharmacology of Polish Academy of Sciences, Krakow, Poland
| | - Anna Cały
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kamil F Tomaszewski
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Agata Nowacka
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Maria Nalberczak-Skóra
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Alicja Śliwińska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Łukasiewicz
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Psychiatry Clinic, Medical University of Bialystok, Białystok, Poland
| | - Edyta Skonieczna
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Wójtowicz
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Tytus Bernaś
- Laboratory of Imaging Tissue Structure and Function, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department of Anatomy and Neurology, VCU School of Medicine, Richmond, Virginia, United States of America
| | - Ahmad Salamian
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, the Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
11
|
Martinez-Galan JR, Garcia-Belando M, Cabanes-Sanchis JJ, Caminos E. Pre- and postsynaptic alterations in the visual cortex of the P23H-1 retinal degeneration rat model. Front Neuroanat 2022; 16:1000085. [PMID: 36312296 PMCID: PMC9608761 DOI: 10.3389/fnana.2022.1000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
P23H rats express a variant of rhodopsin with a mutation that leads to loss of visual function with similar properties as human autosomal dominant retinitis pigmentosa (RP). The advances made in different therapeutic strategies to recover visual system functionality reveal the need to know whether progressive retina degeneration affects the visual cortex structure. Here we are interested in detecting cortical alterations in young rats with moderate retinal degeneration, and in adulthood when degeneration is severer. For this purpose, we studied the synaptic architecture of the primary visual cortex (V1) by analyzing a series of pre- and postsynaptic elements related to excitatory glutamatergic transmission. Visual cortices from control Sprague Dawley (SD) and P23H rats at postnatal days 30 (P30) and P230 were used to evaluate the distribution of vesicular glutamate transporters VGLUT1 and VGLUT2 by immunofluorescence, and to analyze the expression of postsynaptic density protein-95 (PSD-95) by Western blot. The amount and dendritic spine distribution along the apical shafts of the layer V pyramidal neurons, stained by the Golgi-Cox method, were also studied. We observed that at P30, RP does not significantly affect any of the studied markers and structures, which suggests in young P23H rats that visual cortex connectivity seems preserved. However, in adult rats, although VGLUT1 immunoreactivity and PSD-95 expression were similar between both groups, a narrower and stronger VGLUT2-immunoreactive band in layer IV was observed in the P23H rats. Furthermore, RP significantly decreased the density of dendritic spines and altered their distribution along the apical shafts of pyramidal neurons, which remained in a more immature state compared to the P230 SD rats. Our results indicate that the most notable changes in the visual cortex structure take place after a prolonged retinal degeneration period that affected the presynaptic thalamocortical VGLUT2-immunoreactive terminals and postsynaptic dendritic spines from layer V pyramidal cells. Although plasticity is more limited at these ages, future studies will determine how reversible these changes are and to what extent they can affect the visual system's functionality.
Collapse
Affiliation(s)
- Juan R. Martinez-Galan
- Facultad de Medicina, Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | | | | | | |
Collapse
|
12
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
13
|
Agarwal S, Schaefer ML, Krall C, Johns RA. Isoflurane Disrupts Postsynaptic Density-95 Protein Interactions Causing Neuronal Synapse Loss and Cognitive Impairment in Juvenile Mice via Canonical NO-mediated Protein Kinase-G Signaling. Anesthesiology 2022; 137:212-231. [PMID: 35504002 PMCID: PMC9332139 DOI: 10.1097/aln.0000000000004264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Inhalational anesthetics are known to disrupt PDZ2 domain-mediated protein-protein interactions of the postsynaptic density (PSD)-95 protein. The aim of this study is to investigate the underlying mechanisms in response to early isoflurane exposure on synaptic PSD-95 PDZ2 domain disruption that altered spine densities and cognitive function. The authors hypothesized that activation of protein kinase-G by the components of nitric oxide (NO) signaling pathway constitutes a mechanism that prevents loss of early dendritic spines and synapse in neurons and cognitive impairment in mice in response to disruption of PDZ2 domain of the PSD-95 protein. METHODS Postnatal day 7 mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active PSD-95 wild-type PDZ2 peptide or soluble guanylyl cyclase activator YC-1 along with their respective controls. Primary neurons at 7 days in vitro were exposed to isoflurane or PSD-95 wild-type PDZ2 peptide for 4 h. Coimmunoprecipitation, spine density, synapses, cyclic guanosine monophosphate-dependent protein kinase activity, and novel object recognition memory were assessed. RESULTS Exposure of isoflurane or PSD-95 wild-type PDZ2 peptide relative to controls causes the following. First, there is a decrease in PSD-95 coimmunoprecipitate relative to N-methyl-d-aspartate receptor subunits NR2A and NR2B precipitate (mean ± SD [in percentage of control]: isoflurane, 54.73 ± 16.52, P = 0.001; and PSD-95 wild-type PDZ2 peptide, 51.32 ± 12.93, P = 0.001). Second, there is a loss in spine density (mean ± SD [spine density per 10 µm]: control, 5.28 ± 0.56 vs. isoflurane, 2.23 ± 0.67, P < 0.0001; and PSD-95 mutant PDZ2 peptide, 4.74 ± 0.94 vs. PSD-95 wild-type PDZ2 peptide, 1.47 ± 0.87, P < 0.001) and a decrease in synaptic puncta (mean ± SD [in percentage of control]: isoflurane, 41.1 ± 14.38, P = 0.001; and PSD-95 wild-type PDZ2 peptide, 50.49 ± 14.31, P < 0.001). NO donor or cyclic guanosine monophosphate analog prevents the spines and synapse loss and decline in the cyclic guanosine monophosphate-dependent protein kinase activity, but this prevention was blocked by soluble guanylyl cyclase or protein kinase-G inhibitors in primary neurons. Third, there were deficits in object recognition at 5 weeks (mean ± SD [recognition index]: male, control, 64.08 ± 10.57 vs. isoflurane, 48.49 ± 13.41, P = 0.001, n = 60; and female, control, 67.13 ± 11.17 vs. isoflurane, 53.76 ± 6.64, P = 0.003, n = 58). Isoflurane-induced impairment in recognition memory was preventable by the introduction of YC-1. CONCLUSIONS Activation of soluble guanylyl cyclase or protein kinase-G prevents isoflurane or PSD-95 wild-type PDZ2 peptide-induced loss of dendritic spines and synapse. Prevention of recognition memory with YC-1, a NO-independent activator of guanylyl cyclase, supports a role for the soluble guanylyl cyclase mediated protein kinase-G signaling in countering the effects of isoflurane-induced cognitive impairment. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Swati Agarwal
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Michele L Schaefer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Caroline Krall
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
14
|
Miozzo F, Valencia-Alarcón EP, Stickley L, Majcin Dorcikova M, Petrelli F, Tas D, Loncle N, Nikonenko I, Bou Dib P, Nagoshi E. Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor. Nat Commun 2022; 13:1426. [PMID: 35301315 PMCID: PMC8931002 DOI: 10.1038/s41467-022-29075-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Progressive degeneration of dopaminergic (DA) neurons in the substantia nigra is a hallmark of Parkinson’s disease (PD). Dysregulation of developmental transcription factors is implicated in dopaminergic neurodegeneration, but the underlying molecular mechanisms remain largely unknown. Drosophila Fer2 is a prime example of a developmental transcription factor required for the birth and maintenance of midbrain DA neurons. Using an approach combining ChIP-seq, RNA-seq, and genetic epistasis experiments with PD-linked genes, here we demonstrate that Fer2 controls a transcriptional network to maintain mitochondrial structure and function, and thus confers dopaminergic neuroprotection against genetic and oxidative insults. We further show that conditional ablation of Nato3, a mouse homolog of Fer2, in differentiated DA neurons causes mitochondrial abnormalities and locomotor impairments in aged mice. Our results reveal the essential and conserved role of Fer2 homologs in the mitochondrial maintenance of midbrain DA neurons, opening new perspectives for modeling and treating PD. Mitochondrial dysfunction in dopaminergic neurons is a pathological hallmark of Parkinson’s disease. Here, the authors find a conserved mechanism by which a single transcription factor controls mitochondrial health in dopaminergic neurons during the aging process.
Collapse
Affiliation(s)
- Federico Miozzo
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,Neuroscience Institute - CNR (IN-CNR), Milan, Italy
| | - Eva P Valencia-Alarcón
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Luca Stickley
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Michaëla Majcin Dorcikova
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland
| | | | - Damla Tas
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,The Janssen Pharmaceutical Companies of Johnson & Johnson, Bern, Switzerland
| | - Nicolas Loncle
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.,Puma Biotechnology, Inc., Berkeley, CA, USA
| | - Irina Nikonenko
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, CH-1211, Geneva 4, Switzerland
| | - Peter Bou Dib
- Institute of Cell Biology, University of Bern, CH-3012, Bern, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
15
|
Li C, Liu S, Mei Y, Wang Q, Lu X, Li H, Tao F. Differential Effects of Sevoflurane Exposure on Long-Term Fear Memory in Neonatal and Adult Rats. Mol Neurobiol 2022; 59:2799-2807. [PMID: 35201592 DOI: 10.1007/s12035-021-02629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
It remains unclear whether exposure to sevoflurane produces different effects on long-term cognitive function in developing and mature brains. In the present study, Sprague-Dawley neonatal rats at postnatal day (PND) 7 and adult rats (PND 56) were used in all experiments. We performed fear conditioning testing to examine long-term fear memory following 4-h sevoflurane exposure. We assessed hippocampal synapse ultrastructure with a transmission electron microscope. Moreover, we investigated the effect of sevoflurane exposure on the expression of postsynaptic protein 95 (PSD-95) and its binding protein kalirin-7 in the hippocampus. We observed that early exposure to sevoflurane in neonatal rats impairs hippocampus-dependent fear memory, reduces hippocampal synapse density, and dramatically decreases the expressions of PSD-95 and kalirin-7 in the hippocampus of the developing brain. However, sevoflurane exposure in adult rats has no effects on hippocampus-dependent fear memory and hippocampal synapse density, and the expressions of PSD-95 and kalirin-7 in the adult hippocampus are not significantly altered following sevoflurane treatment. Our results indicate that sevoflurane exposure produces differential effects on long-term fear memory in neonatal and adult rats and that PSD-95 signaling may be involved in the molecular mechanism for early sevoflurane exposure-caused long-term fear memory impairment.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Anesthesiology and Perioperative Cognitive Function, Zhengzhou, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA
| | - Yixin Mei
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Xihua Lu
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan, 450008, China.
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA.
| |
Collapse
|
16
|
The cell adhesion protein dystroglycan affects the structural remodeling of dendritic spines. Sci Rep 2022; 12:2506. [PMID: 35169214 PMCID: PMC8847666 DOI: 10.1038/s41598-022-06462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Dystroglycan (DG) is a cell membrane protein that binds to the extracellular matrix in various mammalian tissues. The function of DG has been well defined in embryonic development as well as in the proper migration of differentiated neuroblasts in the central nervous system (CNS). Although DG is known to be a target for matrix metalloproteinase-9 (MMP-9), cleaved in response to enhanced synaptic activity, the role of DG in the structural remodeling of dendritic spines is still unknown. Here, we report for the first time that the deletion of DG in rat hippocampal cell cultures causes pronounced changes in the density and morphology of dendritic spines. Furthermore, we noted a decrease in laminin, one of the major extracellular partners of DG. We have also observed that the lack of DG evokes alterations in the morphological complexity of astrocytes accompanied by a decrease in the level of aquaporin 4 (AQP4), a protein located within astrocyte endfeet surrounding neuronal dendrites and synapses. Regardless of all of these changes, we did not observe any effect of DG silencing on either excitatory or inhibitory synaptic transmission. Likewise, the knockdown of DG had no effect on Psd-95 protein expression. Our results indicate that DG is involved in dendritic spine remodeling that is not functionally reflected. This may suggest the existence of unknown mechanisms that maintain proper synaptic signaling despite impaired structure of dendritic spines. Presumably, astrocytes are involved in these processes.
Collapse
|
17
|
Keith RE, Ogoe RH, Dumas TC. Behind the scenes: Are latent memories supported by calcium independent plasticity? Hippocampus 2022; 32:73-88. [PMID: 33905147 PMCID: PMC8548406 DOI: 10.1002/hipo.23332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 02/03/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) can be considered to be the de facto "plasticity" receptors in the brain due to their central role in the activity-dependent modification of neuronal morphology and synaptic transmission. Since the 1980s, research on NMDARs has focused on the second messenger properties of calcium and the downstream signaling pathways that mediate alterations in neural form and function. Recently, NMDARs were shown to drive activity-dependent synaptic plasticity without calcium influx. How this "nonionotropic" plasticity occurs in vitro is becoming clearer, but research on its involvement in behavior and cognition is in its infancy. There is a partial overlap in the downstream signaling molecules that are involved in ionotropic and nonionotropic NMDAR-dependent plasticity. Given this, and prior studies of the cognitive impacts of ionotropic NMDAR plasticity, a preliminary model explaining how NMDAR nonionotropic plasticity affects learning and memory can be established. We hypothesize that nonionotropic NMDAR plasticity takes part in latent memory encoding in immature rodents through nonassociative depression of synaptic efficacy, and possibly shrinking of dendritic spines. Further, the late postnatal alteration in NMDAR composition in the hippocampus appears to reduce nonionotropic signaling and remove a restriction on memory retrieval. This framework substantially alters the canonical model of NMDAR involvement in spatial cognition and hippocampal maturation and provides novel and exciting inroads for future studies.
Collapse
Affiliation(s)
- Rachel E. Keith
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia
| | - Richard H. Ogoe
- Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| | - Theodore C. Dumas
- Interdisciplinary Program in Neuroscience, College of Science, George Mason University, Fairfax, Virginia,Department of Psychology, College of Humanities and Social Sciences, George Mason University, Fairfax, Virginia
| |
Collapse
|
18
|
Xu L, Zhou Y, Hu L, Jiang H, Dong Y, Shen H, Lou Z, Yang S, Ji Y, Ruan L, Zhang X. Deficits in N-Methyl-D-Aspartate Receptor Function and Synaptic Plasticity in Hippocampal CA1 in APP/PS1 Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2021; 13:772980. [PMID: 34916926 PMCID: PMC8669806 DOI: 10.3389/fnagi.2021.772980] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022] Open
Abstract
The N-methyl-D-aspartate receptor is a critical molecule for synaptic plasticity and cognitive function. Impaired synaptic plasticity is thought to contribute to the cognitive impairment associated with Alzheimer’s disease (AD). However, the neuropathophysiological alterations of N-methyl-D-aspartate receptor (NMDAR) function and synaptic plasticity in hippocampal CA1 in transgenic rodent models of AD are still unclear. In the present study, APP/PS1 mice were utilized as a transgenic model of AD, which exhibited progressive cognitive impairment including defective working memory, recognition memory, and spatial memory starting at 6 months of age and more severe by 8 months of age. We found an impaired long-term potentiation (LTP) and reduced NMDAR-mediated spontaneous excitatory postsynaptic currents (sEPSCs) in the hippocampal CA1 of APP/PS1 mice with 8 months of age. Golgi staining revealed that dendrites of pyramidal neurons had shorter length, fewer intersections, and lower spine density in APP/PS1 mice compared to control mice. Further, the reduced expression levels of NMDAR subunits, PSD95 and SNAP25 were observed in the hippocampus of APP/PS1 mice. These results suggest that NMDAR dysfunction, impaired synaptic plasticity, and disrupted neuronal morphology constitute an important part of the neuropathophysiological alterations associated with cognitive impairment in APP/PS1 mice.
Collapse
Affiliation(s)
- Le Xu
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, School of Medicine, Ningbo University, Ningbo, China.,Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Yiying Zhou
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, School of Medicine, Ningbo University, Ningbo, China.,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, China
| | - Linbo Hu
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| | - Hongde Jiang
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| | - Yibei Dong
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| | - Haowei Shen
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, School of Medicine, Ningbo University, Ningbo, China.,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, China
| | - Zhongze Lou
- Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China.,Central Laboratory of the Medical Research Center, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Siyu Yang
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, School of Medicine, Ningbo University, Ningbo, China
| | - Yunxin Ji
- Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Liemin Ruan
- Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, China
| | - Xiaoqin Zhang
- Zhejiang Key Laboratory of Pathophysiology, Department of Pharmacology, School of Medicine, Ningbo University, Ningbo, China.,Key Laboratory of Addiction Research of Zhejiang Province, Ningbo Kangning Hospital, Ningbo, China
| |
Collapse
|
19
|
Vrankova S, Galandakova Z, Benko J, Cebova M, Riecansky I, Pechanova O. Duration of Social Isolation Affects Production of Nitric Oxide in the Rat Brain. Int J Mol Sci 2021; 22:ijms221910340. [PMID: 34638682 PMCID: PMC8509065 DOI: 10.3390/ijms221910340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022] Open
Abstract
Social isolation deprives rodents of social interactions that are critical for normal development of brain and behavior. Several studies have indicated that postweaning isolation rearing may affect nitric oxide (NO) production. The aim of this study was to compare selected behavioral and biochemical changes related to NO production in the brain of rats reared in social isolation for different duration. At the age of 21 days, male Sprague Dawley rats were randomly assigned into four groups reared in isolation or socially for 10 or 29 weeks. At the end of the rearing, open-field and prepulse inhibition (PPI) tests were carried out. Furthermore, in several brain areas we assessed NO synthase (NOS) activity, protein expression of nNOS and iNOS isoforms and the concentration of conjugated dienes (CD), a marker of oxidative damage and lipid peroxidation. Social isolation for 10 weeks resulted in a significant decrease in PPI, which was accompanied by a decrease in NOS activity in the cerebral cortex and the cerebellum, an increase in iNOS in the hippocampus and an increase in CD concentration in cortex homogenate. On the other hand, a 29 week isolation had an opposite effect on NOS activity, which increased in the cerebral cortex and the cerebellum in animals reared in social isolation, accompanied by a decrease in CD concentration. The decrease in NOS activity after 10 weeks of isolation might have been caused by chronic stress induced by social isolation, which has been documented in previous studies. The increased oxidative state might result in the depleted NO bioavailability, as NO reacts with superoxide radical creating peroxynitrite. After 29 weeks of isolation, this loss of NO might be compensated by the subsequent increase in NOS activity.
Collapse
Affiliation(s)
- Stanislava Vrankova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
- Correspondence:
| | - Zuzana Galandakova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Jakub Benko
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Martina Cebova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| | - Igor Riecansky
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
- Department of Psychiatry, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Olga Pechanova
- Centre of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; (Z.G.); (J.B.); (M.C.); (I.R.); (O.P.)
| |
Collapse
|
20
|
Pubertal LPS treatment selectively alters PSD-95 expression in male CD-1 mice. Brain Res Bull 2021; 175:186-195. [PMID: 34333052 DOI: 10.1016/j.brainresbull.2021.07.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022]
Abstract
Puberty includes a highly stress-sensitive period with significant sex differences in the neurophysiological and behavioural outcomes of a peripheral immune challenge. Sex differences in the pubertal neuroimmune network's responses to systemic LPS may explain some of these enduring sex-specific outcomes of a pubertal immune challenge. However, the functional implications of these sex-specific neuroimmune responses on the local microenvironment are unclear. Western blots were used to examine treatment- and sex-related changes in expression of regulatory proteins in inflammation (NFκB), cell death (AIF), oxidative stress (SOD-1), and synaptic plasticity (PSD-95) following symptomatic recovery (i.e., one week post-treatment) from pubertal immune challenge. Across the four examined brain regions (i.e., hippocampus, PFC, hypothalamus, and cerebellum), only PSD-95 levels were altered one week post-treatment by the pubertal LPS treatment. Unlike their female counterparts, seven-week-old males showed increased PSD-95 expression in the hippocampus (p < .05). AIF, SOD-1, and NFκB levels in both sexes were unaffected by treatment (all p > .05), which suggests appropriate resolution of NFκB-mediated immune responses to pubertal LPS without stimulating AIF-mediated apoptosis and oxidative stress. We also report a significant male-biased sex difference in PSD-95 levels in the PFC and in cerebellar expression of SOD-1 during puberty (all p < .05). These findings highlight the sex-specific vulnerability of the pubertal hippocampus to systemic LPS and suggest that a pubertal immune challenge may expedite neurodevelopment in the hippocampus in a sex-specific manner.
Collapse
|
21
|
The importance of ultrastructural analysis of memory. Brain Res Bull 2021; 173:28-36. [PMID: 33984429 DOI: 10.1016/j.brainresbull.2021.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022]
Abstract
Plasticity of glutamatergic synapses in the hippocampus is believed to underlie learning and memory processes. Surprisingly, very few studies report long-lasting structural changes of synapses induced by behavioral training. It remains, therefore, unclear which synaptic changes in the hippocampus contribute to memory storage. Here, we systematically compare how long-term potentiation of synaptic transmission (LTP) (a primary form of synaptic plasticity and cellular model of memory) and behavioral training affect hippocampal glutamatergic synapses at the ultrastructural level enabled by electron microscopy. The review of the literature indicates that while LTP induces growth of dendritic spines and post-synaptic densities (PSD), that represent postsynaptic part of a glutamatergic synapse, after behavioral training there is transient (< 6 h) synaptogenesis and long-lasting (> 24 h) increase in PSD volume (without a significant change of dendritic spine volume), indicating that training-induced PSD growth may reflect long-term enhancement of synaptic functions. Additionally, formation of multi-innervated spines (MIS), is associated with long-term memory in aged mice and LTP-deficient mutant mice. Since volume of PSD, as well as atypical synapses, can be reliably observed only with electron microscopy, we argue that the ultrastructural level of analysis is required to reveal synaptic changes that are associated with long-term storage of information in the brain.
Collapse
|
22
|
Karadayian AG, Bustamante J, Lores-Arnaiz S. Alcohol hangover induces nitric oxide metabolism changes by impairing NMDA receptor-PSD95-nNOS pathway. Nitric Oxide 2021; 113-114:39-49. [PMID: 33962017 DOI: 10.1016/j.niox.2021.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Alcohol hangover is defined as the combination of mental and physical symptoms experienced the day after a single episode of heavy drinking, starting when blood alcohol concentration approaches zero. We previously evidenced increments in free radical generation and an imbalance in antioxidant defences in non-synaptic mitochondria and synaptosomes during hangover. It is widely known that acute alcohol exposure induces changes in nitric oxide (NO) production and blocks the binding of glutamate to NMDAR in central nervous system. Our aim was to evaluate the residual effect of acute ethanol exposure (hangover) on NO metabolism and the role of NMDA receptor-PSD95-nNOS pathway in non-synaptic mitochondria and synaptosomes from mouse brain cortex. Results obtained for the synaptosomes fraction showed a 37% decrease in NO total content, a 36% decrease in NOS activity and a 19% decrease in nNOS protein expression. The in vitro addition of glutamate to synaptosomes produced a concentration-dependent enhancement of NO production which was significantly lower in samples from hangover mice than in controls for all the glutamate concentrations tested. A similar patter of response was observed for nNOS activity being decreased both in basal conditions and after glutamate addition. In addition, synaptosomes exhibited a 64% and 15% reduction in NMDA receptor subunit GluN2B and PSD-95 protein expression, respectively. Together with this, glutamate-induced calcium entry was significant decreased in synaptosomes from alcohol-treated mice. On the other hand, in non-synaptic mitochondria, no significant differences were observed in NO content, NOS activity or nNOS protein expression. The expression of iNOS remained unaltered in synaptosomes and non-synaptic mitochondria. Here we demonstrated that hangover effects on NO metabolism are strongly evidenced in synaptosomes probably due to a disruption in NMDAR/PSD-95/nNOS pathway.
Collapse
Affiliation(s)
- Analía G Karadayian
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL) Buenos Aires, Argentina
| | - Juanita Bustamante
- Universidad Abierta Interamericana, Centro de Altos Estudios en Ciencias de La Salud, Buenos Aires, Argentina
| | - Silvia Lores-Arnaiz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL) Buenos Aires, Argentina.
| |
Collapse
|
23
|
Longaretti A, Forastieri C, Toffolo E, Caffino L, Locarno A, Misevičiūtė I, Marchesi E, Battistin M, Ponzoni L, Madaschi L, Cambria C, Bonasoni MP, Sala M, Perrone D, Fumagalli F, Bassani S, Antonucci F, Tonini R, Francolini M, Battaglioli E, Rusconi F. LSD1 is an environmental stress-sensitive negative modulator of the glutamatergic synapse. Neurobiol Stress 2020; 13:100280. [PMID: 33457471 PMCID: PMC7794663 DOI: 10.1016/j.ynstr.2020.100280] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/19/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022] Open
Abstract
Along with neuronal mechanisms devoted to memory consolidation –including long term potentiation of synaptic strength as prominent electrophysiological correlate, and inherent dendritic spines stabilization as structural counterpart– negative control of memory formation and synaptic plasticity has been described at the molecular and behavioral level. Within this work, we report a role for the epigenetic corepressor Lysine Specific Demethylase 1 (LSD1) as a negative neuroplastic factor whose stress-enhanced activity may participate in coping with adverse experiences. Constitutively increasing LSD1 activity via knocking out its dominant negative splicing isoform neuroLSD1 (neuroLSD1KO mice), we observed extensive structural, functional and behavioral signs of excitatory decay, including disrupted memory consolidation. A similar LSD1 increase, obtained with acute antisense oligonucleotide-mediated neuroLSD1 splicing knock down in primary neuronal cultures, dampens spontaneous glutamatergic transmission, reducing mEPSCs. Remarkably, LSD1 physiological increase occurs in response to psychosocial stress-induced glutamatergic signaling. Since this mechanism entails neuroLSD1 splicing downregulation, we conclude that LSD1/neuroLSD1 ratio modulation in the hippocampus is instrumental to a negative homeostatic feedback, restraining glutamatergic neuroplasticity in response to glutamate. The active process of forgetting provides memories with salience. With our work, we propose that softening memory traces of adversities could further represent a stress-coping process in which LSD1/neuroLSD1 ratio modulation may help preserving healthy emotional references.
Collapse
Affiliation(s)
- A Longaretti
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - C Forastieri
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - E Toffolo
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - L Caffino
- Dept. of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti, 9, Milano, Italy
| | - A Locarno
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - I Misevičiūtė
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - E Marchesi
- Dept. of Chemical and Pharmaceutical Sciences, Università di Ferrara, Via Borsari, 46, Ferrara, Italy
| | - M Battistin
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - L Ponzoni
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - L Madaschi
- UNITECH NO LIMITS, Università Degli Studi di Milano, Via Celoria, 26, Milan, Italy
| | - C Cambria
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - M P Bonasoni
- ASMN Santa Maria Nuova Via Risorgimento, 80 Reggio Emilia, Italy
| | - M Sala
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - D Perrone
- Dept. of Chemical and Pharmaceutical Sciences, Università di Ferrara, Via Borsari, 46, Ferrara, Italy
| | - F Fumagalli
- Dept. of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti, 9, Milano, Italy
| | - S Bassani
- Institute of Neuroscience, Consiglio Nazionale Delle Ricerche (CNR), Via Vanvitelli, 32, Milan, Italy
| | - F Antonucci
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - R Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Istituto Italiano di Tecnologia, Via Morengo, 30, Genova, 16163, Italy
| | - M Francolini
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - E Battaglioli
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| | - F Rusconi
- Dept. of Medical Biotechnology and Translational Medicine, Università Degli Studi di Milano, Via F.lli Cervi, 93, Segrate (MI), Italy
| |
Collapse
|
24
|
Schaefer ML, Perez PJ, Wang M, Gray C, Krall C, Sun X, Hunter E, Skinner J, Johns RA. Neonatal Isoflurane Anesthesia or Disruption of Postsynaptic Density-95 Protein Interactions Change Dendritic Spine Densities and Cognitive Function in Juvenile Mice. Anesthesiology 2020; 133:812-823. [PMID: 32773681 PMCID: PMC7494580 DOI: 10.1097/aln.0000000000003482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Experimental evidence shows postnatal exposure to anesthesia negatively affects brain development. The PDZ2 domain, mediating protein-protein interactions of the postsynaptic density-95 protein, serves as a molecular target for several inhaled anesthetics. The authors hypothesized that early postnatal disruption of postsynaptic density-95 PDZ2 domain interactions has persistent effects on dendritic spines and cognitive function. METHODS One-week-old mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active postsynaptic density-95 wild-type PDZ2 peptide along with their respective controls. A subset of these mice also received 4 mg/kg of the nitric oxide donor molsidomine. Hippocampal spine density, long-term potentiation, novel object recognition memory, and fear learning and memory were evaluated in mice. RESULTS Exposure of 7-day-old mice to isoflurane or postsynaptic density-95 wild-type PDZ2 peptide relative to controls causes: (1) a long-term decrease in mushroom spines at 7 weeks (mean ± SD [spines per micrometer]): control (0.8 ± 0.2) versus isoflurane (0.4 ± 0.2), P < 0.0001, and PDZ2MUT (0.7 ± 0.2) versus PDZ2WT (0.4 ± 0.2), P < 0.001; (2) deficits in object recognition at 6 weeks (mean ± SD [recognition index]): naïve (70 ± 8) versus isoflurane (55 ± 14), P = 0.010, and control (65 ± 13) versus isoflurane (55 ± 14), P = 0.045, and PDZ2MUT (64 ±11) versus PDZ2WT (53 ± 18), P = 0.045; and (3) deficits in fear learning at 7 weeks and memory at 8 weeks (mean ± SD [% freezing duration]): Learning, control (69 ± 12) versus isoflurane (52 ± 13), P < 0.0001, and PDZ2MUT (65 ± 14) versus PDZ2WT (55 ± 14) P = 0.011, and Memory, control (80 ± 17) versus isoflurane (56 ± 23), P < 0.0001 and PDZ2MUT (73 ± 18) versus PDZ2WT (44 ± 19) P < 0.0001. Impairment in long-term potentiation has fully recovered here at 7 weeks (mean ± SD [% baseline]): control (140 ± 3) versus isoflurane (137 ± 8), P = 0.560, and PDZ2MUT (136 ± 17) versus PDZ2WT (128 ± 11), P = 0.512. The isoflurane induced decrease in mushroom spines was preventable by introduction of a nitric oxide donor. CONCLUSIONS Early disruption of PDZ2 domain-mediated protein-protein interactions mimics isoflurane in decreasing mushroom spine density and causing learning and memory deficits in mice. Prevention of the decrease in mushroom spine density with a nitric oxide donor supports a role for neuronal nitric oxide synthase pathway in mediating this cellular change associated with cognitive impairment. EDITOR’S PERSPECTIVE
Collapse
|
25
|
McLeod F, Boyle K, Marzo A, Martin-Flores N, Moe TZ, Palomer E, Gibb AJ, Salinas PC. Wnt Signaling Through Nitric Oxide Synthase Promotes the Formation of Multi-Innervated Spines. Front Synaptic Neurosci 2020; 12:575863. [PMID: 33013349 PMCID: PMC7509412 DOI: 10.3389/fnsyn.2020.575863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023] Open
Abstract
Structural plasticity of synapses correlates with changes in synaptic strength. Dynamic modifications in dendritic spine number and size are crucial for long-term potentiation (LTP), the cellular correlate of learning and memory. Recent studies have suggested the generation of multi-innervated spines (MIS), in the form of several excitatory presynaptic inputs onto one spine, are crucial for hippocampal memory storage. However, little is known about the molecular mechanisms underlying MIS formation and their contribution to LTP. Using 3D enhanced resolution confocal images, we examined the contribution of Wnt synaptic modulators in MIS formation in the context of LTP. We show that blockage of endogenous Wnts with specific Wnt antagonists supresses the formation of MIS upon chemical LTP induction in cultured hippocampal neurons. Gain- and loss-of-function studies demonstrate that Wnt7a signaling promotes MIS formation through the postsynaptic Wnt scaffold protein Disheveled 1 (Dvl1) by stimulating neuronal nitric oxide (NO) synthase (nNOS). Subsequently, NO activates soluble guanylyl cyclase (sGC) to increase MIS formation. Consistently, we observed an enhanced frequency and amplitude of excitatory postsynaptic currents. Collectively, our findings identify a unique role for Wnt secreted proteins through nNOS/NO/sGC signaling to modulate MIS formation during LTP.
Collapse
Affiliation(s)
- Faye McLeod
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Kieran Boyle
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Aude Marzo
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Nuria Martin-Flores
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Thaw Zin Moe
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Ernest Palomer
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Patricia C Salinas
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Abstract
Sleep-dependent synaptic plasticity is crucial for optimal cognition. However, establishing the direction of synaptic plasticity during sleep has been particularly challenging since data in support of both synaptic potentiation and depotentiation have been reported. This review focuses on structural synaptic plasticity across sleep and wake and summarizes recent developments in the use of 3-dimensional electron microscopy as applied to this field.
Collapse
Affiliation(s)
- Michele Bellesi
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD Bristol, UK
| | - Luisa de Vivo
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD Bristol, UK
| |
Collapse
|
27
|
Gordillo-Salas M, Pascual-Antón R, Ren J, Greer J, Adell A. Antidepressant-Like Effects of CX717, a Positive Allosteric Modulator of AMPA Receptors. Mol Neurobiol 2020; 57:3498-3507. [DOI: 10.1007/s12035-020-01954-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
|
28
|
Perez-Alvarez A, Fearey BC, O'Toole RJ, Yang W, Arganda-Carreras I, Lamothe-Molina PJ, Moeyaert B, Mohr MA, Panzera LC, Schulze C, Schreiter ER, Wiegert JS, Gee CE, Hoppa MB, Oertner TG. Freeze-frame imaging of synaptic activity using SynTagMA. Nat Commun 2020; 11:2464. [PMID: 32424147 PMCID: PMC7235013 DOI: 10.1038/s41467-020-16315-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 04/23/2020] [Indexed: 12/16/2022] Open
Abstract
Information within the brain travels from neuron to neuron across billions of synapses. At any given moment, only a small subset of neurons and synapses are active, but finding the active synapses in brain tissue has been a technical challenge. Here we introduce SynTagMA to tag active synapses in a user-defined time window. Upon 395-405 nm illumination, this genetically encoded marker of activity converts from green to red fluorescence if, and only if, it is bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we show how to identify and track the fluorescence of thousands of individual synapses in an automated fashion. Together, these tools provide an efficient method for repeatedly mapping active neurons and synapses in cell culture, slice preparations, and in vivo during behavior.
Collapse
Affiliation(s)
- Alberto Perez-Alvarez
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Brenna C Fearey
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Ryan J O'Toole
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Wei Yang
- Research Group Synaptic Wiring and Information Processing, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Ignacio Arganda-Carreras
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Dept. of Computer Science and Artificial Intelligence, Basque Country University, San Sebastian, Spain
- Donostia International Physics Center (DIPC), San Sebastian, Spain
| | - Paul J Lamothe-Molina
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | | | - Manuel A Mohr
- HHMI, Janelia Farm Research Campus, Ashburn, VA, 20147, USA
| | - Lauren C Panzera
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Christian Schulze
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | | | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Christine E Gee
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - Thomas G Oertner
- Institute for Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, D-20251, Germany.
| |
Collapse
|
29
|
Pang J, Hou J, Zhou Z, Ren M, Mo Y, Yang G, Qu Z, Hu Y. Safflower Yellow Improves Synaptic Plasticity in APP/PS1 Mice by Regulating Microglia Activation Phenotypes and BDNF/TrkB/ERK Signaling Pathway. Neuromolecular Med 2020; 22:341-358. [DOI: 10.1007/s12017-020-08591-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/02/2020] [Indexed: 02/08/2023]
|
30
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
31
|
Zhu F, Collins MO, Harmse J, Choudhary JS, Grant SGN, Komiyama NH. Cell-type-specific visualisation and biochemical isolation of endogenous synaptic proteins in mice. Eur J Neurosci 2019; 51:793-805. [PMID: 31621109 PMCID: PMC7079123 DOI: 10.1111/ejn.14597] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/07/2019] [Accepted: 10/08/2019] [Indexed: 01/01/2023]
Abstract
In recent years, the remarkable molecular complexity of synapses has been revealed, with over 1,000 proteins identified in the synapse proteome. Although it is known that different receptors and other synaptic proteins are present in different types of neurons, the extent of synapse diversity across the brain is largely unknown. This is mainly due to the limitations of current techniques. Here, we report an efficient method for the purification of synaptic protein complexes, fusing a high‐affinity tag to endogenous PSD95 in specific cell types. We also developed a strategy, which enables the visualisation of endogenous PSD95 with fluorescent‐protein tag in Cre‐recombinase‐expressing cells. We demonstrate the feasibility of proteomic analysis of synaptic protein complexes and visualisation of these in specific cell types. We find that the composition of PSD95 complexes purified from specific cell types differs from those extracted from tissues with diverse cellular composition. The results suggest that there might be differential interactions in the PSD95 complexes in different brain regions. We have detected differentially interacting proteins by comparing data sets from the whole hippocampus and the CA3 subfield of the hippocampus. Therefore, these novel conditional PSD95 tagging lines will not only serve as powerful tools for precisely dissecting synapse diversity in specific brain regions and subsets of neuronal cells, but also provide an opportunity to better understand brain region‐ and cell‐type‐specific alterations associated with various psychiatric/neurological diseases. These newly developed conditional gene tagging methods can be applied to many different synaptic proteins and will facilitate research on the molecular complexity of synapses.
Collapse
Affiliation(s)
- Fei Zhu
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark O Collins
- Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Johan Harmse
- The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, Institute of Cancer Research, London, UK
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,The Wellcome Trust Sanger Institute, Cambridge, UK.,Simons Initiative for the Developing Brain (SIDB), University of Edinburgh, Edinburgh, UK
| | - Noboru H Komiyama
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Simons Initiative for the Developing Brain (SIDB), University of Edinburgh, Edinburgh, UK.,The Patrick Wild Centre for Research into Autism, Fragile X Syndrome and Intellectual Disabilities, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
32
|
Booker SA, Domanski APF, Dando OR, Jackson AD, Isaac JTR, Hardingham GE, Wyllie DJA, Kind PC. Altered dendritic spine function and integration in a mouse model of fragile X syndrome. Nat Commun 2019; 10:4813. [PMID: 31645626 PMCID: PMC6811549 DOI: 10.1038/s41467-019-11891-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/23/2019] [Indexed: 12/23/2022] Open
Abstract
Cellular and circuit hyperexcitability are core features of fragile X syndrome and related autism spectrum disorder models. However, the cellular and synaptic bases of this hyperexcitability have proved elusive. We report in a mouse model of fragile X syndrome, glutamate uncaging onto individual dendritic spines yields stronger single-spine excitation than wild-type, with more silent spines. Furthermore, fewer spines are required to trigger an action potential with near-simultaneous uncaging at multiple spines. This is, in part, from increased dendritic gain due to increased intrinsic excitability, resulting from reduced hyperpolarization-activated currents, and increased NMDA receptor signaling. Using super-resolution microscopy we detect no change in dendritic spine morphology, indicating no structure-function relationship at this age. However, ultrastructural analysis shows a 3-fold increase in multiply-innervated spines, accounting for the increased single-spine glutamate currents. Thus, loss of FMRP causes abnormal synaptogenesis, leading to large numbers of poly-synaptic spines despite normal spine morphology, thus explaining the synaptic perturbations underlying circuit hyperexcitability.
Collapse
Affiliation(s)
- Sam A Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India
| | - Aleksander P F Domanski
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Owen R Dando
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India
- UK Dementia Research Institute, University of Edinburgh, Chancellor's Buildings, Little France, Edinburgh, EH16 4SB, UK
| | - Adam D Jackson
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India
| | - John T R Isaac
- Developmental Synaptic Plasticity Section, NINDS, NIH, Bethesda, MD, 20892, USA
- Janssen Neuroscience, J&J London Innovation Centre, One Chapel Place, London, W1G 0B, UK
| | - Giles E Hardingham
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India
- UK Dementia Research Institute, University of Edinburgh, Chancellor's Buildings, Little France, Edinburgh, EH16 4SB, UK
| | - David J A Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India.
| | - Peter C Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Centre for Brain Development and Repair, NCBS, GKVK Campus, Bangalore, 560065, India.
| |
Collapse
|
33
|
Multi-input Synapses, but Not LTP-Strengthened Synapses, Correlate with Hippocampal Memory Storage in Aged Mice. Curr Biol 2019; 29:3600-3610.e4. [PMID: 31630953 PMCID: PMC6839404 DOI: 10.1016/j.cub.2019.08.064] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Long-lasting changes at synapses enable memory storage in the brain. Although aging is associated with impaired memory formation, it is not known whether the synaptic underpinnings of memory storage differ with age. Using a training schedule that results in the same behavioral memory formation in young and aged mice, we examined synapse ultrastructure and molecular signaling in the hippocampus after contextual fear conditioning. Only in young, but not old mice, contextual fear memory formation was associated with synaptic changes that characterize well-known, long-term potentiation, a strengthening of existing synapses with one input. Instead, old-age memory was correlated with generation of multi-innervated dendritic spines (MISs), which are predominantly two-input synapses formed by the attraction of an additional excitatory, presynaptic terminal onto an existing synapse. Accordingly, a blocker used to inhibit MIS generation impaired contextual fear memory only in old mice. Our results reveal how the synaptic basis of hippocampal memory storage changes with age and suggest that these distinct memory-storing mechanisms may explain impaired updating in old age. Aged mice form contextual memory like young mice, but reconsolidation is impaired Only in young mice is contextual memory formation associated with structural LTP In aged mice, contextual memory formation correlates with multi-innervated spines Inhibition of multi-innervated spines impairs memory in aged but not young mice
Collapse
|
34
|
Onishi S, Meguro S, Pervin M, Kitazawa H, Yoto A, Ishino M, Shimba Y, Mochizuki Y, Miura S, Tokimitsu I, Unno K. Green Tea Extracts Attenuate Brain Dysfunction in High-Fat-Diet-Fed SAMP8 Mice. Nutrients 2019; 11:nu11040821. [PMID: 30979047 PMCID: PMC6521105 DOI: 10.3390/nu11040821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
Unhealthy diet promotes progression of metabolic disorders and brain dysfunction with aging. Green tea extracts (GTEs) have various beneficial effects and alleviate metabolic disorders. GTEs have neuroprotective effects in rodent models, but their effects against brain dysfunction in models of aging fed unhealthy diets are still unclear. Here, we showed that GTEs attenuate high-fat (HF) diet-induced brain dysfunction in senescence-accelerated mouse prone-8 (SAMP8), a murine model of senescence. SAMP8 mice were fed a control diet, HF diet, or HF diet with 0.5% GTEs (HFGT) for four months. The HF diet reduced memory retention and induced amyloid β1–42 accumulation, whereas GTEs attenuated these changes. In HF diet-fed mice, lipid oxidative stress, assessed by malondialdehyde levels, was increased. The levels of proteins that promote synaptic plasticity, such as brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95), were reduced. These alterations related to brain dysfunction were not observed in HFGT diet-fed mice. Overall, our data suggest that GTEs intake might attenuate brain dysfunction in HF diet-fed SAMP8 mice by protecting synaptic plasticity as well as via anti-oxidative effects. In conclusion, GTEs might ameliorate unhealthy diet-induced brain dysfunction that develops with aging.
Collapse
Affiliation(s)
- Shintaro Onishi
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Shinichi Meguro
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Monira Pervin
- Tea Science center, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Hidefumi Kitazawa
- Biological Science Research, Kao Corporation, Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497, Japan.
| | - Ai Yoto
- Tea Science center, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Mayu Ishino
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yuki Shimba
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Yusuke Mochizuki
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| | - Ichiro Tokimitsu
- Department of Health and Food Science, University of Human Arts and Science, Magome, Iwatsuki-ku, Saitama 339-0077, Japan.
| | - Keiko Unno
- Tea Science center, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan.
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
35
|
Yang Y, Lu J, Zuo Y. Changes of Synaptic Structures Associated with Learning, Memory and Diseases. BRAIN SCIENCE ADVANCES 2019. [DOI: 10.26599/bsa.2018.2018.9050012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic plasticity is widely believed to be the cellular basis of learning and memory. It is influenced by various factors including development, sensory experiences, and brain disorders. Long-term synaptic plasticity is accompanied by protein synthesis and trafficking, leading to structural changes of the synapse. In this review, we focus on the synaptic structural plasticity, which has mainly been studied with in vivo two-photon laser scanning microscopy. We also discuss how a special type of synapses, the multi-contact synapses (including those formed by multi-synaptic boutons and multi-synaptic spines), are associated with experience and learning.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ju Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
36
|
Schaefer ML, Wang M, Perez PJ, Coca Peralta W, Xu J, Johns RA. Nitric Oxide Donor Prevents Neonatal Isoflurane-induced Impairments in Synaptic Plasticity and Memory. Anesthesiology 2019; 130:247-262. [PMID: 30601214 PMCID: PMC6538043 DOI: 10.1097/aln.0000000000002529] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Some general anesthetics have been shown to have adverse effects on neuronal development that affect neural function and cognitive behavior.Clinically relevant concentrations of inhalational anesthetics inhibit the postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domain-mediated protein-protein interaction between PSD-95 or PSD-93 and N-methyl-D-aspartate receptors or neuronal NO synthase. WHAT THIS ARTICLE TELLS US THAT IS NEW Neonatal PSD-95 PDZ2WT peptide treatment mimics the effects of isoflurane (~1 minimum alveolar concentration) by altering dendritic spine morphology, neural plasticity, and memory without inducing detectable increases in apoptosis or changes in synaptic density.These results indicate that a single dose of isoflurane (~1 minimum alveolar concentration) or PSD-95 PDZ2WT peptide alters dendritic spine architecture and functions important for cognition in the developing brain. This impairment can be prevented by administration of the NO donor molsidomine. BACKGROUND In humans, multiple early exposures to procedures requiring anesthesia constitute a significant risk factor for development of learning disabilities and disorders of attention. In animal studies, newborns exposed to anesthetics develop long-term deficits in cognition. Previously, our laboratory showed that postsynaptic density (PSD)-95, discs large homolog, and zona occludens-1 (PDZ) domains may serve as a molecular target for inhaled anesthetics. This study investigated a role for PDZ interactions in spine development, plasticity, and memory as a potential mechanism for early anesthetic exposure-produced cognitive impairment. METHODS Postnatal day 7 mice were exposed to 1.5% isoflurane for 4 h or injected with 8 mg/kg active PSD-95 PDZ2WT peptide. Apoptosis, hippocampal dendritic spine changes, synapse density, long-term potentiation, and cognition functions were evaluated (n = 4 to 18). RESULTS Exposure of postnatal day 7 mice to isoflurane or PSD-95 PDZ2WT peptide causes a reduction in long thin spines (median, interquartile range [IQR]: wild type control [0.54, 0.52 to 0.86] vs. wild type isoflurane [0.31, 0.16 to 0.38], P = 0.034 and PDZ2MUT [0.86, 0.67 to 1.0] vs. PDZ2WT [0.55, 0.53 to 0.59], P = 0.028), impairment in long-term potentiation (median, IQR: wild type control [123, 119 to 147] and wild type isoflurane [101, 96 to 118], P = 0.049 and PDZ2MUT [125, 119 to 131] and PDZ2WT [104, 97 to 107], P = 0.029), and deficits in acute object recognition (median, IQR: wild type control [79, 72 to 88] vs. wild type isoflurane [63, 55 to 72], P = 0.044 and PDZ2MUT [81, 69 to 84] vs. PDZ2WT [67, 57 to 77], P = 0.039) at postnatal day 21 without inducing detectable differences in apoptosis or changes in synaptic density. Impairments in recognition memory and long-term potentiation were preventable by introduction of a NO donor. CONCLUSIONS Early disruption of PDZ domain-mediated protein-protein interactions alters spine morphology, synaptic function, and memory. These results support a role for PDZ interactions in early anesthetic exposure-produced cognitive impairment. Prevention of recognition memory and long-term potentiation deficits with a NO donor supports a role for the N-methyl-D-aspartate receptor/PSD-95/neuronal NO synthase pathway in mediating these aspects of isoflurane-induced cognitive impairment.
Collapse
Affiliation(s)
- Michele L Schaefer
- From the Department Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
37
|
Nitric oxide signalling and antidepressant action revisited. Cell Tissue Res 2019; 377:45-58. [PMID: 30649612 DOI: 10.1007/s00441-018-02987-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Studies about the pathogenesis of mood disorders have consistently shown that multiple factors, including genetic and environmental, play a crucial role on their development and neurobiology. Multiple pathological theories have been proposed, of which several ultimately affects or is a consequence of dysfunction in brain neuroplasticity and homeostatic mechanisms. However, current clinical available pharmacological intervention, which is predominantly monoamine-based, suffers from a partial and lacking response even after weeks of continuous treatment. These issues raise the need for better understanding of aetiologies and brain abnormalities in depression, as well as developing novel treatment strategies. Nitric oxide (NO) is a gaseous unconventional neurotransmitter, which regulates and governs several important physiological functions in the central nervous system, including processes, which can be associated with the development of mood disorders. This review will present general aspects of the NO system in depression, highlighting potential targets that may be utilized and further explored as novel therapeutic targets in the future pharmacotherapy of depression. In particular, the review will link the importance of neuroplasticity mechanisms governed by NO to a possible molecular basis for the antidepressant effects.
Collapse
|
38
|
Chen X, Winters C, Crocker V, Lazarou M, Sousa AA, Leapman RD, Reese TS. Identification of PSD-95 in the Postsynaptic Density Using MiniSOG and EM Tomography. Front Neuroanat 2018; 12:107. [PMID: 30581381 PMCID: PMC6292990 DOI: 10.3389/fnana.2018.00107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Combining tomography with electron microscopy (EM) produces images at definition sufficient to visualize individual protein molecules or molecular complexes in intact neurons. When freeze-substituted hippocampal cultures in plastic sections are imaged by EM tomography, detailed structures emerging from 3D reconstructions reveal putative glutamate receptors and membrane-associated filaments containing scaffolding proteins such as postsynaptic density (PSD)-95 family proteins based on their size, shape, and known distributions. In limited instances, structures can be identified with enhanced immuno-Nanogold labeling after light fixation and subsequent freeze-substitution. Molecular identification of structure can be corroborated in their absence after acute protein knockdown or gene knockout. However, additional labeling methods linking EM level structure to molecules in tomograms are needed. A recent development for labeling structures for TEM employs expression of endogenous proteins carrying a green fluorescent tag, miniSOG, to photoconvert diaminobenzidine (DAB) into osmiophilic polymers. This approach requires initial mild chemical fixation but many of structural features in neurons can still be discerned in EM tomograms. The photoreaction product, which appears as electron-dense, fine precipitates decorating protein structures in neurons, may diffuse to fill cytoplasm of spines, thus obscuring specific localization of proteins tagged with miniSOG. Here we develop an approach to minimize molecular diffusion of the DAB photoreaction product in neurons, which allows miniSOG tagged molecule/complexes to be identified in tomograms. The examples reveal electron-dense clusters of reaction product labeling membrane-associated vertical filaments, corresponding to the site of miniSOG fused at the C-terminal end of PSD-95-miniSOG, allowing identification of PSD-95 vertical filaments at the PSD. This approach, which results in considerable improvement in the precision of labeling PSD-95 in tomograms without complications due to the presence of antibody complexes in immunogold labeling, may be applicable for identifying other synaptic proteins in intact neurons.
Collapse
Affiliation(s)
- Xiaobing Chen
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Christine Winters
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Virginia Crocker
- EM Facility, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Michael Lazarou
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Alioscka A Sousa
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| | - Richard D Leapman
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, United States
| | - Thomas S Reese
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
39
|
Jeanneret V, Ospina JP, Diaz A, Manrique LG, Merino P, Gutierrez L, Torre E, Wu F, Cheng L, Yepes M. Tissue-type plasminogen activator protects the postsynaptic density in the ischemic brain. J Cereb Blood Flow Metab 2018; 38:1896-1910. [PMID: 29547062 PMCID: PMC6259311 DOI: 10.1177/0271678x18764495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia causes the presynaptic release of tissue-type plasminogen activator (tPA). The postsynaptic density (PSD) is a postsynaptic structure that provides a matrix where signaling transduction of excitatory synapses takes place. The postsynaptic density protein-95 (PSD-95) is the most abundant scaffolding protein in the postsynaptic density (PSD), where it modulates the postsynaptic response to the presynaptic release of glutamate by regulating the anchoring of glutamate receptors to the PSD. We found that tPA induces the local translation of PSD-95 mRNA and the subsequent recruitment of PSD-95 protein to the PSD, via plasminogen-independent activation of TrkB receptors. Our data show that PSD-95 is removed from the PSD during the early stages of cerebral ischemia, and that this effect is abrogated by either the release of neuronal tPA, or intravenous administration of recombinant tPA (rtPA). We report that the effect of tPA on PSD-95 is associated with inhibition of the phosphorylation and recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the PSD, known to amplify the effect of the excitotoxic injury, and that this is followed by TrkB-mediated protection of dendritic spines from the harmful effects of the hypoxic insult. These data reveal that tPA is a synaptic protector in the ischemic brain.
Collapse
Affiliation(s)
- Valerie Jeanneret
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Juan P Ospina
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ariel Diaz
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Luis G Manrique
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Laura Gutierrez
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Enrique Torre
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Fang Wu
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Lihong Cheng
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,3 Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
40
|
Park SW, Seo MK, McIntyre RS, Mansur RB, Lee Y, Lee JH, Park SC, Huh L, Lee JG. Effects of olanzapine and haloperidol on mTORC1 signaling, dendritic outgrowth, and synaptic proteins in rat primary hippocampal neurons under toxic conditions. Neurosci Lett 2018; 686:59-66. [PMID: 30149032 DOI: 10.1016/j.neulet.2018.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022]
Abstract
Recent studies have demonstrated that antipsychotic drugs may activate mammalian target of rapamycin complex 1 (mTORC1) signaling in neurons. However, the relationship between mTORC1 signaling activation and currently prescribed antipsychotic drugs remains incompletely understood. The purpose of this study was to determine whether alterations in the level of mTORC1 signaling occur after rat primary hippocampal neurons are treated with olanzapine and haloperidol under toxic conditions. Additionally, we investigated whether these drugs affect dendritic outgrowth and synaptic protein expression through the mTORC1 signaling pathway. We measured changes in mTORC1-mediated and synaptic proteins by Western blotting assay under toxic conditions induced by B27 deprivation. Dendritic outgrowth was determined by a neurite assay. Olanzapine significantly increased the phosphorylated levels of mTORC1, its downstream effectors, and its upstream activators. The increased mTORC1 phosphorylation induced by olanzapine was significantly blocked by specific PI3K, MEK, or mTORC1 inhibitors. Olanzapine also increased dendritic outgrowth and synaptic proteins levels; all of these effects were blocked by rapamycin. However, haloperidol had none of these effects. We demonstrated that olanzapine, but not haloperidol, activated the mTORC1 signaling pathway and increased dendritic outgrowth and synaptic proteins by activating mTORC1 signaling in rat primary hippocampal neurons. These findings suggest that olanzapine affects neuroplasticity by activating mTORC1 signaling.
Collapse
Affiliation(s)
- Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea; Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Yena Lee
- Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada
| | - Jae-Hon Lee
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Seon-Cheol Park
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Lyang Huh
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea; Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea.
| |
Collapse
|
41
|
Zhang Y, Zhu Z, Liang HY, Zhang L, Zhou QG, Ni HY, Luo CX, Zhu DY. nNOS-CAPON interaction mediates amyloid-β-induced neurotoxicity, especially in the early stages. Aging Cell 2018; 17:e12754. [PMID: 29577585 PMCID: PMC5946066 DOI: 10.1111/acel.12754] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2018] [Indexed: 12/11/2022] Open
Abstract
In neurons, increased protein–protein interactions between neuronal nitric oxide synthase (nNOS) and its carboxy‐terminal PDZ ligand (CAPON) contribute to excitotoxicity and abnormal dendritic spine development, both of which are involved in the development of Alzheimer's disease. In models of Alzheimer's disease, increased nNOS–CAPON interaction was detected after treatment with amyloid‐β in vitro, and a similar change was found in the hippocampus of APP/PS1 mice (a transgenic mouse model of Alzheimer's disease), compared with age‐matched background mice in vivo. After blocking the nNOS–CAPON interaction, memory was rescued in 4‐month‐old APP/PS1 mice, and dendritic impairments were ameliorated both in vivo and in vitro. Furthermore, we demonstrated that S‐nitrosylation of Dexras1 and inhibition of the ERK–CREB–BDNF pathway might be downstream of the nNOS–CAPON interaction.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacology; Nanjing Medical University; Nanjing China
| | - Zhu Zhu
- Department of Pharmacy; Second Affiliated Hospital of Soochow University; Suzhou China
| | - Hai-Ying Liang
- Department of Pharmacology; Nanjing Medical University; Nanjing China
| | - Lei Zhang
- Department of Pharmacology; Nanjing Medical University; Nanjing China
| | - Qi-Gang Zhou
- Department of Pharmacology; Nanjing Medical University; Nanjing China
| | - Huan-Yu Ni
- Department of Pharmacology; Nanjing Medical University; Nanjing China
| | - Chun-Xia Luo
- Department of Pharmacology; Nanjing Medical University; Nanjing China
| | - Dong-Ya Zhu
- Department of Pharmacology; Nanjing Medical University; Nanjing China
| |
Collapse
|
42
|
Moutin E, Nikonenko I, Stefanelli T, Wirth A, Ponimaskin E, De Roo M, Muller D. Palmitoylation of cdc42 Promotes Spine Stabilization and Rescues Spine Density Deficit in a Mouse Model of 22q11.2 Deletion Syndrome. Cereb Cortex 2018; 27:3618-3629. [PMID: 27365300 DOI: 10.1093/cercor/bhw183] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
22q11.2 deletion syndrome (22q11DS) is associated with learning and cognitive dysfunctions and a high risk of developing schizophrenia. It has become increasingly clear that dendritic spine plasticity is tightly linked to cognition. Thus, understanding how genes involved in cognitive disorders affect synaptic networks is a major challenge of modern biology. Several studies have pointed to a spine density deficit in 22q11DS transgenic mice models. Using the LgDel mouse model, we first quantified spine deficit at different stages using electron microscopy. Next we performed repetitive confocal imaging over several days on hippocampal organotypic cultures of LgDel mice. We show no imbalanced ratio between daily spine formation and spine elimination, but a decreased spine life expectancy. We corrected this impaired spine stabilization process by overexpressing ZDHHC8 palmitoyltransferase, whose gene belongs to the LgDel microdeletion. Overexpression of one of its substrates, the cdc42 brain-specific variant, under a constitutively active form (cdc42-palm-CA) led to the same result. Finally, we could rescue spine density in vivo, in adult LgDel mice, by injecting pups with a vector expressing cdc42-palm-CA. This study reveals a new role of ZDHHC8-cdc42-palm molecular pathway in postsynaptic structural plasticity and provides new evidence in favor of the dysconnectivity hypothesis for schizophrenia.
Collapse
Affiliation(s)
- E Moutin
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - I Nikonenko
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - T Stefanelli
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - A Wirth
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - E Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M De Roo
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| | - D Muller
- Department of Basic Neurosciences, Medical School, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
43
|
Saito A, Taniguchi Y, Kim SH, Selvakumar B, Perez G, Ballinger MD, Zhu X, Sabra J, Jallow M, Yan P, Ito K, Rajendran S, Hirotsune S, Wynshaw-Boris A, Snyder SH, Sawa A, Kamiya A. Developmental Alcohol Exposure Impairs Activity-Dependent S-Nitrosylation of NDEL1 for Neuronal Maturation. Cereb Cortex 2018; 27:3918-3929. [PMID: 27371763 DOI: 10.1093/cercor/bhw201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Neuronal nitric oxide synthase is involved in diverse signaling cascades that regulate neuronal development and functions via S-Nitrosylation-mediated mechanism or the soluble guanylate cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway activated by nitric oxide. Although it has been studied extensively in vitro and in invertebrate animals, effects on mammalian brain development and underlying mechanisms remain poorly understood. Here we report that genetic deletion of "Nos1" disrupts dendritic development, whereas pharmacological inhibition of the sGC/cGMP pathway does not alter dendritic growth during cerebral cortex development. Instead, nuclear distribution element-like (NDEL1), a protein that regulates dendritic development, is specifically S-nitrosylated at cysteine 203, thereby accelerating dendritic arborization. This post-translational modification is enhanced by N-methyl-D-aspartate receptor-mediated neuronal activity, the main regulator of dendritic formation. Notably, we found that disruption of S-Nitrosylation of NDEL1 mediates impaired dendritic maturation caused by developmental alcohol exposure, a model of developmental brain abnormalities resulting from maternal alcohol use. These results highlight S-Nitrosylation as a key activity-dependent mechanism underlying neonatal brain maturation and suggest that reduction of S-Nitrosylation of NDEL1 acts as a pathological factor mediating neurodevelopmental abnormalities caused by maternal alcohol exposure.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Shimotsuga-gun, Tochigi 321-0293, Japan
| | - Yu Taniguchi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sun-Hong Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Balakrishnan Selvakumar
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Gabriel Perez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael D Ballinger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - James Sabra
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Mariama Jallow
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Priscilla Yan
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Koki Ito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shreenath Rajendran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of Medicine, Abeno, Osaka 545-8585, Japan
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Solomon H Snyder
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
44
|
Chen F, He Y, Wang P, Wei P, Feng H, Rao Y, Shi J, Tian J. Curcumin can influence synaptic dysfunction in APPswe/PS1dE9 mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
45
|
Long-term potentiation expands information content of hippocampal dentate gyrus synapses. Proc Natl Acad Sci U S A 2018; 115:E2410-E2418. [PMID: 29463730 DOI: 10.1073/pnas.1716189115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.
Collapse
|
46
|
SAP97 Binding Partner CRIPT Promotes Dendrite Growth In Vitro and In Vivo. eNeuro 2017; 4:eN-NWR-0175-17. [PMID: 29218323 PMCID: PMC5718245 DOI: 10.1523/eneuro.0175-17.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023] Open
Abstract
The dendritic tree is a key determinant of neuronal information processing. In the motor system, the dendritic tree of spinal cord neurons undergoes dramatic remodeling in an activity-dependent manner during early postnatal life. This leads to the proper segmental spinal cord connectivity that subserves normal locomotor behavior. One molecular system driving the establishment of dendrite architecture of mammalian motor neurons relies on AMPA receptors (AMPA-Rs) assembled with the GluA1 subunit, and this occurs in an NMDA receptor (NMDA-R)-independent manner. The dendrite growth promoting activity of GluA1-containing AMPA-Rs depends on its intracellular binding partner, SAP97, and SAP97's PDZ3 domain. We show here that cysteine-rich interactor of PDZ3 (CRIPT) is a bona fide SAP97 PDZ3-domain binding partner, localizes to synapses with GluA1 and SAP97 along the dendritic tree, and is a determinant of the dendritic growth of mammalian spinal cord neurons. We further show that CRIPT has a well-conserved ortholog in the nematode, Caenorhabditis elegans, and animals lacking CRIPT display decreased dendrite branching of the well-studied PVD neuron in vivo. The lack of CRIPT leads to a selective defect in touch perception, and this is rescued by expression of wild-type (WT) human CRIPT (hCRIPT) in the nervous system. This work brings new light into the molecular machinery that drives dendritic growth during development and may prove relevant to the promotion of nervous system plasticity following insult.
Collapse
|
47
|
Sommer JB, Bach A, Malá H, Strømgaard K, Mogensen J, Pickering DS. Effects of the dimeric PSD-95 inhibitor UCCB01-144 on functional recovery after fimbria-fornix transection in rats. Pharmacol Biochem Behav 2017; 161:62-67. [PMID: 28943199 DOI: 10.1016/j.pbb.2017.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/22/2017] [Accepted: 09/18/2017] [Indexed: 01/05/2023]
Abstract
Pharmacological inhibition of PSD-95 is a promising therapeutic strategy in the treatment of stroke, and positive effects of monomeric and dimeric PSD-95 inhibitors have been reported in numerous studies. However, whether therapeutic effects will generalize to other types of acute brain injury such as traumatic brain injury (TBI), which has pathophysiological mechanisms in common with stroke, is currently uncertain. We have previously found a lack of neuroprotective effects of dimeric PSD-95 inhibitors in the controlled cortical impact model of TBI in rats. However, as no single animal model is currently able to mimic the complex and heterogeneous pathophysiology of TBI, it is necessary to assess treatment effects across a range of models. In this preliminary study we investigated the neuroprotective abilities of the dimeric PSD-95 inhibitor UCCB01-144 after fimbria-fornix (FF) transection in rats. UCCB01-144 or saline was injected into the lateral tail vein of rats immediately after sham surgery or FF-transection, and effects on spatial delayed alternation in a T-maze were assessed over a 28-day period. Task acquisition was significantly impaired in FF-transected animals, but there were no significant effects of UCCB01-144 on spatial delayed alternation after FF-transection or sham surgery, although decelerated learning curves were seen after treatment with UCCB01-144 in FF-transected animals. The results of the present study are consistent with previous research showing a lack of neuroprotective effects of PSD-95 inhibition in experimental models of TBI.
Collapse
Affiliation(s)
- Jens Bak Sommer
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark; The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Anders Bach
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| | - Hana Malá
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| | - Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Denmark.
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, University of Copenhagen, Denmark.
| |
Collapse
|
48
|
The Arp2/3 Complex Is Essential for Distinct Stages of Spine Synapse Maturation, Including Synapse Unsilencing. J Neurosci 2017; 36:9696-709. [PMID: 27629719 DOI: 10.1523/jneurosci.0876-16.2016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Dendritic filopodia are actin-rich structures that are thought to contribute to early spine synapse formation; however, the actin regulatory proteins important for early synaptogenesis are poorly defined. Using organotypic hippocampal slice cultures and primary neuron hippocampal cultures from Arp2/3 conditional knock-out mice, we analyze the roles of the Arp2/3 complex, an actin regulator that creates branched actin networks, and demonstrate it is essential for distinct stages of both structural and functional maturation of excitatory spine synapses. Our data show that initially the Arp2/3 complex inhibits the formation of dendritic filopodia but that later during development, the Arp2/3 complex drives the morphological maturation from filopodia to typical spine morphology. Furthermore, we demonstrate that although the Arp2/3 complex is not required for key spine maturation steps, such as presynaptic contact and recruitment of MAGUK (membrane-associated guanylate kinase) scaffolding proteins or NMDA receptors, it is necessary for the recruitment of AMPA receptors. This latter process, also known as synapse unsilencing, is a final and essential step in the neurodevelopment of excitatory postsynaptic synaptogenesis, setting the stage for neuronal interconnectivity. These findings provide the first evidence that the Arp2/3 complex is directly involved in functional maturation of dendritic spines during the developmental period of spinogenesis. SIGNIFICANCE STATEMENT Excitatory spine synapse formation (spinogenesis) is a poorly understood yet pivotal period of neurodevelopment that occurs within 2-3 weeks after birth. Neurodevelopmental disorders such as intellectual disability and autism are characterized by abnormal spine structure, which may arise from abnormal excitatory synaptogenesis. The initial stage of spinogenesis is thought to begin with the emergence of actin-rich dendritic filopodia that initiate contact with presynaptic axonal boutons. However, it remains enigmatic how actin cytoskeletal regulation directs dendritic filopodial emergence or their subsequent maturation into dendritic spines during development and on into adulthood. In this study, we provide the first evidence that the Arp2/3 complex, a key actin nucleator, is involved in distinct stages of spine formation and is required for synapse unsilencing.
Collapse
|
49
|
Effects of Dimeric PSD-95 Inhibition on Excitotoxic Cell Death and Outcome After Controlled Cortical Impact in Rats. Neurochem Res 2017; 42:3401-3413. [PMID: 28828633 DOI: 10.1007/s11064-017-2381-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 12/20/2022]
Abstract
Therapeutic effects of PSD-95 inhibition have been demonstrated in numerous studies of stroke; however only few studies have assessed the effects of PSD-95 inhibitors in traumatic brain injury (TBI). As the pathophysiology of TBI partially overlaps with that of stroke, PSD-95 inhibition may also be an effective therapeutic strategy in TBI. The objectives of the present study were to assess the effects of a dimeric inhibitor of PSD-95, UCCB01-144, on excitotoxic cell death in vitro and outcome after experimental TBI in rats in vivo. In addition, the pharmacokinetic parameters of UCCB01-144 were investigated in order to assess uptake of the drug into the central nervous system of rats. After a controlled cortical impact rats were randomized to receive a single injection of either saline or two different doses of UCCB01-144 (10 or 20 mg/kg IV) immediately after injury. Spatial learning and memory were assessed in a water maze at 2 weeks post-trauma, and at 4 weeks lesion volumes were estimated. Overall, UCCB01-144 did not protect against NMDA-toxicity in neuronal cultures or experimental TBI in rats. Important factors that should be investigated further in future studies assessing the effects of PSD-95 inhibitors in TBI are discussed.
Collapse
|
50
|
Cho JH, Jung JY, Lee BJ, Lee K, Park JW, Bu Y. Epimedii Herba: A Promising Herbal Medicine for Neuroplasticity. Phytother Res 2017; 31:838-848. [PMID: 28382688 DOI: 10.1002/ptr.5807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/27/2017] [Accepted: 03/02/2017] [Indexed: 01/21/2023]
Abstract
Epimedii Herba (EH) is an herbal medicine originating from several plants of the genus Epimedium. It is a major therapeutic option for kidney yang deficiency syndrome, which is closely related to androgen hormones and also has been used to treat hemiplegia following a stroke in traditional medicine of Korea and PR China. To date, many clinical and basic researches of EH have shown the activities on functional recovery from brain diseases. Recently, neuroplasticity, which is the spontaneous reaction of the brain in response to diseases, has been shown to accelerate functional recovery. In addition, androgen hormones including testosterone are known to be the representative of neuroplasticity factors in the brain recovery processes. In this review, we described the neuro-pharmacological activities of EH, focusing on neuroplasticity. Thirty-three kinds of papers from MEDLINE/PubMed, EMBASE, and CNKI were identified and analyzed. We categorized the results into five types based on neuroplasticity mechanisms and presented the definition of each category and briefly described the results of these papers. Altogether, we can suggest that neuroplasticity is a novel viewpoint for guiding future brain research of EH and provide the evidence for the development of new clinical applications using EH in the treatment of brain diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jae-Heung Cho
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Young Jung
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Beom-Joon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Kyungjin Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jae-Woo Park
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Youngmin Bu
- College of Korean Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|