1
|
Zhu D, Zhang J, Ma X, Hu M, Gao F, Hashem JB, Lyu J, Wei J, Cui Y, Qiu S, Chen C. Overabundant endocannabinoids in neurons are detrimental to cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613513. [PMID: 39345517 PMCID: PMC11430108 DOI: 10.1101/2024.09.17.613513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Xiaokuang Ma
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Fei Gao
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jack B. Hashem
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jianlu Lyu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jing Wei
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
2
|
Xiong GJ, Sheng ZH. Presynaptic perspective: Axonal transport defects in neurodevelopmental disorders. J Cell Biol 2024; 223:e202401145. [PMID: 38568173 PMCID: PMC10988239 DOI: 10.1083/jcb.202401145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Disruption of synapse assembly and maturation leads to a broad spectrum of neurodevelopmental disorders. Presynaptic proteins are largely synthesized in the soma, where they are packaged into precursor vesicles and transported into distal axons to ensure precise assembly and maintenance of presynapses. Due to their morphological features, neurons face challenges in the delivery of presynaptic cargos to nascent boutons. Thus, targeted axonal transport is vital to build functional synapses. A growing number of mutations in genes encoding the transport machinery have been linked to neurodevelopmental disorders. Emerging lines of evidence have started to uncover presynaptic mechanisms underlying axonal transport defects, thus broadening the view of neurodevelopmental disorders beyond postsynaptic mechanisms. In this review, we discuss presynaptic perspectives of neurodevelopmental disorders by focusing on impaired axonal transport and disturbed assembly and maintenance of presynapses. We also discuss potential strategies for restoring axonal transport as an early therapeutic intervention.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Ye T, Zhang J, Wang J, Lan S, Zeng T, Wang H, He X, Li BM, Deng W, Liao WP, Liu XR. Variants in BSN gene associated with epilepsy with favourable outcome. J Med Genet 2023; 60:776-783. [PMID: 36600631 PMCID: PMC10439262 DOI: 10.1136/jmg-2022-108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND BSN gene encodes Bassoon, an essential protein to assemble the cytomatrix at the active zone of neurotransmitter release. This study aims to explore the relationship between BSN variants and epilepsy. METHODS Whole-exome sequencing was performed in a cohort of 313 cases (trios) with epilepsies of unknown causes. Additional cases with BSN variants were collected from China Epilepsy Gene V.1.0 Matching Platform. The Clinical Validity Framework of ClinGen was used to evaluate the relationship between BSN variants and epilepsy. RESULTS Four pairs of compound heterozygous variants and one cosegregating heterozygous missense variant in BSN were identified in five unrelated families. These variants presented statistically higher frequency in the case cohort than in controls. Additional two de novo heterozygous nonsense variants and one cosegregating heterozygous missense variant were identified in three unrelated cases from the gene matching platform, which were not present in the Genome Aggregation Database. The missense variants tended to be located in C-terminus, including the two monoallelic missense variants. Protein modelling showed that at least one missense variant in each pair of compound heterozygous variants had hydrogen bond alterations. Clinically, two cases were diagnosed as idiopathic generalised epilepsy, two as focal epilepsy and the remaining four as epilepsy with febrile seizures plus. Seven out of eight probands showed infancy or childhood-onset epilepsy. Eight out of 10 affected individuals had a history of febrile convulsions. All the cases were seizure-free. The cases with monoallelic variants achieved seizure-free without treatment or under monotherapy, while cases with biallelic missense variants mostly required combined therapy. The evidence from ClinGen Framework suggested an association between BSN variants and epilepsy. CONCLUSION The BSN gene was potentially a novel candidate gene for epilepsy. The phenotypical severity was associated with the genotypes and the molecular subregional effects of the variants.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People's Hospital, Maoming, Guangdong, China
| | - Tao Zeng
- Department of Neurology, Guangzhou First People's Hospital, Guangzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuelian He
- Precision Medical Center, Wuhan Childrens Hospital, Wuhan, China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weiwen Deng
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Andres-Alonso M, Grochowska KM, Gundelfinger ED, Karpova A, Kreutz MR. Protein transport from pre- and postsynapse to the nucleus: Mechanisms and functional implications. Mol Cell Neurosci 2023; 125:103854. [PMID: 37084990 DOI: 10.1016/j.mcn.2023.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The extreme length of neuronal processes poses a challenge for synapse-to-nucleus communication. In response to this challenge several different mechanisms have evolved in neurons to couple synaptic activity to the regulation of gene expression. One of these mechanisms concerns the long-distance transport of proteins from pre- and postsynaptic sites to the nucleus. In this review we summarize current evidence on mechanisms of transport and consequences of nuclear import of these proteins for gene transcription. In addition, we discuss how information from pre- and postsynaptic sites might be relayed to the nucleus by this type of long-distance signaling. When applicable, we highlight how long-distance protein transport from synapse-to-nucleus can provide insight into the pathophysiology of disease or reveal new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Maria Andres-Alonso
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Katarzyna M Grochowska
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Eckart D Gundelfinger
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; Institute of Pharmacology and Toxicology, Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Anna Karpova
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Leibniz Group 'Dendritic Organelles and Synaptic Function', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
| |
Collapse
|
5
|
Walker DR, Jara KA, Rolland AD, Brooks C, Hare W, Swansiger AK, Reardon PN, Prell JS, Barbar EJ. Linker Length Drives Heterogeneity of Multivalent Complexes of Hub Protein LC8 and Transcription Factor ASCIZ. Biomolecules 2023; 13:404. [PMID: 36979339 PMCID: PMC10046861 DOI: 10.3390/biom13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
LC8, a ubiquitous and highly conserved hub protein, binds over 100 proteins involved in numerous cellular functions, including cell death, signaling, tumor suppression, and viral infection. LC8 binds intrinsically disordered proteins (IDPs), and although several of these contain multiple LC8 binding motifs, the effects of multivalency on complex formation are unclear. Drosophila ASCIZ has seven motifs that vary in sequence and inter-motif linker lengths, especially within subdomain QT2-4 containing the second, third, and fourth LC8 motifs. Using isothermal-titration calorimetry, analytical-ultracentrifugation, and native mass-spectrometry of QT2-4 variants, with methodically deactivated motifs, we show that inter-motif spacing and specific motif sequences combine to control binding affinity and compositional heterogeneity of multivalent duplexes. A short linker separating strong and weak motifs results in stable duplexes but forms off-register structures at high LC8 concentrations. Contrastingly, long linkers engender lower cooperativity and heterogeneous complexation at low LC8 concentrations. Accordingly, two-mers, rather than the expected three-mers, dominate negative-stain electron-microscopy images of QT2-4. Comparing variants containing weak-strong and strong-strong motif combinations demonstrates sequence also regulates IDP/LC8 assembly. The observed trends persist for trivalent ASCIZ subdomains: QT2-4, with long and short linkers, forms heterogeneous complexes, whereas QT4-6, with similar mid-length linkers, forms homogeneous complexes. Implications of linker length variations for function are discussed.
Collapse
Affiliation(s)
- Douglas R. Walker
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Kayla A. Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Amber D. Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Coban Brooks
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Wendy Hare
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Andrew K. Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
| | - Patrick N. Reardon
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
- NMR Facility, Oregon State University, Corvallis, OR 97331, USA
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA
- Materials Science Institute, University of Oregon, Eugene, OR 97403, USA
| | - Elisar J. Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
6
|
Watson ET, Pauers MM, Seibert MJ, Vevea JD, Chapman ER. Synaptic vesicle proteins are selectively delivered to axons in mammalian neurons. eLife 2023; 12:e82568. [PMID: 36729040 PMCID: PMC9894587 DOI: 10.7554/elife.82568] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/11/2023] [Indexed: 02/03/2023] Open
Abstract
Neurotransmitter-filled synaptic vesicles (SVs) mediate synaptic transmission and are a hallmark specialization in neuronal axons. Yet, how SV proteins are sorted to presynaptic nerve terminals remains the subject of debate. The leading model posits that these proteins are randomly trafficked throughout neurons and are selectively retained in presynaptic boutons. Here, we used the RUSH (retention using selective hooks) system, in conjunction with HaloTag labeling approaches, to study the egress of two distinct transmembrane SV proteins, synaptotagmin 1 and synaptobrevin 2, from the soma of mature cultured rat and mouse neurons. For these studies, the SV reporter constructs were expressed at carefully controlled, very low levels. In sharp contrast to the selective retention model, both proteins selectively and specifically entered axons with minimal entry into dendrites. However, even moderate overexpression resulted in the spillover of SV proteins into dendrites, potentially explaining the origin of previous non-polarized transport models, revealing the limited, saturable nature of the direct axonal trafficking pathway. Moreover, we observed that SV constituents were first delivered to the presynaptic plasma membrane before incorporation into SVs. These experiments reveal a new-found membrane trafficking pathway, for SV proteins, in classically polarized mammalian neurons and provide a glimpse at the first steps of SV biogenesis.
Collapse
Affiliation(s)
- Emma T Watson
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Michaela M Pauers
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Michael J Seibert
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Jason D Vevea
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| | - Edwin R Chapman
- Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
- Howard Hughes Medical InstituteMadisonUnited States
| |
Collapse
|
7
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Montenegro‐Venegas C, Guhathakurta D, Pina‐Fernandez E, Andres‐Alonso M, Plattner F, Gundelfinger ED, Fejtova A. Bassoon controls synaptic vesicle release via regulation of presynaptic phosphorylation and
cAMP. EMBO Rep 2022; 23:e53659. [PMID: 35766170 PMCID: PMC9346490 DOI: 10.15252/embr.202153659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/11/2022] Open
Abstract
Neuronal presynaptic terminals contain hundreds of neurotransmitter‐filled synaptic vesicles (SVs). The morphologically uniform SVs differ in their release competence segregating into functional pools that differentially contribute to neurotransmission. The presynaptic scaffold bassoon is required for neurotransmission, but the underlying molecular mechanisms are unknown. We report that glutamatergic synapses lacking bassoon feature decreased SV release competence and increased resting pool of SVs as assessed by imaging of SV release in cultured neurons. CDK5/calcineurin and cAMP/PKA presynaptic signalling are dysregulated, resulting in an aberrant phosphorylation of their downstream effectors synapsin1 and SNAP25, well‐known regulators of SV release competence. An acute pharmacological restoration of physiological CDK5 and cAMP/PKA activity fully normalises the SV pools in neurons lacking bassoon. Finally, we demonstrate that CDK5‐dependent regulation of PDE4 activity interacts with cAMP/PKA signalling and thereby controls SV release competence. These data reveal that bassoon organises SV pools in glutamatergic synapses via regulation of presynaptic phosphorylation and cAMP homeostasis and indicate a role of CDK5/PDE4/cAMP axis in the control of neurotransmitter release.
Collapse
Affiliation(s)
- Carolina Montenegro‐Venegas
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Debarpan Guhathakurta
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | | | - Maria Andres‐Alonso
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | | | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences (CBBS) Magdeburg Germany
- Institute for Pharmacology and Toxicology, Medical Faculty Otto von Guericke University Magdeburg Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology Leibniz Institute for Neurobiology Magdeburg Germany
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
- RG Presynaptic Plasticity Leibniz Institute for Neurobiology Magdeburg Germany
| |
Collapse
|
9
|
Zhang Z, Zhou J, Tan P, Pang Y, Rivkin AC, Kirchgessner MA, Williams E, Lee CT, Liu H, Franklin AD, Miyazaki PA, Bartlett A, Aldridge AI, Vu M, Boggeman L, Fitzpatrick C, Nery JR, Castanon RG, Rashid M, Jacobs MW, Ito-Cole T, O'Connor C, Pinto-Duartec A, Dominguez B, Smith JB, Niu SY, Lee KF, Jin X, Mukamel EA, Behrens MM, Ecker JR, Callaway EM. Epigenomic diversity of cortical projection neurons in the mouse brain. Nature 2021; 598:167-173. [PMID: 34616065 PMCID: PMC8494636 DOI: 10.1038/s41586-021-03223-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023]
Abstract
Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.
Collapse
Affiliation(s)
- Zhuzhu Zhang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pengcheng Tan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yan Pang
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Angeline C Rivkin
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Megan A Kirchgessner
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Elora Williams
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cheng-Ta Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alexis D Franklin
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Paula Assakura Miyazaki
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew I Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Minh Vu
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Conor Fitzpatrick
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mohammad Rashid
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matthew W Jacobs
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Ito-Cole
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - António Pinto-Duartec
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bertha Dominguez
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jared B Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sheng-Yong Niu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
10
|
White KA, McEntire KD, Buan NR, Robinson L, Barbar E. Charting a New Frontier Integrating Mathematical Modeling in Complex Biological Systems from Molecules to Ecosystems. Integr Comp Biol 2021; 61:2255-2266. [PMID: 34283225 DOI: 10.1093/icb/icab165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Nicole R Buan
- University of Nebraska-Lincoln, Department of Biochemistry
| | | | - Elisar Barbar
- Oregon State University, Department of Biochemistry and Biophysics
| |
Collapse
|
11
|
Juranek JK, Mukherjee K, Jahn R, Li JY. Coordinated bi-directional trafficking of synaptic vesicle and active zone proteins in peripheral nerves. Biochem Biophys Res Commun 2021; 559:92-98. [PMID: 33933994 DOI: 10.1016/j.bbrc.2021.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022]
Abstract
Synaptic transmission is mediated by neurotransmitters that are stored in synaptic vesicles (SV) and released at the synaptic active zone (AZ). While in recent years major progress has been made in unraveling the molecular machinery responsible for SV docking, fusion and exocytosis, the mechanisms governing AZ protein and SV trafficking through axons still remain unclear. Here, we performed stop-flow nerve ligation to examine axonal trafficking of endogenous AZ and SV proteins. Rat sciatic nerves were collected 1 h, 3 h and 8 h post ligation and processed for immunohistochemistry and electron microscopy. First, we followed the transport of an integral synaptic vesicle protein, SV2A and a SV-associated protein involved in SV trafficking, Rab3a, and observed that while SV2A accumulated on both sides of ligation, Rab3a was only noticeable in the proximal segment of the ligated nerve indicating that only SV trans-membrane protein SV2A displayed a bi-directional axonal transport. We then demonstrate that multiple AZ proteins accumulate rapidly on either side of the ligation with a timescale similar to that of SV2A. Overall, our data uncovers an unexpected robust bi-directional, coordinated -trafficking of SV and AZ proteins in peripheral nerves. This implies that pathological disruption of axonal trafficking will not only impair trafficking of newly synthesized proteins to the synapse but will also affect retrograde transport, leading to neuronal dysfunction and likely neurodegeneration.
Collapse
Affiliation(s)
- Judyta K Juranek
- Wallenberg Neuroscience Center, Lund University Biomedical Center, Lund, Sweden.
| | - Konark Mukherjee
- Fralin Biomedical Research Institute, Virginia Tech Carilion School of Medicine, Blacksburg, VA, USA
| | - Reinhard Jahn
- Dept. of Neurobiology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Jia-Yi Li
- Wallenberg Neuroscience Center, Lund University Biomedical Center, Lund, Sweden.
| |
Collapse
|
12
|
Anni D, Weiss EM, Guhathakurta D, Akdas YE, Klueva J, Zeitler S, Andres-Alonso M, Huth T, Fejtova A. Aβ1-16 controls synaptic vesicle pools at excitatory synapses via cholinergic modulation of synapsin phosphorylation. Cell Mol Life Sci 2021; 78:4973-4992. [PMID: 33864480 PMCID: PMC8233295 DOI: 10.1007/s00018-021-03835-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/12/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Amyloid beta (Aβ) is linked to the pathology of Alzheimer’s disease (AD). At physiological concentrations, Aβ was proposed to enhance neuroplasticity and memory formation by increasing the neurotransmitter release from presynapse. However, the exact mechanisms underlying this presynaptic effect as well as specific contribution of endogenously occurring Aβ isoforms remain unclear. Here, we demonstrate that Aβ1-42 and Aβ1-16, but not Aβ17-42, increased size of the recycling pool of synaptic vesicles (SV). This presynaptic effect was driven by enhancement of endogenous cholinergic signalling via α7 nicotinic acetylcholine receptors, which led to activation of calcineurin, dephosphorylation of synapsin 1 and consequently resulted in reorganization of functional pools of SV increasing their availability for sustained neurotransmission. Our results identify synapsin 1 as a molecular target of Aβ and reveal an effect of physiological concentrations of Aβ on cholinergic modulation of glutamatergic neurotransmission. These findings provide new mechanistic insights in cholinergic dysfunction observed in AD.
Collapse
Affiliation(s)
- Daniela Anni
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Eva-Maria Weiss
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Debarpan Guhathakurta
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yagiz Enes Akdas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Klueva
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Stefanie Zeitler
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maria Andres-Alonso
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Tobias Huth
- Institute of Physiology and Pathophysiology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Fejtova
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany.
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
13
|
Clark C, Dayon L, Masoodi M, Bowman GL, Popp J. An integrative multi-omics approach reveals new central nervous system pathway alterations in Alzheimer's disease. Alzheimers Res Ther 2021; 13:71. [PMID: 33794997 PMCID: PMC8015070 DOI: 10.1186/s13195-021-00814-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Multiple pathophysiological processes have been described in Alzheimer's disease (AD). Their inter-individual variations, complex interrelations, and relevance for clinical manifestation and disease progression remain poorly understood. We hypothesize that specific molecular patterns indicating both known and yet unidentified pathway alterations are associated with distinct aspects of AD pathology. METHODS We performed multi-level cerebrospinal fluid (CSF) omics in a well-characterized cohort of older adults with normal cognition, mild cognitive impairment, and mild dementia. Proteomics, metabolomics, lipidomics, one-carbon metabolism, and neuroinflammation related molecules were analyzed at single-omic level with correlation and regression approaches. Multi-omics factor analysis was used to integrate all biological levels. Identified analytes were used to construct best predictive models of the presence of AD pathology and of cognitive decline with multifactorial regression analysis. Pathway enrichment analysis identified pathway alterations in AD. RESULTS Multi-omics integration identified five major dimensions of heterogeneity explaining the variance within the cohort and differentially associated with AD. Further analysis exposed multiple interactions between single 'omics modalities and distinct multi-omics molecular signatures differentially related to amyloid pathology, neuronal injury, and tau hyperphosphorylation. Enrichment pathway analysis revealed overrepresentation of the hemostasis, immune response, and extracellular matrix signaling pathways in association with AD. Finally, combinations of four molecules improved prediction of both AD (protein 14-3-3 zeta/delta, clusterin, interleukin-15, and transgelin-2) and cognitive decline (protein 14-3-3 zeta/delta, clusterin, cholesteryl ester 27:1 16:0 and monocyte chemoattractant protein-1). CONCLUSIONS Applying an integrative multi-omics approach we report novel molecular and pathways alterations associated with AD pathology. These findings are relevant for the development of personalized diagnosis and treatment approaches in AD.
Collapse
Affiliation(s)
- Christopher Clark
- Institute for Regenerative Medicine, University of Zürich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Loïc Dayon
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Mojgan Masoodi
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Institute of Clinical Chemistry, University Hospital Bern, Bern, Switzerland
| | - Gene L. Bowman
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, 1015 Lausanne, Switzerland
- Department of Neurology, NIA-Layton Aging and Alzheimer’s Disease Center, Oregon Health & Science University, Portland, USA
| | - Julius Popp
- Old Age Psychiatry, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon 46, 1011 Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Centre for Gerontopsychiatric Medicine, Minervastrasse 145, P.O. Box 341, 8032 Zürich, Switzerland
| |
Collapse
|
14
|
Ivanova D, Imig C, Camacho M, Reinhold A, Guhathakurta D, Montenegro-Venegas C, Cousin MA, Gundelfinger ED, Rosenmund C, Cooper B, Fejtova A. CtBP1-Mediated Membrane Fission Contributes to Effective Recycling of Synaptic Vesicles. Cell Rep 2021; 30:2444-2459.e7. [PMID: 32075774 PMCID: PMC7034063 DOI: 10.1016/j.celrep.2020.01.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/12/2019] [Accepted: 01/22/2020] [Indexed: 01/08/2023] Open
Abstract
Compensatory endocytosis of released synaptic vesicles (SVs) relies on coordinated signaling at the lipid-protein interface. Here, we address the synaptic function of C-terminal binding protein 1 (CtBP1), a ubiquitous regulator of gene expression and membrane trafficking in cultured hippocampal neurons. In the absence of CtBP1, synapses form in greater density and show changes in SV distribution and size. The increased basal neurotransmission and enhanced synaptic depression could be attributed to a higher vesicular release probability and a smaller fraction of release-competent SVs, respectively. Rescue experiments with specifically targeted constructs indicate that, while synaptogenesis and release probability are controlled by nuclear CtBP1, the efficient recycling of SVs relies on its synaptic expression. The ability of presynaptic CtBP1 to facilitate compensatory endocytosis depends on its membrane-fission activity and the activation of the lipid-metabolizing enzyme PLD1. Thus, CtBP1 regulates SV recycling by promoting a permissive lipid environment for compensatory endocytosis.
Collapse
Affiliation(s)
- Daniela Ivanova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, German
| | - Marcial Camacho
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Annika Reinhold
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Debarpan Guhathakurta
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - Michael A Cousin
- Centre for Discovery Brain Sciences, Hugh Robson Building, George Square, University of Edinburgh, EH9 9XD Edinburgh, UK
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Center for Behavioral Brain Science and Medical Faculty, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Christian Rosenmund
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, German
| | - Anna Fejtova
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany; Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany; Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
15
|
Voorn RA, Vogl C. Molecular Assembly and Structural Plasticity of Sensory Ribbon Synapses-A Presynaptic Perspective. Int J Mol Sci 2020; 21:E8758. [PMID: 33228215 PMCID: PMC7699581 DOI: 10.3390/ijms21228758] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In the mammalian cochlea, specialized ribbon-type synapses between sensory inner hair cells (IHCs) and postsynaptic spiral ganglion neurons ensure the temporal precision and indefatigability of synaptic sound encoding. These high-through-put synapses are presynaptically characterized by an electron-dense projection-the synaptic ribbon-which provides structural scaffolding and tethers a large pool of synaptic vesicles. While advances have been made in recent years in deciphering the molecular anatomy and function of these specialized active zones, the developmental assembly of this presynaptic interaction hub remains largely elusive. In this review, we discuss the dynamic nature of IHC (pre-) synaptogenesis and highlight molecular key players as well as the transport pathways underlying this process. Since developmental assembly appears to be a highly dynamic process, we further ask if this structural plasticity might be maintained into adulthood, how this may influence the functional properties of a given IHC synapse and how such plasticity could be regulated on the molecular level. To do so, we take a closer look at other ribbon-bearing systems, such as retinal photoreceptors and pinealocytes and aim to infer conserved mechanisms that may mediate these phenomena.
Collapse
MESH Headings
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/metabolism
- Animals
- Co-Repressor Proteins/genetics
- Co-Repressor Proteins/metabolism
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Cytoskeleton/metabolism
- Cytoskeleton/ultrastructure
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/ultrastructure
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/ultrastructure
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/ultrastructure
- Mechanotransduction, Cellular
- Mice
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neuronal Plasticity/genetics
- Neuropeptides/genetics
- Neuropeptides/metabolism
- Rats
- Synapses/metabolism
- Synapses/ultrastructure
- Synaptic Transmission/genetics
- Synaptic Vesicles/metabolism
- Synaptic Vesicles/ultrastructure
Collapse
Affiliation(s)
- Roos Anouk Voorn
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany;
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, 37075 Goettingen, Germany
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”, 37075 Goettingen, Germany
| | - Christian Vogl
- Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany;
- Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”, 37075 Goettingen, Germany
| |
Collapse
|
16
|
Rizalar FS, Roosen DA, Haucke V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation. Neuron 2020; 109:27-41. [PMID: 33098763 DOI: 10.1016/j.neuron.2020.09.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Neurons are highly polarized cells with a single axon and multiple dendrites derived from the cell body to form tightly associated pre- and postsynaptic compartments. As the biosynthetic machinery is largely restricted to the somatodendritic domain, the vast majority of presynaptic components are synthesized in the neuronal soma, packaged into synaptic precursor vesicles, and actively transported along the axon to sites of presynaptic biogenesis. In contrast with the significant progress that has been made in understanding synaptic transmission and processing of information at the post-synapse, comparably little is known about the formation and dynamic remodeling of the presynaptic compartment. We review here our current understanding of the mechanisms that govern the biogenesis, transport, and assembly of the key components for presynaptic neurotransmission, discuss how alterations in presynaptic assembly may impact nervous system function or lead to disease, and outline key open questions for future research.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dorien A Roosen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
17
|
Cheng A, Tse KH, Chow HM, Gan Y, Song X, Ma F, Qian YXY, She W, Herrup K. ATM loss disrupts the autophagy-lysosomal pathway. Autophagy 2020; 17:1998-2010. [PMID: 32757690 DOI: 10.1080/15548627.2020.1805860] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATM (ataxia telangiectasia mutated) protein is found associated with multiple organelles including synaptic vesicles, endosomes and lysosomes, often in cooperation with ATR (ataxia telangiectasia and Rad3 related). Mutation of the ATM gene results in ataxia-telangiectasia (A-T), an autosomal recessive disorder with defects in multiple organs including the nervous system. Precisely how ATM deficiency leads to the complex phenotypes of A-T, however, remains elusive. Here, we reported that part of the connection may lie in autophagy and lysosomal abnormalities. We found that ATM was degraded through the autophagy pathway, while ATR was processed by the proteasome. Autophagy and lysosomal trafficking were both abnormal in atm-/- neurons and the deficits impacted cellular functions such as synapse maintenance, neuronal survival and glucose uptake. Upregulated autophagic flux was observed in atm-/- lysosomes, associated with a more acidic pH. Significantly, we found that the ATP6V1A (ATPase, H+ transporting, lysosomal V1 subunit A) proton pump was an ATM kinase target. In atm-/- neurons, lysosomes showed enhanced retrograde transport and accumulated in the perinuclear regions. We attributed this change to an unexpected physical interaction between ATM and the retrograde transport motor protein, dynein. As a consequence, SLC2A4/GLUT4 (solute carrier family 4 [facilitated glucose transporter], member 4) translocation to the plasma membrane was inhibited and trafficking to the lysosomes was increased, leading to impaired glucose uptake capacity. Together, these data underscored the involvement of ATM in a variety of neuronal vesicular trafficking processes, offering new and therapeutically useful insights into the pathogenesis of A-T.Abbreviations: 3-MA: 3-methyladenine; A-T: ataxia-telangiectasia; ALG2: asparagine-linked glycosylation 2 (alpha-1,3-mannosyltransferase); AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ATG5: autophagy related 5; ATM: ataxia telangiectasia mutated; ATP6V1A: ATPase, H+ transporting, lysosomal V1 subunit A; ATR: ataxia-telangiectasia and Rad3 related; BFA1: bafilomycin A1; CC3: cleaved-CASP3; CGN: cerebellar granule neuron; CLQ: chloroquine; CN: neocortical neuron; CTSB: cathepsin B; CTSD: cathepsin D; DYNLL1: the light chain1 of dynein; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; Etop: etoposide; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HBS: HEPES-buffered saline; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HOMER1: homer protein homolog 1; KU: KU-60019; LAMP1: lysosomal-associated membrane protein 1; LC3B-II: LC3-phosphatidylethanolamine conjugate; Lyso: lysosome; LysopH-GFP: lysopHluorin-GFP; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2: microtubule associated protein 2; MAPK14: mitogen-activated protein kinase 14; MAPK8/JNK1: mitogen-activated protein kinase 8; MCOLN1/TRPML1: mucolipin 1; OSBPL1A: oxysterol binding protein like 1A; PIKK: phosphatidylinositol 3 kinase related kinase; Rapa: rapamycin; RILP: rab interacting lysosomal protein; ROS: reactive oxygen species; SEM: standard error of mean; SLC2A4/GLUT4: solute carrier family 2 (facilitated glucose transporter), member 4; TSC2/tuberin: TSC complex subunit 2; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system; VE: VE-822; WCL: whole-cell lysate; WT: wild type.
Collapse
Affiliation(s)
- Aifang Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yunqiao Gan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Xuan Song
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Fulin Ma
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | | | - Weiyi She
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Montenegro-Venegas C, Fienko S, Anni D, Pina-Fernández E, Frischknecht R, Fejtova A. Bassoon inhibits proteasome activity via interaction with PSMB4. Cell Mol Life Sci 2020; 78:1545-1563. [PMID: 32651614 PMCID: PMC7904567 DOI: 10.1007/s00018-020-03590-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 01/06/2023]
Abstract
Abstract Proteasomes are protein complexes that mediate controlled degradation of damaged or unneeded cellular proteins. In neurons, proteasome regulates synaptic function and its dysfunction has been linked to neurodegeneration and neuronal cell death. However, endogenous mechanisms controlling proteasomal activity are insufficiently understood. Here, we describe a novel interaction between presynaptic scaffolding protein bassoon and PSMB4, a β subunit of the 20S core proteasome. Expression of bassoon fragments that interact with PSMB4 in cell lines or in primary neurons attenuates all endopeptidase activities of cellular proteasome and induces accumulation of several classes of ubiquitinated and non-ubiquitinated substrates of the proteasome. Importantly, these effects are distinct from the previously reported impact of bassoon on ubiquitination and autophagy and might rely on a steric interference with the assembly of the 20S proteasome core. In line with a negative regulatory role of bassoon on endogenous proteasome we found increased proteasomal activity in the synaptic fractions prepared from brains of bassoon knock-out mice. Finally, increased activity of proteasome and lower expression levels of synaptic substrates of proteasome could be largely normalized upon expression of PSMB4-interacting fragments of bassoon in neurons derived from bassoon deficient mice. Collectively, we propose that bassoon interacts directly with proteasome to control its activity at presynapse and thereby it contributes to a compartment-specific regulation of neuronal protein homeostasis. These findings provide a mechanistic explanation for the recently described link of bassoon to human diseases associated with pathological protein aggregation. Graphic Abstract Presynaptic cytomatrix protein bassoon (Bsn) interacts with PSMB4, the β7 subunit of 20S core proteasome, via three independent interaction interfaces. Bsn inhibits proteasomal proteolytic activity and degradation of different classes of proteasomal substrates presumably due to steric interference with the assembly of 20S core of proteasome. Upon Bsn deletion in neurons, presynaptic substrates of the proteasome are depleted, which can be reversed upon expression of PSMB4-interacting interfaces of Bsn. Taken together, bsn controls the degree of proteasome degradation within the presynaptic compartment and thus, contributes to the regulation of synaptic proteome![]() Electronic supplementary material The online version of this article (10.1007/s00018-020-03590-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carolina Montenegro-Venegas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University and Center for Behavior Brain Sciences (CBBS), Magdeburg, Germany
| | - Sandra Fienko
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UK Dementia Research Institute at UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Daniela Anni
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Eneko Pina-Fernández
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Renato Frischknecht
- Department of Biology, Animal Physiology, Friedrich-Alexander University of Erlangen- Nürnberg, Erlangen, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
19
|
Reardon PN, Jara KA, Rolland AD, Smith DA, Hoang HTM, Prell JS, Barbar EJ. The dynein light chain 8 (LC8) binds predominantly "in-register" to a multivalent intrinsically disordered partner. J Biol Chem 2020; 295:4912-4922. [PMID: 32139510 PMCID: PMC7152752 DOI: 10.1074/jbc.ra119.011653] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 03/03/2020] [Indexed: 01/18/2023] Open
Abstract
Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired "in-register" or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8-IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.
Collapse
Affiliation(s)
- Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon 97331
| | - Kayla A Jara
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Delaney A Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Hanh T M Hoang
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| |
Collapse
|
20
|
Jespersen N, Estelle A, Waugh N, Davey NE, Blikstad C, Ammon YC, Akhmanova A, Ivarsson Y, Hendrix DA, Barbar E. Systematic identification of recognition motifs for the hub protein LC8. Life Sci Alliance 2019; 2:2/4/e201900366. [PMID: 31266884 PMCID: PMC6607443 DOI: 10.26508/lsa.201900366] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 01/17/2023] Open
Abstract
LC8 is a eukaryotic hub protein that interacts with multifarious partners; analysis of more than 100 binding/nonbinding sequences led to an algorithm that predicts LC8 partners with 78% accuracy. Hub proteins participate in cellular regulation by dynamic binding of multiple proteins within interaction networks. The hub protein LC8 reversibly interacts with more than 100 partners through a flexible pocket at its dimer interface. To explore the diversity of the LC8 partner pool, we screened for LC8 binding partners using a proteomic phage display library composed of peptides from the human proteome, which had no bias toward a known LC8 motif. Of the identified hits, we validated binding of 29 peptides using isothermal titration calorimetry. Of the 29 peptides, 19 were entirely novel, and all had the canonical TQT motif anchor. A striking observation is that numerous peptides containing the TQT anchor do not bind LC8, indicating that residues outside of the anchor facilitate LC8 interactions. Using both LC8-binding and nonbinding peptides containing the motif anchor, we developed the “LC8Pred” algorithm that identifies critical residues flanking the anchor and parses random sequences to predict LC8-binding motifs with ∼78% accuracy. Our findings significantly expand the scope of the LC8 hub interactome.
Collapse
Affiliation(s)
- Nathan Jespersen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Aidan Estelle
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Nathan Waugh
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | - Cecilia Blikstad
- Department of Chemistry - Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | - Anna Akhmanova
- Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Ylva Ivarsson
- Department of Chemistry - Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - David A Hendrix
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.,School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, USA
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
21
|
Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology. Int J Mol Sci 2019; 20:ijms20010141. [PMID: 30609739 PMCID: PMC6337145 DOI: 10.3390/ijms20010141] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein–protein and protein–lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it.
Collapse
|
22
|
Annamneedi A, Caliskan G, Müller S, Montag D, Budinger E, Angenstein F, Fejtova A, Tischmeyer W, Gundelfinger ED, Stork O. Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance. Brain Struct Funct 2018; 223:3423-3445. [PMID: 29915867 PMCID: PMC6132633 DOI: 10.1007/s00429-018-1692-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 05/30/2018] [Indexed: 01/05/2023]
Abstract
Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.
Collapse
Affiliation(s)
- Anil Annamneedi
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Gürsel Caliskan
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Sabrina Müller
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Eike Budinger
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Frank Angenstein
- Special Laboratory Noninvasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Functional Neuroimaging Group, German Center for Neurodegenerative Diseases, Magdeburg, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- RG Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Wolfgang Tischmeyer
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Special Laboratory Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Eckart D. Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
- Molecular Neuroscience, Medical School, Otto von Guericke University, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
23
|
Clark S, Myers JB, King A, Fiala R, Novacek J, Pearce G, Heierhorst J, Reichow SL, Barbar EJ. Multivalency regulates activity in an intrinsically disordered transcription factor. eLife 2018; 7:36258. [PMID: 29714690 PMCID: PMC5963919 DOI: 10.7554/elife.36258] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022] Open
Abstract
The transcription factor ASCIZ (ATMIN, ZNF822) has an unusually high number of recognition motifs for the product of its main target gene, the hub protein LC8 (DYNLL1). Using a combination of biophysical methods, structural analysis by NMR and electron microscopy, and cellular transcription assays, we developed a model that proposes a concerted role of intrinsic disorder and multiple LC8 binding events in regulating LC8 transcription. We demonstrate that the long intrinsically disordered C-terminal domain of ASCIZ binds LC8 to form a dynamic ensemble of complexes with a gradient of transcriptional activity that is inversely proportional to LC8 occupancy. The preference for low occupancy complexes at saturating LC8 concentrations with both human and Drosophila ASCIZ indicates that negative cooperativity is an important feature of ASCIZ-LC8 interactions. The prevalence of intrinsic disorder and multivalency among transcription factors suggests that formation of heterogeneous, dynamic complexes is a widespread mechanism for tuning transcriptional regulation.
Collapse
Affiliation(s)
- Sarah Clark
- Department of Biochemistry and Biophysics, Oregon State University, Oregon, United States
| | - Janette B Myers
- Department of Chemistry, Portland State University, Oregon, United States
| | - Ashleigh King
- St. Vincent's Institute of Medical Research, The University of Melbourne, Victoria, Australia.,Department of Medicine, St. Vincent's Health, The University of Melbourne, Victoria, Australia
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jiri Novacek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Grant Pearce
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Jörg Heierhorst
- St. Vincent's Institute of Medical Research, The University of Melbourne, Victoria, Australia.,Department of Medicine, St. Vincent's Health, The University of Melbourne, Victoria, Australia
| | - Steve L Reichow
- Department of Chemistry, Portland State University, Oregon, United States
| | - Elisar J Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Oregon, United States
| |
Collapse
|
24
|
Bakhtiarzadeh F, Nahavandi A, Goudarzi M, Shirvalilou S, Rakhshan K, Niknazar S. Axonal transport proteins and depressive like behavior, following Chronic Unpredictable Mild Stress in male rat. Physiol Behav 2018; 194:9-14. [PMID: 29698729 DOI: 10.1016/j.physbeh.2018.04.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND A common mood disorder, depression has long been considered a leading cause of disability worldwide. Chronic stress is involved in the development of various psychiatric diseases including major depressive disorder. Stress can induce depressive-like symptoms and initiate neurodegenerative processes in the brain. The neurodegenerative theory of depression holds impaired axonal transport as a negative factor in neural survival. Axonal transport is a critical mechanism for normal neuronal function, playing crucial roles in axon growth, neurotransmitter secretion, normal mitochondrial function and neural survival. METHODS AND MATERIALS To investigate the effects of stress-induced depression, in the present study, we evaluated behavior by forced swimming test (FST), corticosterone plasma level by ELISA assay, hippocampal mRNA expression of three genes (NGF, kinesin and dynein) via real-time PCR and hippocamp count by Nissl staining in male Wistar rats. RESULTS Our data demonstrated a significant decrease in the expression of NGF, kinesin and dynein genes in CUMS groups compared to the control group (non-stressed) (p < 0.05). CUMS also caused an elevation in immobility time and corticosterone plasma level in the stressed group compared to the controls (p < 0.01 and p < 0.05, respectively). CONCLUSION The results suggested that the possibility of stress-induced depressive behavior associated with hippocampal neurodegeneration process is correlated with a low expression of kinesin and dynein, the two most important proteins in axonal transport.
Collapse
Affiliation(s)
| | - Arezo Nahavandi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mina Goudarzi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sakine Shirvalilou
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kamran Rakhshan
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Somayeh Niknazar
- ENT Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Ziv NE. Maintaining the active zone: Demand, supply and disposal of core active zone proteins. Neurosci Res 2018; 127:70-77. [DOI: 10.1016/j.neures.2017.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
|
26
|
Kreko-Pierce T, Eaton BA. The Drosophila LC8 homolog cut up specifies the axonal transport of proteasomes. J Cell Sci 2017; 130:3388-3398. [PMID: 28808087 DOI: 10.1242/jcs.207027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/09/2017] [Indexed: 01/05/2023] Open
Abstract
Because of their functional polarity and elongated morphologies, microtubule-based transport of proteins and organelles is critical for normal neuronal function. The proteasome is required throughout the neuron for the highly regulated degradation of a broad set of protein targets whose functions underlie key physiological responses, including synaptic plasticity and axonal degeneration. Molecularly, the relationship between proteasome transport and the transport of the targets of proteasomes is unclear. The dynein motor complex is required for the microtubule-based motility of numerous proteins and organelles in neurons. Here, we demonstrate that microtubule-based transport of proteasomes within the neuron in Drosophila utilizes a different dynein light chain to that used by synaptic proteins. Live imaging of proteasomes and synaptic vesicle proteins in axons and synapses finds that these cargoes traffic independently, and that proteasomes exhibit significantly reduced retrograde transport velocities compared to those of synaptic vesicle proteins. Genetic and biochemical analyses reveals that the Drosophila homolog of the LC8 dynein light chains (mammalian DYNLL1 and DYNLL2), called Cut up, binds proteasomes and functions specifically during their transport. These data support the model that Cut up functions to specify the dynein-mediated transport of neuronal proteasomes.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- The Barshop Institute for Longevity and Aging Studies, Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Benjamin A Eaton
- The Barshop Institute for Longevity and Aging Studies, Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
27
|
Lazarevic V, Fieńko S, Andres-Alonso M, Anni D, Ivanova D, Montenegro-Venegas C, Gundelfinger ED, Cousin MA, Fejtova A. Physiological Concentrations of Amyloid Beta Regulate Recycling of Synaptic Vesicles via Alpha7 Acetylcholine Receptor and CDK5/Calcineurin Signaling. Front Mol Neurosci 2017; 10:221. [PMID: 28785201 PMCID: PMC5520466 DOI: 10.3389/fnmol.2017.00221] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023] Open
Abstract
Despite the central role of amyloid β (Aβ) peptide in the etiopathogenesis of Alzheimer’s disease (AD), its physiological function in healthy brain is still debated. It is well established that elevated levels of Aβ induce synaptic depression and dismantling, connected with neurotoxicity and neuronal loss. Growing evidence suggests a positive regulatory effect of Aβ on synaptic function and cognition; however the exact cellular and molecular correlates are still unclear. In this work, we tested the effect of physiological concentrations of Aβ species of endogenous origin on neurotransmitter release in rat cortical and hippocampal neurons grown in dissociated cultures. Modulation of production and degradation of the endogenous Aβ species as well as applications of the synthetic rodent Aβ40 and Aβ42 affected efficacy of neurotransmitter release from individual presynapses. Low picomolar Aβ40 and Aβ42 increased, while Aβ depletion or application of low micromolar concentration decreased synaptic vesicle recycling, showing a hormetic effect of Aβ on neurotransmitter release. These Aβ-mediated modulations required functional alpha7 acetylcholine receptors as well as extracellular and intracellular calcium, involved regulation of CDK5 and calcineurin signaling and increased recycling of synaptic vesicles. These data indicate that Aβ regulates neurotransmitter release from presynapse and suggest that failure of the normal physiological function of Aβ in the fine-tuning of SV cycling could disrupt synaptic function and homeostasis, which would, eventually, lead to cognitive decline and neurodegeneration.
Collapse
Affiliation(s)
- Vesna Lazarevic
- RG Presynaptic Plasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Neurochemistry and Molecular Biology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE)Magdeburg, Germany
| | - Sandra Fieńko
- RG Presynaptic Plasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Maria Andres-Alonso
- RG Presynaptic Plasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | - Daniela Anni
- Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, University of Erlangen-NurembergErlangen, Germany
| | - Daniela Ivanova
- RG Presynaptic Plasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany
| | | | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE)Magdeburg, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke UniversityMagdeburg, Germany.,Medical Faculty, Otto von Guericke UniversityMagdeburg, Germany
| | - Michael A Cousin
- Centre for Integrative Physiology, University of EdinburghEdinburgh, United Kingdom
| | - Anna Fejtova
- RG Presynaptic Plasticity, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Department of Neurochemistry and Molecular Biology, Leibniz Institute for NeurobiologyMagdeburg, Germany.,Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Hospital, University of Erlangen-NurembergErlangen, Germany.,Center for Behavioral Brain Sciences, Otto von Guericke UniversityMagdeburg, Germany
| |
Collapse
|
28
|
Torres VI, Inestrosa NC. Vertebrate Presynaptic Active Zone Assembly: a Role Accomplished by Diverse Molecular and Cellular Mechanisms. Mol Neurobiol 2017; 55:4513-4528. [PMID: 28685386 DOI: 10.1007/s12035-017-0661-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/14/2017] [Indexed: 01/22/2023]
Abstract
Among all the biological systems in vertebrates, the central nervous system (CNS) is the most complex, and its function depends on specialized contacts among neurons called synapses. The assembly and organization of synapses must be exquisitely regulated for a normal brain function and network activity. There has been a tremendous effort in recent decades to understand the molecular and cellular mechanisms participating in the formation of new synapses and their organization, maintenance, and regulation. At the vertebrate presynapses, proteins such as Piccolo, Bassoon, RIM, RIM-BPs, CAST/ELKS, liprin-α, and Munc13 are constant residents and participate in multiple and dynamic interactions with other regulatory proteins, which define network activity and normal brain function. Here, we review the function of these active zone (AZ) proteins and diverse factors involved in AZ assembly and maintenance, with an emphasis on axonal trafficking of precursor vesicles, protein homo- and hetero-oligomeric interactions as a mechanism of AZ trapping and stabilization, and the role of F-actin in presynaptic assembly and its modulation by Wnt signaling.
Collapse
Affiliation(s)
- Viviana I Torres
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
29
|
|
30
|
Liu JJ. Regulation of dynein-dynactin-driven vesicular transport. Traffic 2017; 18:336-347. [PMID: 28248450 DOI: 10.1111/tra.12475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/01/2023]
Abstract
Most of the long-range intracellular movements of vesicles, organelles and other cargoes are driven by microtubule (MT)-based molecular motors. Cytoplasmic dynein, a multisubunit protein complex, with the aid of dynactin, drives transport of a wide variety of cargoes towards the minus end of MTs. In this article, I review our current understanding of the mechanisms underlying spatiotemporal regulation of dynein-dynactin-driven vesicular transport with a special emphasis on the many steps of directional movement along MT tracks. These include the recruitment of dynein to MT plus ends, the activation and processivity of dynein, and cargo recognition and release by the motor complex at the target membrane. Furthermore, I summarize the most recent findings about the fine control mechanisms for intracellular transport via the interaction between the dynein-dynactin motor complex and its vesicular cargoes.
Collapse
Affiliation(s)
- Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Pinto MJ, Almeida RD. Puzzling out presynaptic differentiation. J Neurochem 2016; 139:921-942. [PMID: 27315450 DOI: 10.1111/jnc.13702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
Proper brain function in the nervous system relies on the accurate establishment of synaptic contacts during development. Countless synapses populate the adult brain in an orderly fashion. In each synapse, a presynaptic terminal loaded with neurotransmitters-containing synaptic vesicles is perfectly aligned to an array of receptors in the postsynaptic membrane. Presynaptic differentiation, which encompasses the events underlying assembly of new presynaptic units, has seen notable advances in recent years. It is now consensual that as a growing axon encounters the receptive dendrites of its partner, presynaptic assembly will be triggered and specified by multiple postsynaptically-derived factors including soluble molecules and cell adhesion complexes. Presynaptic material that reaches these distant sites by axonal transport in the form of pre-assembled packets will be retained and clustered, ultimately giving rise to a presynaptic bouton. This review focuses on the cellular and molecular aspects of presynaptic differentiation in the central nervous system, with a particular emphasis on the identity of the instructive factors and the intracellular processes used by neuronal cells to assemble functional presynaptic terminals. We provide a detailed description of the mechanisms leading to the formation of new presynaptic terminals. In brief, soma-derived packets of pre-assembled material are trafficked to distant axonal sites. Synaptogenic factors from dendritic or glial provenance activate downstream intra-axonal mediators to trigger clustering of passing material and their correct organization into a new presynaptic bouton. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Maria J Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ramiro D Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,School of Allied Health Technologies, Polytechnic Institute of Oporto, Vila Nova de Gaia, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
32
|
Gundelfinger ED, Reissner C, Garner CC. Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone. Front Synaptic Neurosci 2016; 7:19. [PMID: 26793095 PMCID: PMC4709825 DOI: 10.3389/fnsyn.2015.00019] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/14/2015] [Indexed: 01/05/2023] Open
Abstract
Bassoon and Piccolo are two very large scaffolding proteins of the cytomatrix assembled at the active zone (CAZ) where neurotransmitter is released. They share regions of high sequence similarity distributed along their entire length and seem to share both overlapping and distinct functions in organizing the CAZ. Here, we survey our present knowledge on protein-protein interactions and recent progress in understanding of molecular functions of these two giant proteins. These include roles in the assembly of active zones (AZ), the localization of voltage-gated Ca2+ channels (VGCCs) in the vicinity of release sites, synaptic vesicle (SV) priming and in the case of Piccolo, a role in the dynamic assembly of the actin cytoskeleton. Piccolo and Bassoon are also important for the maintenance of presynaptic structure and function, as well as for the assembly of CAZ specializations such as synaptic ribbons. Recent findings suggest that they are also involved in the regulation activity-dependent communication between presynaptic boutons and the neuronal nucleus. Together these observations suggest that Bassoon and Piccolo use their modular structure to organize super-molecular complexes essential for various aspects of presynaptic function.
Collapse
Affiliation(s)
- Eckart D Gundelfinger
- Department Neurochemistry and Molecular Biology, Leibniz Institute for NeurobiologyMagdeburg, Germany; Center for Behavioral Brain SciencesMagdeburg, Germany; Medical Faculty, Otto von Guericke UniversityMagdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Site MagdeburgMagdeburg, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms University Münster, Germany
| | - Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE) Site BerlinBerlin, Germany; Charité Medical UniversityBerlin, Germany
| |
Collapse
|
33
|
Clark S, Nyarko A, Löhr F, Karplus PA, Barbar E. The Anchored Flexibility Model in LC8 Motif Recognition: Insights from the Chica Complex. Biochemistry 2015; 55:199-209. [PMID: 26652654 DOI: 10.1021/acs.biochem.5b01099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
LC8 is a dimeric hub protein involved in a large number of interactions central to cell function. It binds short linear motifs--usually containing a Thr-Gln-Thr (TQT) triplet--in intrinsically disordered regions of its binding partners, some of which have several LC8 recognition motifs in tandem. Hallmarks of the 7-10 amino acid motif are a high variability of LC8 binding affinity and extensive sequence permutation outside the TQT triplet. To elucidate the molecular basis of motif recognition, we use a 69-residue segment of the human Chica spindle adaptor protein that contains four putative TQT recognition motifs in tandem. NMR-derived secondary chemical shifts and relaxation properties show that the Chica LC8 binding domain is essentially disordered with a dynamically restricted segment in one linker between motifs. Calorimetry of LC8 binding to synthetic motif-mimicking peptides shows that the first motif dominates LC8 recruitment. Crystal structures of the complexes of LC8 bound to each of two motif peptides show highly ordered and invariant TQT-LC8 interactions and more flexible and conformationally variable non-TQT-LC8 interactions. These data highlight rigidity in both LC8 residues that bind TQT and in the TQT portion of the motif as an important new characteristic of LC8 recognition. On the basis of these data and others in the literature, we propose that LC8 recognition is based on rigidly fixed interactions between LC8 and TQT residues that act as an anchor, coupled with inherently flexible interactions between LC8 and non-TQT residues. The "anchored flexibility" model explains the requirement for the TQT triplet and the ability of LC8 to accommodate a large variety of motif sequences and affinities.
Collapse
Affiliation(s)
- Sarah Clark
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States
| | - Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States
| | - Frank Löhr
- Institute of Biophysical Chemistry, Goethe-University , D-60438 Frankfurt, Germany
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
34
|
Siebert M, Böhme MA, Driller JH, Babikir H, Mampell MM, Rey U, Ramesh N, Matkovic T, Holton N, Reddy-Alla S, Göttfert F, Kamin D, Quentin C, Klinedinst S, Andlauer TF, Hell SW, Collins CA, Wahl MC, Loll B, Sigrist SJ. A high affinity RIM-binding protein/Aplip1 interaction prevents the formation of ectopic axonal active zones. eLife 2015; 4. [PMID: 26274777 PMCID: PMC4536467 DOI: 10.7554/elife.06935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes. DOI:http://dx.doi.org/10.7554/eLife.06935.001 To pass on information, the neurons that make up the nervous system connect at structures known as synapses. Chemical messengers called neurotransmitters are released from one neuron, and travel across the synapse to trigger a response in the neighbouring cell. The formation of new synapses plays an important role in learning and memory, but many aspects of this process are not well understood. In a specific region of the synapse called the active zone, a scaffold of proteins helps to release the neurotransmitters. These proteins are made in the cell body of the neuron, and are then transported to the end of the long, thin axons that protrude from the cell body. This presents a challenge for the cell, because the components of the active zone scaffold must be correctly targeted to the synapse at the end of the axon, ensuring the active zone scaffold assembles only at its proper location. Siebert, Böhme et al. studied how some of the proteins that are found in the active zone scaffold of the fruit fly Drosophila are transported along axons. Labelling the proteins with fluorescent markers allowed their movement to be examined under a microscope in living Drosophila larvae. The results showed that two of the proteins—known as BRP and RBP—are transported along the axons together. Further investigation revealed that a transport adaptor protein called Aplip1, which binds to RBP, is required for this movement. Siebert, Böhme et al. established the structure of the part of RBP where this interaction occurs, and found that mutating this region causes premature active zone scaffold assembly in the axonal part of the neuron. The interaction between RBP and Aplip1 is very strong, and this helps to prevent the scaffold assembling before it has reached the correct part of the neuron. Exactly how the transport adaptor and active zone protein are separated once they reach their final destination (the synapse) remains to be discovered. DOI:http://dx.doi.org/10.7554/eLife.06935.002
Collapse
Affiliation(s)
- Matthias Siebert
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Mathias A Böhme
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Jan H Driller
- Institute of Chemistry and Biochemisty/Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Husam Babikir
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Malou M Mampell
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Ulises Rey
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Niraja Ramesh
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Tanja Matkovic
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Nicole Holton
- Institute of Chemistry and Biochemisty/Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Suneel Reddy-Alla
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Fabian Göttfert
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Kamin
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christine Quentin
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Susan Klinedinst
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Till Fm Andlauer
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Stefan W Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Catherine A Collins
- Department of Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Markus C Wahl
- Institute of Chemistry and Biochemisty/Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Bernhard Loll
- Institute of Chemistry and Biochemisty/Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
35
|
Clark SA, Jespersen N, Woodward C, Barbar E. Multivalent IDP assemblies: Unique properties of LC8-associated, IDP duplex scaffolds. FEBS Lett 2015; 589:2543-51. [PMID: 26226419 DOI: 10.1016/j.febslet.2015.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/17/2015] [Accepted: 07/17/2015] [Indexed: 01/17/2023]
Abstract
A wide variety of subcellular complexes are composed of one or more intrinsically disordered proteins (IDPs) that are multivalent, flexible, and characterized by dynamic binding of diverse partner proteins. These multivalent IDP assemblies, of broad functional diversity, are classified here into five categories distinguished by the number of IDP chains and the arrangement of partner proteins in the functional complex. Examples of each category are summarized in the context of the exceptional molecular and biological properties of IDPs. One type - IDP duplex scaffolds - is considered in detail. Its unique features include parallel alignment of two IDP chains, formation of new self-associated domains, enhanced affinity for additional bivalent ligands, and ubiquitous binding of the hub protein LC8. For two IDP duplex scaffolds, dynein intermediate chain IC and nucleoporin Nup159, these duplex features, together with the inherent flexibility of IDPs, are central to their assembly and function. A new type of IDP-LC8 interaction, distributed binding of LC8 among multiple IDP recognition sites, is described for Nup159 assembly.
Collapse
Affiliation(s)
- Sarah A Clark
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Nathan Jespersen
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States
| | - Clare Woodward
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, St. Paul, MN 55108, United States
| | - Elisar Barbar
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
36
|
Abstract
To create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components. At individual axonal sites, extracellular interactions must be translated into intracellular signals that can incorporate mobile transport vesicles into the nascent presynaptic terminal. Even once the initial recruitment process is complete, the components and subsequent functionality of presynaptic terminals need to constantly be remodeled. Perhaps most remarkably, all of these processes need to be coordinated in space and time. In this review, we discuss how these dynamic cellular processes occur in neurons of the central nervous system in order to generate presynaptic terminals in the brain.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
37
|
Lorenzo DN, Badea A, Davis J, Hostettler J, He J, Zhong G, Zhuang X, Bennett V. A PIK3C3-ankyrin-B-dynactin pathway promotes axonal growth and multiorganelle transport. ACTA ACUST UNITED AC 2015; 207:735-52. [PMID: 25533844 PMCID: PMC4274267 DOI: 10.1083/jcb.201407063] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Interactions between ankyrin-B and both dynactin and phosphatidylinositol 3-phosphate lipids promote fast axonal transport of organelles. Axon growth requires long-range transport of organelles, but how these cargoes recruit their motors and how their traffic is regulated are not fully resolved. In this paper, we identify a new pathway based on the class III PI3-kinase (PIK3C3), ankyrin-B (AnkB), and dynactin, which promotes fast axonal transport of synaptic vesicles, mitochondria, endosomes, and lysosomes. We show that dynactin associates with cargo through AnkB interactions with both the dynactin subunit p62 and phosphatidylinositol 3-phosphate (PtdIns(3)P) lipids generated by PIK3C3. AnkB knockout resulted in shortened axon tracts and marked reduction in membrane association of dynactin and dynein, whereas it did not affect the organization of spectrin–actin axonal rings imaged by 3D-STORM. Loss of AnkB or of its linkages to either p62 or PtdIns(3)P or loss of PIK3C3 all impaired organelle transport and particularly retrograde transport in hippocampal neurons. Our results establish new functional relationships between PIK3C3, dynactin, and AnkB that together promote axonal transport of organelles and are required for normal axon length.
Collapse
Affiliation(s)
- Damaris Nadia Lorenzo
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| | - Alexandra Badea
- Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| | - Jonathan Davis
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| | - Janell Hostettler
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| | - Jiang He
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138
| | - Guisheng Zhong
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138 Department of Chemistry and Chemical Biology and Department of Physics, Harvard University, Cambridge, MA 02138
| | - Vann Bennett
- Howard Hughes Medical Institute, Chevy Chase, MD 20815 Department of Biochemistry and Department of Radiology, Duke University, Durham, NC 27708
| |
Collapse
|
38
|
Ivanova D, Dirks A, Montenegro-Venegas C, Schöne C, Altrock WD, Marini C, Frischknecht R, Schanze D, Zenker M, Gundelfinger ED, Fejtova A. Synaptic activity controls localization and function of CtBP1 via binding to Bassoon and Piccolo. EMBO J 2015; 34:1056-77. [PMID: 25652077 DOI: 10.15252/embj.201488796] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 01/08/2015] [Indexed: 11/09/2022] Open
Abstract
Persistent experience-driven adaptation of brain function is associated with alterations in gene expression patterns, resulting in structural and functional neuronal remodeling. How synaptic activity-in particular presynaptic performance-is coupled to gene expression in nucleus remains incompletely understood. Here, we report on a role of CtBP1, a transcriptional co-repressor enriched in presynapses and nuclei, in the activity-driven reconfiguration of gene expression in neurons. We demonstrate that presynaptic and nuclear pools of CtBP1 are interconnected and that both synaptic retention and shuttling of CtBP1 between cytoplasm and nucleus are co-regulated by neuronal activity. Finally, we show that CtBP1 is targeted and/or anchored to presynapses by direct interaction with the active zone scaffolding proteins Bassoon and Piccolo. This association is regulated by neuronal activity via modulation of cellular NAD/NADH levels and restrains the size of the CtBP1 pool available for nuclear import, thus contributing to the control of activity-dependent gene expression. Our combined results reveal a mechanism for coupling activity-induced molecular rearrangements in the presynapse with reconfiguration of neuronal gene expression.
Collapse
Affiliation(s)
- Daniela Ivanova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany Research Group Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anika Dirks
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Cornelia Schöne
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Wilko D Altrock
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany Center for Behavioral Brain Science, Otto von Guericke University, Magdeburg, Germany
| | - Claudia Marini
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Renato Frischknecht
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany Center for Behavioral Brain Science, Otto von Guericke University, Magdeburg, Germany
| | - Denny Schanze
- Institute for Human Genetics, Otto von Guericke University, Magdeburg, Germany
| | - Martin Zenker
- Institute for Human Genetics, Otto von Guericke University, Magdeburg, Germany
| | - Eckart D Gundelfinger
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany Center for Behavioral Brain Science, Otto von Guericke University, Magdeburg, Germany Molecular Neurobiology, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Anna Fejtova
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany Research Group Presynaptic Plasticity, Leibniz Institute for Neurobiology, Magdeburg, Germany Center for Behavioral Brain Science, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
39
|
Sainath R, Gallo G. The dynein inhibitor Ciliobrevin D inhibits the bidirectional transport of organelles along sensory axons and impairs NGF-mediated regulation of growth cones and axon branches. Dev Neurobiol 2014; 75:757-77. [PMID: 25404503 DOI: 10.1002/dneu.22246] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/11/2022]
Abstract
The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)-induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi-derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF-induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport.
Collapse
Affiliation(s)
- Rajiv Sainath
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, Pennsylvania, 19140
| | - Gianluca Gallo
- Department of Anatomy and Cell Biology, Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N Broad St, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
40
|
Bodor A, Radnai L, Hetényi C, Rapali P, Láng A, Kövér KE, Perczel A, Wahlgren WY, Katona G, Nyitray L. DYNLL2 dynein light chain binds to an extended linear motif of myosin 5a tail that has structural plasticity. Biochemistry 2014; 53:7107-22. [PMID: 25312846 DOI: 10.1021/bi500574z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
LC8 dynein light chains (DYNLL) are conserved homodimeric eukaryotic hub proteins that participate in diverse cellular processes. Among the binding partners of DYNLL2, myosin 5a (myo5a) is a motor protein involved in cargo transport. Here we provide a profound characterization of the DYNLL2 binding motif of myo5a in free and DYNLL2-bound form by using nuclear magnetic resonance spectroscopy, X-ray crystallography, and molecular dynamics simulations. In the free form, the DYNLL2 binding region, located in an intrinsically disordered domain of the myo5a tail, has a nascent helical character. The motif becomes structured and folds into a β-strand upon binding to DYNLL2. Despite differences of the myo5a sequence from the consensus binding motif, one peptide is accommodated in each of the parallel DYNLL2 binding grooves, as for all other known partners. Interestingly, while the core motif shows a similar interaction pattern in the binding groove as seen in other complexes, the flanking residues make several additional contacts, thereby lengthening the binding motif. The N-terminal extension folds back and partially blocks the free edge of the β-sheet formed by the binding motif itself. The C-terminal extension contacts the dimer interface and interacts with symmetry-related residues of the second myo5a peptide. The involvement of flanking residues of the core binding site of myo5a could modify the quaternary structure of the full-length myo5a and affect its biological functions. Our results deepen the knowledge of the diverse partner recognition of DYNLL proteins and provide an example of a Janus-faced linear motif.
Collapse
Affiliation(s)
- Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, and ‡Department of Biochemistry, Eötvös Loránd University , Budapest, 1117 Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Barbar E, Nyarko A. Polybivalency and disordered proteins in ordering macromolecular assemblies. Semin Cell Dev Biol 2014; 37:20-5. [PMID: 25263009 DOI: 10.1016/j.semcdb.2014.09.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/10/2014] [Accepted: 09/13/2014] [Indexed: 12/20/2022]
Abstract
Intrinsically disordered proteins (IDPs) are prevalent in macromolecular assemblies and are thought to mediate protein recognition in complex regulatory processes and signaling pathways. The formation of a polybivalent scaffold is a key process by which IDPs drive early steps in macromolecular assemblies. Three intrinsically disordered proteins, IC, Swallow and Nup159, are core components, respectively, of cytoplasmic dynein, bicoid mRNA localization apparatus, and nuclear pore complexes. In all three systems, the hub protein LC8 recognizes on the IDP, short linear motifs that are fully disordered in the apo form, but adopt a β-strand when bound to LC8. The IDP/LC8 complex forms a bivalent scaffold primed to bind additional bivalent ligands. Scaffold formation also promotes self-association and/or higher order organization of the IDP components at a site distant from LC8 binding. Rigorous thermodynamic analyses imply that association of additional bivalent ligands is driven by entropic effects where the first binding event is weak but subsequent binding of additional ligands occurs with higher affinity. Here, we review specific examples of macromolecular assemblies in which polybivalency of aligned IDP duplexes not only enhances binding affinity and results in formation of a stable complex but also compensates unfavorable steric and enthalpic interactions. We propose that polybivalent scaffold assembly involving IDPs and LC8-like proteins is a general process in the cell biology of a class of multi-protein structures that are stable yet fine-tuned for diverse cellular requirements.
Collapse
Affiliation(s)
- Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States.
| | - Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
42
|
Davydova D, Marini C, King C, Klueva J, Bischof F, Romorini S, Montenegro-Venegas C, Heine M, Schneider R, Schröder MS, Altrock WD, Henneberger C, Rusakov DA, Gundelfinger ED, Fejtova A. Bassoon specifically controls presynaptic P/Q-type Ca(2+) channels via RIM-binding protein. Neuron 2014; 82:181-94. [PMID: 24698275 DOI: 10.1016/j.neuron.2014.02.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2014] [Indexed: 12/11/2022]
Abstract
Voltage-dependent Ca(2+) channels (CaVs) represent the principal source of Ca(2+) ions that trigger evoked neurotransmitter release from presynaptic boutons. Ca(2+) influx is mediated mainly via CaV2.1 (P/Q-type) and CaV2.2 (N-type) channels, which differ in their properties. Their relative contribution to synaptic transmission changes during development and tunes neurotransmission during synaptic plasticity. The mechanism of differential recruitment of CaV2.1 and CaV2.2 to release sites is largely unknown. Here, we show that the presynaptic scaffolding protein Bassoon localizes specifically CaV2.1 to active zones via molecular interaction with the RIM-binding proteins (RBPs). A genetic deletion of Bassoon or an acute interference with Bassoon-RBP interaction reduces synaptic abundance of CaV2.1, weakens P/Q-type Ca(2+) current-driven synaptic transmission, and results in higher relative contribution of neurotransmission dependent on CaV2.2. These data establish Bassoon as a major regulator of the molecular composition of the presynaptic neurotransmitter release sites.
Collapse
Affiliation(s)
- Daria Davydova
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Claudia Marini
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Claire King
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Julia Klueva
- Molecular Physiology Group, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Ferdinand Bischof
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Stefano Romorini
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Carolina Montenegro-Venegas
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Martin Heine
- Molecular Physiology Group, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Romy Schneider
- Molecular Physiology Group, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Markus S Schröder
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Wilko D Altrock
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences and Medical Faculty, Otto von Guericke University, 39118 Magdeburg, Germany
| | - Christian Henneberger
- Institute of Neurology, University College London, London WC1N 3BG, UK; Institute of Cellular Neuroscience, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Dmitri A Rusakov
- Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Eckart D Gundelfinger
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences and Medical Faculty, Otto von Guericke University, 39118 Magdeburg, Germany.
| | - Anna Fejtova
- Department of Neurochemistry/Molecular Biology, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Presynaptic Plasticity Group, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| |
Collapse
|
43
|
Bury LA, Sabo SL. Dynamic mechanisms of neuroligin-dependent presynaptic terminal assembly in living cortical neurons. Neural Dev 2014; 9:13. [PMID: 24885664 PMCID: PMC4049477 DOI: 10.1186/1749-8104-9-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/12/2014] [Indexed: 12/23/2022] Open
Abstract
Background Synapse formation occurs when synaptogenic signals trigger coordinated development of pre and postsynaptic structures. One of the best-characterized synaptogenic signals is trans-synaptic adhesion. However, it remains unclear how synaptic proteins are recruited to sites of adhesion. In particular, it is unknown whether synaptogenic signals attract synaptic vesicle (SV) and active zone (AZ) proteins to nascent synapses or instead predominantly function to create sites that are capable of forming synapses. It is also unclear how labile synaptic proteins are at developing synapses after their initial recruitment. To address these issues, we used long-term, live confocal imaging of presynaptic terminal formation in cultured cortical neurons after contact with the synaptogenic postsynaptic adhesion proteins neuroligin-1 or SynCAM-1. Results Surprisingly, we find that trans-synaptic adhesion does not attract SV or AZ proteins nor alter their transport. In addition, although neurexin (the presynaptic partner of neuroligin) typically accumulates over the entire region of contact between axons and neuroligin-1-expressing cells, SV proteins selectively assemble at spots of enhanced neurexin clustering. The arrival and maintenance of SV proteins at these sites is highly variable over the course of minutes to hours, and this variability correlates with neurexin levels at individual synapses. Conclusions Together, our data support a model of synaptogenesis where presynaptic proteins are trapped at specific axonal sites, where they are stabilized by trans-synaptic adhesion signaling.
Collapse
Affiliation(s)
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
44
|
Barbar E, Nyarko A. NMR Characterization of Self-Association Domains Promoted by Interactions with LC8 Hub Protein. Comput Struct Biotechnol J 2014; 9:e201402003. [PMID: 24757501 PMCID: PMC3995210 DOI: 10.5936/csbj.201402003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 01/04/2023] Open
Abstract
Most proteins in interaction networks have a small number of partners, while a few, called hubs, participate in a large number of interactions and play a central role in cell homeostasis. One highly conserved hub is a protein called LC8 that was originally identified as an essential component of the multi-subunit complex dynein but later shown to be also critical in multiple protein complexes in diverse systems. What is intriguing about this hub protein is that it does not passively bind its various partners but emerging evidence suggests that LC8 acts as a dimerization engine that promotes self-association and/or higher order organization of its primarily disordered monomeric partners. This structural organization process does not require ATP but is triggered by long-range allosteric regulation initiated by LC8 binding a pair of disordered chains forming a bivalent or polybivalent scaffold. This review focuses on the role of LC8 in promoting self-association of two of its binding partners, a dynein intermediate chain and a non dynein protein called Swallow.
Collapse
Affiliation(s)
- Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
45
|
Moutin E, Compan V, Raynaud F, Clerté C, Bouquier N, Labesse G, Ferguson ML, Fagni L, Royer CA, Perroy J. Stoichiometry of scaffold complexes in living neurons - DLC2 as a dimerization engine for GKAP. J Cell Sci 2014; 127:3451-62. [DOI: 10.1242/jcs.145748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quantitative spatio-temporal characterization of protein interactions in living cells remains a major challenge facing modern biology. We have investigated in living neurons the spatial dependence of the stoichiometry of interactions between two core proteins of the NMDA receptor-associated scaffolding complex, GKAP and DLC2, using a novel variation of Fluorescence Fluctuation Microscopy called two-photon scanning Number and Brightness (sN&B). We found that dimerization of DLC2 was required for its interaction with GKAP, which in turn potentiated GKAP self-association. In dendritic shaft, the DLC2-GKAP hetero-oligomeric complexes were composed mainly of 2 DLC2 and 2 GKAP monomers, while in spines, the hetero-complexes were much larger, with an average of ∼16 DLC2 and ∼13 GKAP. Disruption of the GKAP-DLC2 interaction strongly destabilized the oligomers, decreasing the spine-preferential localization of GKAP and inhibiting NMDA receptor activity. Hence, DLC2 serves a hub function in the control of glutamatergic transmission via ordering of GKAP-containing complexes in dendritic spines. Beyond illuminating the role of DLC2–GKAP interactions in glutamergic signalling, these data underscore the power of the sN&B approach for quantitative spatio-temporal imaging of other important protein complexes.
Collapse
|
46
|
Ramírez-Franco J, Alonso B, Bartolomé-Martín D, Sánchez-Prieto J, Torres M. Studying synaptic efficiency by post-hoc immunolabelling. BMC Neurosci 2013; 14:127. [PMID: 24138605 PMCID: PMC3854067 DOI: 10.1186/1471-2202-14-127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/10/2013] [Indexed: 11/10/2022] Open
Abstract
Background In terms of vesicular recycling, synaptic efficiency is a key determinant of the fidelity of synaptic transmission. The ability of a presynaptic terminal to reuse its vesicular content is thought to be a signature of synaptic maturity and this process depends on the activity of several proteins that govern exo/endocytosis. Upon stimulation, individual terminals in networks of cultured cerebellar granule neurons exhibit heterogeneous exocytic responses, which reflect the distinct states of maturity and plasticity intrinsic to individual synaptic terminals. This dynamic scenario serves as the substrate for processes such as scaling, plasticity and synaptic weight redistribution. Presynaptic strength has been associated with the activity of several types of proteins, including the scaffolding proteins that form the active zone cytomatrix and the proteins involved in presynaptic exocytosis. Methods We have combined fluorescence imaging techniques using the styryl dye FM1-43 in primary cultures of cerebellar granule cells with subsequent post-hoc immunocytochemistry in order to study synaptic efficiency in terms of vesicular release. We describe a protocol to easily quantify these results with minimal user intervention. Results In this study we describe a technique that specifically correlates presynaptic activity with the levels of presynaptic markers. This method involves the use of the styryl dye FM1-43 to estimate the release capacity of a synaptic terminal, and the subsequent post-hoc immunolabelling of thousands of individual nerve terminals. We observed a strong correlation between the release capacity of the nerve terminal and the levels of the RIM1α but not the Munc13-1 protein in the active zone. Conclusions Our findings support those of previous studies and point out to RIM1α as a crucial factor in determining synaptic efficiency. These results also demonstrate that this technique is a useful tool to analyse the molecular differences underlying the heterogeneous responses exhibited by neuronal networks.
Collapse
Affiliation(s)
| | | | | | - José Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid 28040, Spain.
| | | |
Collapse
|
47
|
Perlson E, Hendricks AG, Lazarus JE, Ben-Yaakov K, Gradus T, Tokito M, Holzbaur ELF. Dynein interacts with the neural cell adhesion molecule (NCAM180) to tether dynamic microtubules and maintain synaptic density in cortical neurons. J Biol Chem 2013; 288:27812-24. [PMID: 23960070 DOI: 10.1074/jbc.m113.465088] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic dynein is well characterized as an organelle motor, but dynein also acts to tether and stabilize dynamic microtubule plus-ends in vitro. Here we identify a novel and direct interaction between dynein and the 180-kDa isoform of the neural cell adhesion molecule (NCAM). Optical trapping experiments indicate that dynein bound to beads via the NCAM180 interaction domain can tether projecting microtubule plus-ends. Live cell assays indicate that the NCAM180-dependent recruitment of dynein to the cortex leads to the selective stabilization of microtubules projecting to NCAM180 patches at the cell periphery. The dynein-NCAM180 interaction also enhances cell-cell adhesion in heterologous cell assays. Dynein and NCAM180 co-precipitate from mouse brain extract and from synaptosomal fractions, consistent with an endogenous interaction in neurons. Thus, we examined microtubule dynamics and synaptic density in primary cortical neurons. We find that depletion of NCAM, inhibition of the dynein-NCAM180 interaction, or dampening of microtubule dynamics with low dose nocodazole all result in significantly decreased in synaptic density. Based on these observations, we propose a working model for the role of dynein at the synapse, in which the anchoring of the motor to the cortex via binding to an adhesion molecule mediates the tethering of dynamic microtubule plus-ends to potentiate synaptic stabilization.
Collapse
Affiliation(s)
- Eran Perlson
- From the Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Many presynaptic transcripts have been observed in axons, yet their role in synapse development remains unknown. Using visually and pharmacologically isolated presynaptic terminals from dissociated rat hippocampal neurons, we found that ribosomes and β-catenin mRNA preferentially localize to recently formed boutons. Locally translated β-catenin accumulates at presynaptic terminals, where it regulates synaptic vesicle release dynamics. Thus, local translation of β-catenin is a newly described mechanism for axons to independently functionalize nerve terminals at great distances from cellular somata.
Collapse
|
49
|
Bórquez DA, Olmos C, Álvarez S, Di Genova A, Maass A, González-Billault C. Bioinformatic survey for new physiological substrates of Cyclin-dependent kinase 5. Genomics 2013; 101:221-8. [DOI: 10.1016/j.ygeno.2013.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/26/2012] [Accepted: 01/26/2013] [Indexed: 11/27/2022]
|
50
|
Schröder MS, Stellmacher A, Romorini S, Marini C, Montenegro-Venegas C, Altrock WD, Gundelfinger ED, Fejtova A. Regulation of presynaptic anchoring of the scaffold protein Bassoon by phosphorylation-dependent interaction with 14-3-3 adaptor proteins. PLoS One 2013; 8:e58814. [PMID: 23516560 PMCID: PMC3597591 DOI: 10.1371/journal.pone.0058814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/07/2013] [Indexed: 01/10/2023] Open
Abstract
The proper organization of the presynaptic cytomatrix at the active zone is essential for reliable neurotransmitter release from neurons. Despite of the virtual stability of this tightly interconnected proteinaceous network it becomes increasingly clear that regulated dynamic changes of its composition play an important role in the processes of synaptic plasticity. Bassoon, a core component of the presynaptic cytomatrix, is a key player in structural organization and functional regulation of presynaptic release sites. It is one of the most highly phosphorylated synaptic proteins. Nevertheless, to date our knowledge about functions mediated by any one of the identified phosphorylation sites of Bassoon is sparse. In this study, we have identified an interaction of Bassoon with the small adaptor protein 14-3-3, which depends on phosphorylation of the 14-3-3 binding motif of Bassoon. In vitro phosphorylation assays indicate that phosphorylation of the critical Ser-2845 residue of Bassoon can be mediated by a member of the 90-kDa ribosomal S6 protein kinase family. Elimination of Ser-2845 from the 14-3-3 binding motif results in a significant decrease of Bassoon's molecular exchange rates at synapses of living rat neurons. We propose that the phosphorylation-induced 14-3-3 binding to Bassoon modulates its anchoring to the presynaptic cytomatrix. This regulation mechanism might participate in molecular and structural presynaptic remodeling during synaptic plasticity.
Collapse
Affiliation(s)
- Markus S. Schröder
- Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Anne Stellmacher
- Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Stefano Romorini
- Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Claudia Marini
- Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Wilko D. Altrock
- Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
| | - Eckart D. Gundelfinger
- Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- * E-mail: (EDG); (AF)
| | - Anna Fejtova
- Department of Neurochemistry & Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- * E-mail: (EDG); (AF)
| |
Collapse
|