1
|
STARK RYAN. Protein-mediated interactions in the dynamic regulation of acute inflammation. BIOCELL 2023; 47:1191-1198. [PMID: 37261220 PMCID: PMC10231872 DOI: 10.32604/biocell.2023.027838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/09/2023] [Indexed: 06/02/2023]
Abstract
Protein-mediated interactions are the fundamental mechanism through which cells regulate health and disease. These interactions require physical contact between proteins and their respective targets of interest. These targets include not only other proteins but also nucleic acids and other important molecules as well. These proteins are often involved in multibody complexes that work dynamically to regulate cellular health and function. Various techniques have been adapted to study these important interactions, such as affinity-based assays, mass spectrometry, and fluorescent detection. The application of these techniques has led to a greater understanding of how protein interactions are responsible for both the instigation and resolution of acute inflammatory diseases. These pursuits aim to provide opportunities to target specific protein interactions to alleviate acute inflammation.
Collapse
Affiliation(s)
- RYAN STARK
- Department of Pediatric Critical Care Medicine, Vanderbilt University Medical Center, 2200 Children’s Way, 5121 Doctors’ Office Tower, Nashville, TN 37232-9075
| |
Collapse
|
2
|
Genome-wide mapping of genomic DNA damage: methods and implications. Cell Mol Life Sci 2021; 78:6745-6762. [PMID: 34463773 PMCID: PMC8558167 DOI: 10.1007/s00018-021-03923-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022]
Abstract
Exposures from the external and internal environments lead to the modification of genomic DNA, which is implicated in the cause of numerous diseases, including cancer, cardiovascular, pulmonary and neurodegenerative diseases, together with ageing. However, the precise mechanism(s) linking the presence of damage, to impact upon cellular function and pathogenesis, is far from clear. Genomic location of specific forms of damage is likely to be highly informative in understanding this process, as the impact of downstream events (e.g. mutation, microsatellite instability, altered methylation and gene expression) on cellular function will be positional—events at key locations will have the greatest impact. However, until recently, methods for assessing DNA damage determined the totality of damage in the genomic location, with no positional information. The technique of “mapping DNA adductomics” describes the molecular approaches that map a variety of forms of DNA damage, to specific locations across the nuclear and mitochondrial genomes. We propose that integrated comparison of this information with other genome-wide data, such as mutational hotspots for specific genotoxins, tumour-specific mutation patterns and chromatin organisation and transcriptional activity in non-cancerous lesions (such as nevi), pre-cancerous conditions (such as polyps) and tumours, will improve our understanding of how environmental toxins lead to cancer. Adopting an analogous approach for non-cancer diseases, including the development of genome-wide assays for other cellular outcomes of DNA damage, will improve our understanding of the role of DNA damage in pathogenesis more generally.
Collapse
|
3
|
Rehó B, Lau L, Mocsár G, Müller G, Fadel L, Brázda P, Nagy L, Tóth K, Vámosi G. Simultaneous Mapping of Molecular Proximity and Comobility Reveals Agonist-Enhanced Dimerization and DNA Binding of Nuclear Receptors. Anal Chem 2020; 92:2207-2215. [PMID: 31870146 DOI: 10.1021/acs.analchem.9b04902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Single Plane Illumination Microscopy (SPIM) revolutionized time lapse imaging of live cells and organisms due to its high speed and reduced photodamage. Quantitative mapping of molecular (co)mobility by fluorescence (cross-)correlation spectroscopy (F(C)CS) in a SPIM has been introduced to reveal molecular diffusion and binding. A complementary aspect of interactions is proximity, which can be studied by Förster resonance energy transfer (FRET). Here, we extend SPIM-FCCS by alternating laser excitation, which reduces false positive cross-correlation and facilitates comapping of FRET. Thus, different aspects of interacting systems can be studied simultaneously, and molecular subpopulations can be discriminated by multiparameter analysis. After demonstrating the benefits of the method on the AP-1 transcription factor, the dimerization and DNA binding behavior of retinoic acid receptor (RAR) and retinoid X receptor (RXR) is revealed, and an extension of the molecular switch model of the nuclear receptor action is proposed. Our data imply that RAR agonist enhances RAR-RXR heterodimerization, and chromatin binding/dimerization are positively correlated. We also propose a ligand induced conformational change bringing the N-termini of RAR and RXR closer together. The RXR agonist increased homodimerization of RXR suggesting that RXR may act as an autonomous transcription factor.
Collapse
Affiliation(s)
- Bálint Rehó
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Lukas Lau
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Gabriele Müller
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - Lina Fadel
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - Péter Brázda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary.,Johns Hopkins University School of Medicine , Department of Medicine and Biological Chemistry, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital , 600 Fifth Street South Saint Petersburg , Florida 33701-4634 , United States
| | - Katalin Tóth
- Division Biophysics of Macromolecules , German Cancer Research Center , Im Neuenheimer Feld 280 , D-69120 Heidelberg , Germany
| | - György Vámosi
- Department of Biophysics and Cell Biology, Doctoral School of Molecular Medicine, Faculty of Medicine , University of Debrecen , Egyetem tér 1 , H-4032 Debrecen , Hungary
| |
Collapse
|
4
|
Uphoff S. A Quantitative Model Explains Single-Cell Dynamics of the Adaptive Response in Escherichia coli. Biophys J 2019; 117:1156-1165. [PMID: 31466698 PMCID: PMC6818145 DOI: 10.1016/j.bpj.2019.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
DNA damage caused by alkylating chemicals induces an adaptive response in Escherichia coli that increases the tolerance of cells to further damage. Signaling of the response occurs through irreversible methylation of the Ada protein, which acts as a DNA repair protein and damage sensor. Methylated Ada induces its own gene expression through a positive feedback loop. However, random fluctuations in the abundance of Ada jeopardize the reliability of the induction signal. I developed a quantitative model to test how gene expression noise and feedback amplification affect the fidelity of the adaptive response. A remarkably simple model accurately reproduced experimental observations from single-cell measurements of gene expression dynamics in a microfluidic device. Stochastic simulations showed that delays in the adaptive response are a direct consequence of the very low number of Ada molecules present to signal DNA damage. For cells that have zero copies of Ada, response activation becomes a memoryless process that is dictated by an exponential waiting time distribution between basal Ada expression events. Experiments also confirmed the model prediction that the strength of the adaptive response drops with an increasing growth rate of cells.
Collapse
Affiliation(s)
- Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
5
|
Cook PR, Marenduzzo D. Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations. Nucleic Acids Res 2019; 46:9895-9906. [PMID: 30239812 PMCID: PMC6212781 DOI: 10.1093/nar/gky763] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
Current models for the folding of the human genome see a hierarchy stretching down from chromosome territories, through A/B compartments and topologically-associating domains (TADs), to contact domains stabilized by cohesin and CTCF. However, molecular mechanisms underlying this folding, and the way folding affects transcriptional activity, remain obscure. Here we review physical principles driving proteins bound to long polymers into clusters surrounded by loops, and present a parsimonious yet comprehensive model for the way the organization determines function. We argue that clusters of active RNA polymerases and their transcription factors are major architectural features; then, contact domains, TADs and compartments just reflect one or more loops and clusters. We suggest tethering a gene close to a cluster containing appropriate factors—a transcription factory—increases the firing frequency, and offer solutions to many current puzzles concerning the actions of enhancers, super-enhancers, boundaries and eQTLs (expression quantitative trait loci). As a result, the activity of any gene is directly influenced by the activity of other transcription units around it in 3D space, and this is supported by Brownian-dynamics simulations of transcription factors binding to cognate sites on long polymers.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Davide Marenduzzo
- SUPA, School of Physics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
6
|
Single-molecule fluorescence microscopy of native macromolecular complexes. Curr Opin Struct Biol 2016; 41:225-232. [PMID: 27662375 DOI: 10.1016/j.sbi.2016.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Abstract
Macromolecular complexes consisting of proteins, lipids, and/or nucleic acids are ubiquitous in biological processes. Their composition, stoichiometry, order of assembly, and conformations can be heterogeneous or can change dynamically, making single-molecule studies best suited to measure these properties accurately. Recent single-molecule pull-down and other related approaches have combined the principles of conventional co-immunoprecipitation assay with single-molecule fluorescence microscopy to probe native macromolecular complexes. In this review, we present the advances in single-molecule pull-down methods and biological systems that have been investigated in such semi vivo manner.
Collapse
|
7
|
Benigni P, Marin R, Molano-Arevalo JC, Garabedian A, Wolff JJ, Ridgeway ME, Park MA, Fernandez-Lima F. Towards the Analysis of High Molecular Weight Proteins and Protein complexes using TIMS-MS. INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR ION MOBILITY SPECTROMETRY 2016; 19:95-104. [PMID: 27818614 PMCID: PMC5091298 DOI: 10.1007/s12127-016-0201-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 01/02/2023]
Abstract
In the present work, we demonstrate the potential and versatility of TIMS for the analysis of proteins, DNA-protein complexes and protein-protein complexes in their native and denatured states. In addition, we show that accurate CCS measurement are possible and in good agreement with previously reported CCS values using other IMS analyzers (<5% difference). The main challenges for the analysis of high mass proteins and protein complexes in the mobility and m/z domain are described. That is, the analysis of high molecular weight systems in their native state may require the use of higher electric fields or a compromise in the TIMS mobility resolution by reducing the bath gas velocity in order to effectively trap at lower electric fields. This is the first report of CCS measurements of high molecular weight biomolecules and biomolecular complexes (~ 150 kDa) using TIMS-MS.
Collapse
Affiliation(s)
- Paolo Benigni
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Rebecca Marin
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | - Alyssa Garabedian
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
| | | | | | - Melvin A. Park
- Bruker Daltonics, Inc., Billerica, Massachusetts 01821, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, USA
- Biomolecular Science Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
8
|
Qi W, Chen H, Xiao T, Wang R, Li T, Han L, Zeng X. Acetyltransferase p300 collaborates with chromodomain helicase DNA-binding protein 4 (CHD4) to facilitate DNA double-strand break repair. Mutagenesis 2015; 31:193-203. [PMID: 26546801 DOI: 10.1093/mutage/gev075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chromatin remodelling is critical for repairing DNA damage and maintaining genomic integrity. Previous studies have reported that histone acetyltransferase p300 and ATP-dependent chromatin remodeler chromodomain helicase DNA-binding protein 4 (CHD4) functions, respectively, in DNA double-strand breaks (DSBs) repair. But the physiological significance of their interaction remains elusive. Here, we showed that p300 and CHD4 were both recruited to the sites of DSBs. Their ablation led to impaired DSBs repair and sensitised cells to laser and the anti-cancer drug, etoposide. Using DR-GFP and EJ5-GFP reporter systems, we found that knockdown of p300 or CHD4 impaired the homologous recombination (HR) repair but no the non-homologous end joining (NHEJ) repair. Furthermore, p300 or CHD4 knockdown respectively suppressed the recruitment of replication protein A (RPA), a key protein for HR, to the DSB sites. In addition, immunofluorescence results showed that knockdown of p300 reduced the recruitment of CHD4 at DSB sites. In turn, CHD4 knockdown also decreased p300 assembly. Moreover, immunoprecipitation and purified protein pull down assay revealed that p300 physically interacted with CHD4 at DNA damage sites, and this interaction was dependent on the chromodomain and ATPase/helicase domain of CHD4 and the CH2, Bd and HAT domains of p300. These results indicate that p300 and CHD4 could function cooperatively at DSB sites and provide a new insight into the detailed crosstalk among the chromatin remodelling proteins.
Collapse
Affiliation(s)
- Wenjing Qi
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, China and Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Hongyu Chen
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, China and
| | - Ting Xiao
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, China and
| | - Ruoxi Wang
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, China and
| | - Ting Li
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, China and
| | - Liping Han
- Department of Bioscience, Changchun Normal University, Changchun, Jilin, China
| | - Xianlu Zeng
- Institute of Genetics and Cytology, School of Life Sciences, Northeast Normal University, #5268, Renmin Street, Changchun, Jilin, China and
| |
Collapse
|
9
|
Koster M, Snel B, Timmers H. Genesis of Chromatin and Transcription Dynamics in the Origin of Species. Cell 2015; 161:724-36. [DOI: 10.1016/j.cell.2015.04.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 11/15/2022]
|
10
|
Forcales SV. The BAF60c-MyoD complex poises chromatin for rapid transcription. BIOARCHITECTURE 2014; 2:104-109. [PMID: 22880151 PMCID: PMC3414383 DOI: 10.4161/bioa.20970] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chromatin remodeling by the SWI/SNF complex is required to activate the transcription of myogenic-specific genes. Our work addressed the details of how SWI/SNF is recruited to myogenic regulatory regions in response to differentiation signals. Surprisingly, the muscle determination factor MyoD and the SWI/SNF subunit BAF60c form a complex on the regulatory elements of MyoD-targeted genes in myogenic precursor cells. This Brg1-devoid MyoD-BAF60c complex flags the chromatin of myogenic-differentiation genes before transcription is activated. On differentiation, BAF60c phosphorylation on a conserved threonine by p38 α kinase promotes the incorporation of MyoD-BAF60c into a Brg1-based SWI/SNF complex, which remodels the chromatin and activates transcription of MyoD-target genes. Downregulation of BAF60c expression prevents MyoD access to the chromatin and the proper loading of an active myogenic transcriptosome preventing the expression of hundreds of myogenic genes. Our data support an unprecedented two-step model by which (1) pre-assembled BAF60c-MyoD complex poises the chromatin of myogenic genes for rapid transcription; (2) chromatin-bound BAF60c "senses" the myogenic differentiation cues and recruits an active SWI/SNF complex to remodel the chromatin allowing transcriptional activation.
Collapse
Affiliation(s)
- Sonia-Vanina Forcales
- Institute of Predictive and Personalized Medicine of Cancer; Badalona, Barcelona, Spain
| |
Collapse
|
11
|
Drachkova I, Savinkova L, Arshinova T, Ponomarenko M, Peltek S, Kolchanov N. The mechanism by which TATA-box polymorphisms associated with human hereditary diseases influence interactions with the TATA-binding protein. Hum Mutat 2014; 35:601-8. [PMID: 24616209 DOI: 10.1002/humu.22535] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/20/2014] [Indexed: 11/06/2022]
Abstract
SNPs in ТАТА boxes are the cause of monogenic diseases, contribute to a large number of complex diseases, and have implications for human sensitivity to external and internal environmental signals. The aim of this work was to explore the kinetic characteristics of the formation of human ТВР complexes with ТАТА boxes, in which the SNPs are associated with β-thalassemias of diverse severity, immunosuppression, neurological disorders, and so on. It has for the first time been demonstrated, using an electrophoretic mobility shift assay, that TBP interacts with SNP-containing ТАТА boxes with a significant (8-36-fold) decrease in TBP/ТАТА association rate constant (ka ) as compared with that in healthy people, a smaller decrease in dissociation rate constant (kd ) and changes in the half-lives of TBP/ТАТА complexes. Carriers of the -24G allele (rs 1800202T>G) in the TATA box of the triosephosphate isomerase gene promoter, associated with neurological and muscular disorders, were observed to have a 36-fold decrease in TBP/TATA association rate constant that are consistent with TPI deficiency shown for patients who carry this defective allele. The kinetic characteristics of TBP/ТАТА complexes obtained suggest that, at a molecular level, hereditary diseases are largely caused by changes in TBP/ТАТА association rates and these changes have a bearing on disease severity.
Collapse
Affiliation(s)
- Irina Drachkova
- Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
12
|
Robustness of DNA repair through collective rate control. PLoS Comput Biol 2014; 10:e1003438. [PMID: 24499930 PMCID: PMC3907289 DOI: 10.1371/journal.pcbi.1003438] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022] Open
Abstract
DNA repair and other chromatin-associated processes are carried out by enzymatic macromolecular complexes that assemble at specific sites on the chromatin fiber. How the rate of these molecular machineries is regulated by their constituent parts is poorly understood. Here we quantify nucleotide-excision DNA repair in mammalian cells and find that, despite the pathways' molecular complexity, repair effectively obeys slow first-order kinetics. Theoretical analysis and data-based modeling indicate that these kinetics are not due to a singular rate-limiting step. Rather, first-order kinetics emerge from the interplay of rapidly and reversibly assembling repair proteins, stochastically distributing DNA lesion repair over a broad time period. Based on this mechanism, the model predicts that the repair proteins collectively control the repair rate. Exploiting natural cell-to-cell variability, we corroborate this prediction for the lesion-recognition factor XPC and the downstream factor XPA. Our findings provide a rationale for the emergence of slow time scales in chromatin-associated processes from fast molecular steps and suggest that collective rate control might be a widespread mode of robust regulation in DNA repair and transcription. The nucleotide-excision repair pathway removes mutagen-inflicted DNA lesions from the genome. Repair proteins recognize DNA lesions and form multi-protein complexes that catalyze the excision of the lesion and the re-synthesis of the excised part. Imaging the dynamics of fluorescently labeled repair proteins in living human cells has revealed that all factors continuously and rapidly exchange at repair sites. We asked how this dynamic mode of protein-complex assembly shapes the repair process. Measuring repair DNA synthesis in intact cells, we obtained a surprisingly simple result. Over the entire process, the rate is proportional to the amount of DNA lesions, where the proportionality factor is a single ‘slow’ rate constant. Such kinetic behavior is often regarded as evidence for a rate-limiting step, but we show here that it is an emergent property of the dynamic interplay of many repair proteins. As a consequence, the rate of DNA repair is a systems property that is controlled collectively by the expression levels of all repair factors. Given that transcription in living cells has similar dynamic features – rapidly exchanging components of the transcription machinery and slow bursts of mRNA synthesis – collective rate control might be a general property of chromatin-associated molecular machines.
Collapse
|
13
|
Papantonis A, Cook PR. Transcription factories: genome organization and gene regulation. Chem Rev 2013; 113:8683-705. [PMID: 23597155 DOI: 10.1021/cr300513p] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Argyris Papantonis
- Sir William Dunn School of Pathology, University of Oxford , South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
14
|
Schwabe A, Rybakova KN, Bruggeman FJ. Transcription stochasticity of complex gene regulation models. Biophys J 2013; 103:1152-61. [PMID: 22995487 DOI: 10.1016/j.bpj.2012.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/05/2012] [Indexed: 11/28/2022] Open
Abstract
Transcription is regulated by a multitude of factors that concertedly induce genes to switch between activity states. Eukaryotic transcription involves a multitude of complexes that sequentially assemble on chromatin under the influence of transcription factors and the dynamic state of chromatin. Prokaryotic transcription depends on transcription factors, sigma-factors, and, in some cases, on DNA looping. We present a stochastic model of transcription that considers these complex regulatory mechanisms. We coarse-grain the molecular details in such a way that the model can describe a broad class of gene-regulation mechanisms. We solve this model analytically for various measures of stochastic transcription and compare alternative gene-regulation designs. We find that genes with complex multiprotein regulation can have peaked burst-size distributions in contrast to the geometric distributions found for simple models of transcription regulation. Burst-size distributions are, in addition, shaped by mRNA degradation during transcription bursts. We derive the stochastic properties of genes in the limit of deterministic switch times. These genes typically have reduced transcription noise. Severe timescale separation between gene regulation and transcription initiation enhances noise and leads to bimodal mRNA copy number distributions. In general, complex mechanisms for gene regulation lead to nonexponential waiting-time distributions for gene switching and transcription initiation, which typically reduce noise in mRNA copy numbers and burst size. Finally, we discuss that qualitatively different gene regulation models can often fit the same experimental data on single-cell mRNA abundance even though they have qualitatively different burst-size statistics and regulatory parameters.
Collapse
Affiliation(s)
- Anne Schwabe
- Life Sciences, Centre for Mathematics and Computer Science (Centrum Wiskunde & Informatica), Amsterdam, The Netherlands
| | | | | |
Collapse
|
15
|
Euskirchen G, Auerbach RK, Snyder M. SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem 2012; 287:30897-905. [PMID: 22952240 PMCID: PMC3438922 DOI: 10.1074/jbc.r111.309302] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes.
Collapse
Affiliation(s)
- Ghia Euskirchen
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | |
Collapse
|
16
|
Golubev A. Transition probability in cell proliferation, stochasticity in cell differentiation, and the restriction point of the cell cycle in one package. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:87-96. [PMID: 22609564 DOI: 10.1016/j.pbiomolbio.2012.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 10/28/2022]
Abstract
Clonal cells are known to display stochastically varying interdivision times (IMT) and stochastic choices of cell fates. These features are suggested in the present paper to stem from discrete transitions of genes between different modes of their engagement in transcription. These transitions are explained by stochastic events of assembly/disassembly of huge ensembles of transcription factors needed to built-up gene-specific transcription preinitiation complexes (PIC). The time required to assemble a PIC at a gene promoter by random collisions of numerous proteins may be long enough to be comparable with the cell cycle. Independently published findings are reviewed to show that active genes may display discontinuous patterns of transcriptional output consistent with stochastically varying periods of PIC presence or absence at their promoters, and that these periods may reach several hours. This timescale matches the time needed for synchronised clonal cells to pass the restriction point (RP) of the cell cycle. RP is suggested to correspond to cell state where cell fate is determined by competing discrete transcriptional events. Cell fate choice depends on the event that, by chance, has outpaced other events able to commit the cell to alternative fates. Simple modelling based on these premises is consistent with general features of cell kinetics, including RP passage dependance on mitogenic stimulation, IMT distributions conformance to exponentially modified Gaussian, the limited proliferative potential of untransformed cells, relationships between changes in cell proliferation and differentiation, and bimodal distributions of cells over expression levels of genes involved in stem cell differentiation.
Collapse
Affiliation(s)
- A Golubev
- Research Institute for Experimental Medicine, Saint-Petersburg, Russia.
| |
Collapse
|
17
|
A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO J 2012; 31:2511-27. [PMID: 22531782 DOI: 10.1038/emboj.2012.104] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 03/23/2012] [Indexed: 11/08/2022] Open
Abstract
The ubiquitin ligases RNF8 and RNF168 orchestrate DNA damage signalling through the ubiquitylation of histone H2A and the recruitment of downstream repair factors. Here, we demonstrate that RNF8, but not RNF168 or the canonical H2A ubiquitin ligase RNF2, mediates extensive chromatin decondensation. Our data show that CHD4, the catalytic subunit of the NuRD complex, interacts with RNF8 and is essential for RNF8-mediated chromatin unfolding. The chromatin remodelling activity of CHD4 promotes efficient ubiquitin conjugation and assembly of RNF168 and BRCA1 at DNA double-strand breaks. Interestingly, RNF8-mediated recruitment of CHD4 and subsequent chromatin remodelling were independent of the ubiquitin-ligase activity of RNF8, but involved a non-canonical interaction with the forkhead-associated (FHA) domain. Our study reveals a new mechanism of chromatin remodelling-assisted ubiquitylation, which involves the cooperation between CHD4 and RNF8 to create a local chromatin environment that is permissive to the assembly of checkpoint and repair machineries at DNA lesions.
Collapse
|
18
|
Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, Mullenders LH, Dantuma NP. DDB2 promotes chromatin decondensation at UV-induced DNA damage. ACTA ACUST UNITED AC 2012; 197:267-81. [PMID: 22492724 PMCID: PMC3328393 DOI: 10.1083/jcb.201106074] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its role in DNA lesion recognition, the damaged DNA-binding protein DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Golubev A. Genes at work in random bouts: stochastically discontinuous gene activity makes cell cycle duration and cell fate decisions variable, thus providing for stem cells plasticity. Bioessays 2012; 34:311-9. [PMID: 22323313 DOI: 10.1002/bies.201100119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell interdivision periods (IDP) in homogenous cell populations vary stochastically. Another aspect of probabilistic cell behavior is randomness in cell differentiation. These features are suggested to result from competing stochastic events of assembly/disassembly of the transcription pre-initiation complex (PIC) at gene promoters. The time needed to assemble a proper PIC from different proteins, which must be numerous enough to make their combination gene specific, may be comparable to the IDP. Nascent mRNA visualization at defined genes and inferences from protein level fluctuations in single cells suggest that some genes do operate in this way. The onset of mRNA production by such genes may miss the time windows provided by the cell cycle, resulting in cells differentiating into those in which the respective mRNAs are either present or absent. This creates a way to generate cell phenotype diversity in multicellular organisms.
Collapse
Affiliation(s)
- Alexey Golubev
- Research Institute for Experimental Medicine, Saint-Petersburg, Russia.
| |
Collapse
|
20
|
Assembly of the transcription machinery: ordered and stable, random and dynamic, or both? Chromosoma 2011; 120:533-45. [PMID: 22048163 DOI: 10.1007/s00412-011-0340-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 01/12/2023]
Abstract
The assembly of the transcription machinery is a key step in gene activation, but even basic details of this process remain unclear. Here we discuss the apparent discrepancy between the classic sequential assembly model based mostly on biochemistry and an emerging dynamic assembly model based mostly on fluorescence microscopy. The former model favors a stable transcription complex with subunits that cooperatively assemble in order, whereas the latter model favors an unstable complex with subunits that may assemble more randomly. To confront this apparent discrepancy, we review the merits and drawbacks of the different experimental approaches and list potential biasing factors that could be responsible for the different interpretations of assembly. We then discuss how these biases might be overcome in the future with improved experiments or new techniques. Finally, we discuss how kinetic models for assembly may help resolve the ordered and stable vs. random and dynamic assembly debate.
Collapse
|
21
|
Chung I, Leonhardt H, Rippe K. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J Cell Sci 2011; 124:3603-18. [PMID: 22045732 DOI: 10.1242/jcs.084681] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Telomerase-negative tumor cells use an alternative lengthening of telomeres (ALT) pathway that involves DNA recombination and repair to maintain their proliferative potential. The cytological hallmark of this process is the accumulation of promyelocytic leukemia (PML) nuclear protein at telomeric DNA to form ALT-associated PML bodies (APBs). Here, the de novo formation of a telomeric PML nuclear subcompartment was investigated by recruiting APB protein components. We show that functionally distinct proteins were able to initiate the formation of bona fide APBs with high efficiency in a self-organizing and self-propagating manner. These included: (1) PML and Sp100 as the constituting components of PML nuclear bodies, (2) telomere repeat binding factors 1 and 2 (TRF1 and TRF2, respectively), (3) the DNA repair protein NBS1 and (4) the SUMO E3 ligase MMS21, as well as the isolated SUMO1 domain, through an interacting domain of another protein factor. By contrast, the repair factors Rad9, Rad17 and Rad51 were less efficient in APB nucleation but were recruited to preassembled APBs. The artificially created APBs induced telomeric extension through a DNA repair mechanism, as inferred from their colocalization with sites of non-replicative DNA synthesis and histone H2A.X phosphorylation, and an increase of the telomere repeat length. These activities were absent after recruitment of the APB factors to a pericentric locus and establish APBs as functional intermediates of the ALT pathway.
Collapse
Affiliation(s)
- Inn Chung
- German Cancer Research Center & BioQuant, Research Group Genome Organization & Function, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
22
|
Lukas J, Lukas C, Bartek J. More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance. Nat Cell Biol 2011; 13:1161-9. [PMID: 21968989 DOI: 10.1038/ncb2344] [Citation(s) in RCA: 488] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following the discovery in 1998 of γ-H2AX, the first histone modification induced by DNA damage, interest in the changes to chromatin induced by DNA damage has exploded, and a vast amount of information has been generated. However, there has been a discrepancy between our rapidly advancing knowledge of how chromatin responds to DNA damage and the understanding of why cells mobilize large segments of chromatin to protect the genome against destabilizing effects posed by tiny DNA lesions. Recent research has provided insights into these issues and suggests that chromatin responses induced by DNA damage are not simply the accumulation of 'nuclear foci' but are mechanisms required to guard genome integrity.
Collapse
Affiliation(s)
- Jiri Lukas
- Centre for Genotoxic Stress Research, Institute of Cancer Biology, Danish Cancer Society, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
23
|
Abstract
The cell nucleus is responsible for the storage, expression, propagation, and maintenance of the genetic material it contains. Highly organized macromolecular complexes are required for these processes to occur faithfully in an extremely crowded nuclear environment. In addition to chromosome territories, the nucleus is characterized by the presence of nuclear substructures, such as the nuclear envelope, the nucleolus, and other nuclear bodies. Other smaller structural entities assemble on chromatin in response to required functions including RNA transcription, DNA replication, and DNA repair. Experiments in living cells over the last decade have revealed that many DNA binding proteins have very short residence times on chromatin. These observations have led to a model in which the assembly of nuclear macromolecular complexes is based on the transient binding of their components. While indeed most nuclear proteins are highly dynamic, we found after an extensive survey of the FRAP literature that an important subset of nuclear proteins shows either very slow turnover or complete immobility. These examples provide compelling evidence for the establishment of stable protein complexes in the nucleus over significant fractions of the cell cycle. Stable interactions in the nucleus may, therefore, contribute to the maintenance of genome integrity. Based on our compilation of FRAP data, we propose an extension of the existing model for nuclear organization which now incorporates stable interactions. Our new “induced stability” model suggests that self-organization, self-assembly, and assisted assembly contribute to nuclear architecture and function.
Collapse
|
24
|
Abstract
Fluorescent protein labelling, as well as impressive progress in live cell imaging have revolutionised the view on how essential nuclear functions like gene transcription regulation and DNA repair are organised. Here, we address questions like how DNA-interacting molecules find and bind their target sequences in the vast amount of DNA. In addition, we discuss methods that have been developed for quantitative analysis of data from fluorescence recovery after photobleaching experiments (FRAP).
Collapse
|
25
|
Abstract
Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms that occur in specific subnuclear structures, NER is not confined to nuclear foci, which has severely hampered the analysis of its arrangement in time and space. In this review the recently developed tools to study the dynamic molecular transactions between the NER factors and the chromatin template are summarized. First, different procedures to inflict DNA damage in a part of the cell nucleus are discussed. In addition, technologies to measure protein dynamics of NER factors tagged with the green fluorescent protein (GFP) will be reviewed. Most of the dynamic parameters of GFP-tagged NER factors are deduced from different variants of 'fluorescence recovery after photobleaching' (FRAP) experiments and FRAP analysis procedures will be briefly evaluated. The combination of local damage induction, genetic tagging of repair factors with GFP and microscopy innovations have provided the basis for the determination of NER kinetics within living mammalian cells. These new cell biological approaches have disclosed a highly dynamic arrangement of NER factors that assemble in an orderly fashion on damaged DNA. The spatio-temporal analysis tools developed for the study of NER and the kinetic model derived from these studies can serve as a paradigm for the understanding of other chromatin-associated processes.
Collapse
Affiliation(s)
- Wim Vermeulen
- Department of Genetics, Erasmus University Medical Center, GE Rotterdam, The Netherlands.
| |
Collapse
|
26
|
Euskirchen GM, Auerbach RK, Davidov E, Gianoulis TA, Zhong G, Rozowsky J, Bhardwaj N, Gerstein MB, Snyder M. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches. PLoS Genet 2011; 7:e1002008. [PMID: 21408204 PMCID: PMC3048368 DOI: 10.1371/journal.pgen.1002008] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/04/2011] [Indexed: 12/22/2022] Open
Abstract
A systems understanding of nuclear organization and events is critical for determining how cells divide, differentiate, and respond to stimuli and for identifying the causes of diseases. Chromatin remodeling complexes such as SWI/SNF have been implicated in a wide variety of cellular processes including gene expression, nuclear organization, centromere function, and chromosomal stability, and mutations in SWI/SNF components have been linked to several types of cancer. To better understand the biological processes in which chromatin remodeling proteins participate, we globally mapped binding regions for several components of the SWI/SNF complex throughout the human genome using ChIP-Seq. SWI/SNF components were found to lie near regulatory elements integral to transcription (e.g. 5′ ends, RNA Polymerases II and III, and enhancers) as well as regions critical for chromosome organization (e.g. CTCF, lamins, and DNA replication origins). Interestingly we also find that certain configurations of SWI/SNF subunits are associated with transcripts that have higher levels of expression, whereas other configurations of SWI/SNF factors are associated with transcripts that have lower levels of expression. To further elucidate the association of SWI/SNF subunits with each other as well as with other nuclear proteins, we also analyzed SWI/SNF immunoprecipitated complexes by mass spectrometry. Individual SWI/SNF factors are associated with their own family members, as well as with cellular constituents such as nuclear matrix proteins, key transcription factors, and centromere components, implying a ubiquitous role in gene regulation and nuclear function. We find an overrepresentation of both SWI/SNF-associated regions and proteins in cell cycle and chromosome organization. Taken together the results from our ChIP and immunoprecipitation experiments suggest that SWI/SNF facilitates gene regulation and genome function more broadly and through a greater diversity of interactions than previously appreciated. Genetic information and programming are not entirely contained in DNA sequence but are also governed by chromatin structure. Gaining a greater understanding of chromatin remodeling complexes can bridge gaps between processes in the genome and the epigenome and can offer insights into diseases such as cancer. We identified targets of the chromatin remodeling complex, SWI/SNF, on a genome-wide scale using ChIP-Seq. We also identify proteins that co-purify with its various components via immunoprecipitation combined with mass spectrometry. By integrating these newly-identified regions with a combination of novel and published data sources, we identify pathways and cellular compartments in which SWI/SNF plays a major role as well as discern general characteristics of SWI/SNF target sites. Our parallel evaluations of multiple SWI/SNF factors indicate that these subunits are found in highly dynamic and combinatorial assemblies. Our study presents the first genome-wide and unified view of multiple SWI/SNF components and also provides a valuable resource to the scientific community as an important data source to be integrated with future genomic and epigenomic studies.
Collapse
Affiliation(s)
- Ghia M. Euskirchen
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Raymond K. Auerbach
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Eugene Davidov
- PerkinElmer, Shelton, Connecticut, United States of America
| | - Tara A. Gianoulis
- Department of Genetics and Wyss Institute for Bio-Inspired Engineering, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guoneng Zhong
- Yale Center for Medical Informatics, Yale University, New Haven, Connecticut, United States of America
| | - Joel Rozowsky
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Nitin Bhardwaj
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Mark B. Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
27
|
Sung MH, McNally JG. Live cell imaging and systems biology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:167-82. [PMID: 20730797 PMCID: PMC2992103 DOI: 10.1002/wsbm.108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Much of the experimental data used to construct mathematical models of molecular networks are derived from in vitro measurements. However, there is increasing evidence that in vitro measurements fail to capture both the complexity and the individuality found in single, living cells. These limitations can be overcome by live cell microscopy which is evolving to enable in vivo biochemistry. Here, we survey the current capabilities of live cell microscopy and illustrate how a number of different imaging approaches could be applied to analyze a specific molecular network. We argue that incorporation of such quantitative live-cell imaging methods is critical for the progress of systems biology.
Collapse
|
28
|
Abstract
Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required.
Collapse
|
29
|
Asaithamby A, Chen DJ. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res 2010; 711:87-99. [PMID: 21126526 DOI: 10.1016/j.mrfmmm.2010.11.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/29/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023]
Abstract
Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.
Collapse
Affiliation(s)
- Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| | | |
Collapse
|
30
|
Salazar C, Brümmer A, Alberghina L, Höfer T. Timing control in regulatory networks by multisite protein modifications. Trends Cell Biol 2010; 20:634-41. [PMID: 20869247 DOI: 10.1016/j.tcb.2010.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/09/2010] [Accepted: 08/24/2010] [Indexed: 01/08/2023]
Abstract
Computational and experimental studies have yielded quantitative insights into the role for multisite phosphorylation, and other protein modifications, in cell function. This work has emphasized the creation of thresholds and switches for cellular decisions. To date, the dynamics of phosphorylation events have been disregarded yet could be equally relevant for cell function. Here, we discuss theoretical predictions about the kinetic functions of multisite phosphorylation in regulatory networks and how these predictions relate to experimental findings. Using DNA replication as an example, we demonstrate that multisite phosphorylations can support coherent origin firing and robustness against rereplication. We suggest that multisite protein modifications provide a molecular mechanism to robustly time cellular events in the cell cycle, the circadian clock and signal transduction.
Collapse
Affiliation(s)
- Carlos Salazar
- Research Group Modeling of Biological Systems, German Cancer Research Center and BioQuant Center, Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | | | | | |
Collapse
|
31
|
Luijsterburg MS, von Bornstaedt G, Gourdin AM, Politi AZ, Moné MJ, Warmerdam DO, Goedhart J, Vermeulen W, van Driel R, Höfer T. Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair. ACTA ACUST UNITED AC 2010; 189:445-63. [PMID: 20439997 PMCID: PMC2867314 DOI: 10.1083/jcb.200909175] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computational modeling and quantitative analysis show that although accumulation of repair complexes can take hours, the individual components rapidly exchange between the nucleoplasm and DNA damage sites. To understand how multiprotein complexes assemble and function on chromatin, we combined quantitative analysis of the mammalian nucleotide excision DNA repair (NER) machinery in living cells with computational modeling. We found that individual NER components exchange within tens of seconds between the bound state in repair complexes and the diffusive state in the nucleoplasm, whereas their net accumulation at repair sites evolves over several hours. Based on these in vivo data, we developed a predictive kinetic model for the assembly and function of repair complexes. DNA repair is orchestrated by the interplay of reversible protein-binding events and progressive enzymatic modifications of the chromatin substrate. We demonstrate that faithful recognition of DNA lesions is time consuming, whereas subsequently, repair complexes form rapidly through random and reversible assembly of NER proteins. Our kinetic analysis of the NER system reveals a fundamental conflict between specificity and efficiency of chromatin-associated protein machineries and shows how a trade off is negotiated through reversibility of protein binding.
Collapse
|
32
|
Tanner TM, Denayer S, Geverts B, Tilborgh NV, Kerkhofs S, Helsen C, Spans L, Dubois V, Houtsmuller AB, Claessens F, Haelens A. A 629RKLKK633 motif in the hinge region controls the androgen receptor at multiple levels. Cell Mol Life Sci 2010; 67:1919-27. [PMID: 20186458 PMCID: PMC11115488 DOI: 10.1007/s00018-010-0302-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/14/2010] [Accepted: 02/02/2010] [Indexed: 12/01/2022]
Abstract
The androgen receptor protein has specific domains involved in DNA binding, ligand binding, and transactivation, whose activities need to be integrated during transcription activation. The hinge region, more particular a (629)RKLKK(633) motif, seems to play a crucial role in this process. Indeed, although the motif is not part of the DNA-binding domain, its positive residues are involved in optimal DNA binding and nuclear translocation as shown by mutation analysis. When the mutated ARs are forced into the nucleus, however, the residues seem to play different roles in transactivation. Moreover, we show by FRAP analysis that during activation, the AR is distributed in the nucleus in a mobile and two immobile fractions, and that mutations in the (629)RKLKK(633) motif affect the distribution of the AR over these three intranuclear fractions. Taken together, the (629)RKLKK(633) motif is a multifunctional motif that integrates nuclear localization, receptor stability, DNA binding, transactivation potential and intranuclear mobility.
Collapse
Affiliation(s)
- Tamzin M. Tanner
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Sarah Denayer
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Bart Geverts
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Nora Van Tilborgh
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Stefanie Kerkhofs
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Christine Helsen
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Lien Spans
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Vanessa Dubois
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Adriaan B. Houtsmuller
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC, 3000 CA Rotterdam, The Netherlands
| | - Frank Claessens
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| | - Annemie Haelens
- Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, Catholic University of Leuven, Campus Gasthuisberg O&N1, Herestraat 49, Box 901, 3000 Leuven, Belgium
| |
Collapse
|
33
|
Brümmer A, Salazar C, Zinzalla V, Alberghina L, Höfer T. Mathematical modelling of DNA replication reveals a trade-off between coherence of origin activation and robustness against rereplication. PLoS Comput Biol 2010; 6:e1000783. [PMID: 20485558 PMCID: PMC2869307 DOI: 10.1371/journal.pcbi.1000783] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 04/13/2010] [Indexed: 01/08/2023] Open
Abstract
Eukaryotic genomes are duplicated from multiple replication origins exactly once per cell cycle. In Saccharomyces cerevisiae, a complex molecular network has been identified that governs the assembly of the replication machinery. Here we develop a mathematical model that links the dynamics of this network to its performance in terms of rate and coherence of origin activation events, number of activated origins, the resulting distribution of replicon sizes and robustness against DNA rereplication. To parameterize the model, we use measured protein expression data and systematically generate kinetic parameter sets by optimizing the coherence of origin firing. While randomly parameterized networks yield unrealistically slow kinetics of replication initiation, networks with optimized parameters account for the experimentally observed distribution of origin firing times. Efficient inhibition of DNA rereplication emerges as a constraint that limits the rate at which replication can be initiated. In addition to the separation between origin licensing and firing, a time delay between the activation of S phase cyclin-dependent kinase (S-Cdk) and the initiation of DNA replication is required for preventing rereplication. Our analysis suggests that distributive multisite phosphorylation of the S-Cdk targets Sld2 and Sld3 can generate both a robust time delay and contribute to switch-like, coherent activation of replication origins. The proposed catalytic function of the complex formed by Dpb11, Sld3 and Sld2 strongly enhances coherence and robustness of origin firing. The model rationalizes how experimentally observed inefficient replication from fewer origins is caused by premature activation of S-Cdk, while premature activity of the S-Cdk targets Sld2 and Sld3 results in DNA rereplication. Thus the model demonstrates how kinetic deregulation of the molecular network governing DNA replication may result in genomic instability.
Collapse
Affiliation(s)
- Anneke Brümmer
- Research Group Modelling of Biological Systems (B086), German Cancer Research Center, Heidelberg, Germany
- BioQuant Center, Heidelberg, Germany
| | - Carlos Salazar
- Research Group Modelling of Biological Systems (B086), German Cancer Research Center, Heidelberg, Germany
- BioQuant Center, Heidelberg, Germany
| | | | - Lilia Alberghina
- Department of Biotechnology and Biosciences, Università degli Studi di Milano-Bicocca, Milan, Italy
- * E-mail: (LA); (TH)
| | - Thomas Höfer
- Research Group Modelling of Biological Systems (B086), German Cancer Research Center, Heidelberg, Germany
- BioQuant Center, Heidelberg, Germany
- * E-mail: (LA); (TH)
| |
Collapse
|
34
|
Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol 2010; 395:1-10. [PMID: 19852969 DOI: 10.1016/j.jmb.2009.10.031] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 09/30/2009] [Accepted: 10/14/2009] [Indexed: 12/26/2022]
Abstract
A model for all genomes involving one major architectural motif is presented: DNA or chromatin loops are tethered to "factories" through the transcription machinery-a polymerase (active or inactive) or its transcription factors (activators or repressors). These loops appear and disappear as polymerases initiate and terminate (and as factors bind and dissociate), so the structure is ever-changing and self-organizing. This model is parsimonious, detailed (and so easily tested), and incorporates elements found in various other models.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
35
|
Lenser T, Weisshart K, Ulbricht T, Klement K, Hemmerich P. Fluorescence Fluctuation Microscopy to Reveal 3D Architecture and Function in the Cell Nucleus. Methods Cell Biol 2010; 98:2-33. [DOI: 10.1016/s0091-679x(10)98001-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
The spliceosome: a self-organized macromolecular machine in the nucleus? Trends Cell Biol 2009; 19:375-84. [DOI: 10.1016/j.tcb.2009.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/04/2009] [Accepted: 05/08/2009] [Indexed: 12/17/2022]
|