1
|
Matskova L, Zheng S, Kashuba E, Ernberg I, Aspenström P. MTSS1: beyond the integration of actin and membrane dynamics. Cell Mol Life Sci 2024; 81:472. [PMID: 39625546 PMCID: PMC11615175 DOI: 10.1007/s00018-024-05511-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
MTSS1 is a ubiquitously expressed intracellular protein known mainly for its involvement in basic cellular processes, such as the regulation of actin organization and membrane architecture. MTSS1 has attracted much attention for its role as a tumor suppressor, being absent or expressed at reduced levels in advanced and metastasizing cancers. Occasionally, MTSS1 is, instead, upregulated in metastasis and, in some cases, even in primary tumors. In addition to these well-established functions of MTSS1 linked to its I-BAR- and WH2-domains, the protein is involved in modulating cell-cell contacts, cell differentiation, lipid metabolism, and vesicle formation and acts as a scaffolding protein for several E3 ubiquitin ligases. MTSS1 is classified as a housekeeping protein and is never mutated despite the several pathologic phenotypes linked to its dysregulation. Despite MTSS1's involvement in fundamental signaling pathways, MTSS1 gene ablation is not ubiquitously lethal, although it affects embryonic development. Due to MTSS1´s involvement in many seemingly disparate processes, with many cases lacking mechanistic explanations, we found it timely to review the recent data on MTSS1's role at the cellular level, as well as in health and disease, to direct further studies on this interesting multifunctional protein.
Collapse
Affiliation(s)
- Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, FE 280, 17177, Sweden
| | - Shixing Zheng
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, FE 280, 17177, Sweden
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, 03022, Ukraine
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, FE 280, 17177, Sweden.
| | - Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, 75185, Sweden.
| |
Collapse
|
2
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng’oma E, Middleton KM, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a Drosophila melanogaster model system. Genetics 2024; 227:iyae040. [PMID: 38506092 PMCID: PMC11075556 DOI: 10.1093/genetics/iyae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants within the genes that control this trait is of high importance if we want to better comprehend thermal physiology. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource as a model system. First, we used quantitative genetics and Quantitative Trait Loci mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to (1) alter tissue-specific gene expression and (2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
Affiliation(s)
- Patricka A Williams-Simon
- Department of Biology, University of Pennsylvania, 433 S University Ave., 226 Leidy Laboratories, Philadelphia, PA 19104, USA
| | - Camille Oster
- Ash Creek Forest Management, 2796 SE 73rd Ave., Hillsboro, OR 97123, USA
| | | | - Ronel Ghidey
- ECHO Data Analysis Center, Johns Hopkins Bloomberg School of Public Health, 504 Cathedral St., Baltimore, MD 2120, USA
| | - Enoch Ng’oma
- Division of Biology, University of Missouri, 226 Tucker Hall, Columbia, MO 65211, USA
| | - Kevin M Middleton
- Division of Biology, University of Missouri, 222 Tucker Hall, Columbia, MO 65211, USA
| | - Elizabeth G King
- Division of Biology, University of Missouri, 401 Tucker Hall, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Biton T, Scher N, Carmon S, Elbaz-Alon Y, Schejter ED, Shilo BZ, Avinoam O. Fusion pore dynamics of large secretory vesicles define a distinct mechanism of exocytosis. J Cell Biol 2023; 222:e202302112. [PMID: 37707500 PMCID: PMC10501449 DOI: 10.1083/jcb.202302112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/06/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Exocrine cells utilize large secretory vesicles (LSVs) up to 10 μm in diameter. LSVs fuse with the apical surface, often recruiting actomyosin to extrude their content through dynamic fusion pores. The molecular mechanism regulating pore dynamics remains largely uncharacterized. We observe that the fusion pores of LSVs in the Drosophila larval salivary glands expand, stabilize, and constrict. Arp2/3 is essential for pore expansion and stabilization, while myosin II is essential for pore constriction. We identify several Bin-Amphiphysin-Rvs (BAR) homology domain proteins that regulate fusion pore expansion and stabilization. We show that the I-BAR protein Missing-in-Metastasis (MIM) localizes to the fusion site and is essential for pore expansion and stabilization. The MIM I-BAR domain is essential but not sufficient for localization and function. We conclude that MIM acts in concert with actin, myosin II, and additional BAR-domain proteins to control fusion pore dynamics, mediating a distinct mode of exocytosis, which facilitates actomyosin-dependent content release that maintains apical membrane homeostasis during secretion.
Collapse
Affiliation(s)
- Tom Biton
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Scher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shari Carmon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Elbaz-Alon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D. Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Avinoam
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Williams-Simon PA, Oster C, Moaton JA, Ghidey R, Ng'oma E, Middleton KM, Zars T, King EG. Naturally segregating genetic variants contribute to thermal tolerance in a D. melanogaster model system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547110. [PMID: 37461510 PMCID: PMC10350013 DOI: 10.1101/2023.07.06.547110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Thermal tolerance is a fundamental physiological complex trait for survival in many species. For example, everyday tasks such as foraging, finding a mate, and avoiding predation, are highly dependent on how well an organism can tolerate extreme temperatures. Understanding the general architecture of the natural variants of the genes that control this trait is of high importance if we want to better comprehend how this trait evolves in natural populations. Here, we take a multipronged approach to further dissect the genetic architecture that controls thermal tolerance in natural populations using the Drosophila Synthetic Population Resource (DSPR) as a model system. First, we used quantitative genetics and Quantitative Trait Loci (QTL) mapping to identify major effect regions within the genome that influences thermal tolerance, then integrated RNA-sequencing to identify differences in gene expression, and lastly, we used the RNAi system to 1) alter tissue-specific gene expression and 2) functionally validate our findings. This powerful integration of approaches not only allows for the identification of the genetic basis of thermal tolerance but also the physiology of thermal tolerance in a natural population, which ultimately elucidates thermal tolerance through a fitness-associated lens.
Collapse
|
5
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
6
|
Huang Y, Lemire G, Briere LC, Liu F, Wessels MW, Wang X, Osmond M, Kanca O, Lu S, High FA, Walker MA, Rodan LH, Kernohan KD, Sweetser DA, Boycott KM, Bellen HJ. The recurrent de novo c.2011C>T missense variant in MTSS2 causes syndromic intellectual disability. Am J Hum Genet 2022; 109:1923-1931. [PMID: 36067766 PMCID: PMC9606386 DOI: 10.1016/j.ajhg.2022.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/12/2022] [Indexed: 01/25/2023] Open
Abstract
MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability.
Collapse
Affiliation(s)
- Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lauren C Briere
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fang Liu
- Department of Pediatrics, Bethune International Peace Hospital, Shijiazhuang 050082, Hebei, China
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Xueqi Wang
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frances A High
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lance H Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada; Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - David A Sweetser
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Wu M, Qiu Q, Zhou Q, Li J, Yang J, Zheng C, Luo A, Li X, Zhang H, Cheng X, Lu W, Liu P, Lu B, Lu Y. circFBXO7/miR-96-5p/MTSS1 axis is an important regulator in the Wnt signaling pathway in ovarian cancer. Mol Cancer 2022; 21:137. [PMID: 35768865 PMCID: PMC9241180 DOI: 10.1186/s12943-022-01611-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND CircRNAs are a novel class of evolutionarily conserved noncoding RNA molecules that form covalently closed continuous loop structures without 5' caps and 3' poly(A) tails. Accumulating evidence suggests that circRNAs play important regulatory roles in cancer and are promising biomarkers for cancer diagnosis and prognosis, as well as targets for cancer therapy. In this study, we identify and explore the role of a novel circRNA, circFBXO7, in ovarian cancer. METHODS rRNA-depleted RNA-sequencing was performed to identify differentially expressed circRNAs between ovarian cancerous and normal tissues. qRT-PCR and single-molecule RNA in-situ hybridization was used to quantify circFBXO7 expression in tumor tissues. The association of circFBXO7 expression with patient prognosis was evaluated by Kaplan-Meier survival analysis. The biological function of circFBXO7 was also investigated using loss-of-function and gain-of-function assays in vivo and in vitro. Luciferase reporter and TOP/FOP-Flash reporter assays were then conducted together with RNA immunoprecipitation and western blot to assess the circFBXO7/miR-96-5p/MTSS1/Wnt/β-catenin axis. RESULTS circFBXO7 was downregulated in ovarian cancer which was associated with poor prognosis. Biologically, circFBXO7 overexpression significantly suppressed ovarian cancer cell proliferation, migration, and invasion in vitro, and inhibited tumor growth and metastasis in vivo, whereas its knockdown exerted an opposite role. Mechanistically, circFBXO7 functioned as a competing endogenous RNA for miR-96-5p to regulate the expression of MTSS1. Consequently, downregulation of MTSS1 led to excessive accumulation of β-catenin and increased phosphorylation of GSK3β, leading to the translocation of β-catenin to the nucleus, thereby activating the Wnt/β-catenin signaling pathway and ultimately promoting ovarian cancer progression. CONCLUSIONS Our findings indicate that circFBXO7 acts as a bone fide tumor suppressor in ovarian cancer and that the circFBXO7/miR-96-5p/MTSS1 axis is an important regulator in the Wnt/β-catenin signaling pathway which may provide a promising target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Mengting Wu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Qiongzi Qiu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Qing Zhou
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Jia Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Juze Yang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Chengcai Zheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Aoran Luo
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xufan Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Honghe Zhang
- Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China
| | - Xiaodong Cheng
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China
| | - Weiguo Lu
- Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.,Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Pengyuan Liu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China. .,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| | - Bingjian Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| | - Yan Lu
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, 310013, Zhejiang, China.
| |
Collapse
|
8
|
Chen M, Shan L, Gan Y, Tian L, Zhou J, Zhu E, Yuan H, Li X, Wang B. Metastasis suppressor 1 controls osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. Cell Mol Life Sci 2022; 79:107. [PMID: 35094173 PMCID: PMC11072310 DOI: 10.1007/s00018-022-04147-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/29/2022]
Abstract
Metastasis suppressor 1 (MTSS1) plays an inhibitory role in tumorigenesis and metastasis of a variety of cancers. To date, the function of MTSS1 in the differentiation of marrow stromal progenitor cells remains to be explored. In the current study, we investigated whether and how MTSS1 has a role in osteoblast differentiation and bone homeostasis. Our data showed that MTSS1 mRNA was upregulated during osteoblast differentiation and downregulated in the osteoblastic lineage cells of ovariectomized and aged mice. Functional studies revealed that MTSS1 promoted the osteogenic differentiation from marrow stromal progenitor cells. Mechanistic explorations uncovered that the inactivation of Src and afterward activation of canonical Wnt signaling were involved in osteoblast differentiation induced by MTSS1. The enhanced osteogenic differentiation induced by MTSS1 overexpression was attenuated when Src was simultaneously overexpressed, and conversely, the inhibition of osteogenic differentiation by MTSS1 siRNA was rescued when the Src inhibitor was supplemented to the culture. Finally, the in vivo transfection of MTSS1 siRNA to the marrow of mice significantly reduced the trabecular bone mass, along with the reduction of trabecular osteoblasts, the accumulation of marrow adipocytes, and the increase of phospho-Src-positive cells on the trabeculae. No change in the number of osteoclasts was observed. This study has unraveled that MTSS1 contributes to osteoblast differentiation and bone homeostasis through regulating Src-Wnt/β-catenin signaling. It also suggests the potential of MTSS1 as a new target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Meng Chen
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Liying Shan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Ying Gan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Lijie Tian
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Jie Zhou
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Endong Zhu
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Hairui Yuan
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China
| | - Xiaoxia Li
- College of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Baoli Wang
- NHC Key Lab of Hormones and Development, Tianjin Key Lab of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin Medical University, 6 Huan-Rui-Bei Road, Tianjin, 300134, China.
| |
Collapse
|
9
|
Liang L, Liang X, Jiang P, Zhou L, Zhong L, Wang M, Lin S, Guo Z, Yu J, Yang C, Chen Y, Zhuo C, Chen P, Wang Y. Metastasis suppressor 1 interacts with α-actinin 4 to affect its localization and regulate formation of membrane ruffling. Cytoskeleton (Hoboken) 2021; 78:337-348. [PMID: 34435464 DOI: 10.1002/cm.21686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023]
Abstract
Membrane ruffling plays an important role in the directed cell migration and escape of tumor cells from the monolayer. Metastasis suppressor 1 (MTSS1), also known as missing in metastasis, has been implicated in cell morphology, motility, metastasis, and development. Here, the dynamic interaction proteins associated with MTSS1 and involved in membrane ruffling were determined by cross-linking and mass spectrometry analysis. We identified α-actinin 4 (ACTN4) as an interacting protein and confirmed a direct interaction between MTSS1 and ACTN4. Moreover, co-expression of MTSS1 in fibroblasts recruited cytoplasmic ACTN4 to the cell periphery, at which point ruffling became thick and rigid. In MCF-7 cells, MTSS1 knockdown did not show an obvious effect on the cell shape or the distribution of endogenous ACTN4; however, ACTN4 overexpression transformed cell morphology from an epidermal- to a fibroblast-like shape, and further MTSS1 depletion significantly increased the ratio of fibroblast cells exhibiting prominent ruffling. Furthermore, biochemical data suggested that MTSS1 cross-linking with ACTN4 induced the formation of actin fiber bundles into more organized structures in vitro. These data indicated that MTSS1 might recruit cytoplasmic ACTN4 to the cell periphery and regulate cytoskeleton dynamics to restrict its performance in membrane ruffling.
Collapse
Affiliation(s)
- Lijun Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiaoping Liang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Peng Jiang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lu Zhou
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Luanluan Zhong
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mei Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Shuyun Lin
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhen Guo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Juan Yu
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Changcheng Yang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chengjie Zhuo
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ping Chen
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Wang
- The Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
10
|
Huang Q, Wu ZH, Li WF, Guo R, Xu JS, Dang XQ, Ma ZG, Chen YP, Evans JD. Genome and Evolutionary Analysis of Nosema ceranae: A Microsporidian Parasite of Honey Bees. Front Microbiol 2021; 12:645353. [PMID: 34149635 PMCID: PMC8206274 DOI: 10.3389/fmicb.2021.645353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 01/18/2023] Open
Abstract
Microsporidia comprise a phylum of single cell, intracellular parasites and represent the earliest diverging branch in the fungal kingdom. The microsporidian parasite Nosema ceranae primarily infects honey bee gut epithelial cells, leading to impaired memory, suppressed host immune responses and colony collapse under certain circumstances. As the genome of N. ceranae is challenging to assembly due to very high genetic diversity and repetitive region, the genome was re-sequenced using long reads. We present a robust 8.8 Mbp genome assembly of 2,280 protein coding genes, including a high number of genes involved in transporting nutrients and energy, as well as drug resistance when compared with sister species Nosema apis. We also describe the loss of the critical protein Dicer in approximately half of the microsporidian species, giving new insights into the availability of RNA interference pathway in this group. Our results provided new insights into the pathogenesis of N. ceranae and a blueprint for treatment strategies that target this parasite without harming honey bees. The unique infectious apparatus polar filament and transportation pathway members can help to identify treatments to control this parasite.
Collapse
Affiliation(s)
- Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Zhi Hao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, China.,Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Jiangxi Agricultural University, Nanchang, China
| | - Wen Feng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jin Shan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiao Qun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Zheng Gang Ma
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yan Ping Chen
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Jay D Evans
- US Department of Agriculture-Aricultural Research Service (USDA-ARS) Bee Research Laboratory, Beltsville, MD, United States
| |
Collapse
|
11
|
Brown AS, Meera P, Quinones G, Magri J, Otis TS, Pulst SM, Oro AE. Receptor protein tyrosine phosphatases control Purkinje neuron firing. Cell Cycle 2020; 19:153-159. [PMID: 31876231 PMCID: PMC6961678 DOI: 10.1080/15384101.2019.1695995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022] Open
Abstract
Spinocerebellar ataxias (SCA) are a genetically heterogeneous family of cerebellar neurodegenerative diseases characterized by abnormal firing of Purkinje neurons and degeneration. We recently demonstrated the slowed firing rates seen in several SCAs share a common etiology of hyper-activation of the Src family of non-receptor tyrosine kinases (SFKs). However, the lack of clinically available neuroactive SFK inhibitors lead us to investigate alternative mechanisms to modulate SFK activity. Previous studies demonstrate that SFK activity can be enhanced by the removal of inhibitory phospho-marks by receptor-protein-tyrosine phosphatases (RPTPs). In this Extra View we show that MTSS1 inhibits SFK activity through the binding and inhibition of a subset of the RPTP family members, and lowering RPTP activity in cerebellar slices with peptide inhibitors increases the suppressed Purkinje neuron basal firing rates seen in two different SCA models. Together these results identify RPTPs as novel effectors of Purkinje neuron basal firing, extending the MTSS1/SFK regulatory circuit we previously described and expanding the therapeutic targets for SCA patients.
Collapse
Affiliation(s)
- Alexander S. Brown
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Pratap Meera
- Department of Neurobiology, University of California, Los Angeles, CA, USA
| | - Gabe Quinones
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jessica Magri
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas S. Otis
- Sainsbury Wellcome Centre for Neural Circuits and Behavior, University College London, London, UK
| | - Stefan M. Pulst
- Department of Neurology, University of Utah Medical Center, Salt Lake City, UT, USA
| | - Anthony E. Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Li L, Baxter SS, Zhao P, Gu N, Zhan X. Differential interactions of missing in metastasis and insulin receptor tyrosine kinase substrate with RAB proteins in the endocytosis of CXCR4. J Biol Chem 2019; 294:6494-6505. [PMID: 30808710 DOI: 10.1074/jbc.ra118.006071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
Missing in metastasis (MIM), an inverse Bin-Amphiphysin-Rvs (I-BAR) domain protein, promotes endocytosis of C-X-C chemokine receptor 4 (CXCR4) in mammalian cells. In response to the CXCR4 ligand stromal cell-derived factor 1 (SDF-1 or CXCL12), MIM associates with RAS-related GTP-binding protein 7 (RAB7) 30 min after stimulation. However, RAB7's role in MIM function remains undefined. Here we show that RNAi-mediated suppression of RAB7 expression in human HeLa cells has little effect on the binding of MIM to RAB5 and on the recruitment of CXCR4 to early endosomes but effectively abolishes MIM-mediated CXCR4 degradation, chemotactic response, and sorting into late endosomes and lysosomes. To determine whether I-BAR domain proteins interact with RAB7, we examined cells expressing insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein bearing an Src homology 3 (SH3) domain. We observed that both MIM and IRTKS interact with RAB5 at an early response to SDF-1 and that IRTKS binds poorly to RAB7 but strongly to RAB11 at a later time point. Moreover, IRTKS overexpression reduced CXCR4 internalization and enhanced the chemotactic response to SDF-1. Interestingly, deletion of the SH3 domain in IRTKS abolished the IRTKS-RAB11 interaction and promoted CXCR4 degradation. Furthermore, the SH3 domain was required for selective targeting of MIM-IRTKS fusion proteins by both RAB7 and RAB11. Hence, to the best of our knowledge, our results provide first evidence that the SH3 domain is critical in the regulation of specific endocytic pathways by I-BAR domain proteins.
Collapse
Affiliation(s)
- Lushen Li
- From the Center for Vascular and Inflammatory Diseases
| | | | - Peng Zhao
- the State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- the State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xi Zhan
- From the Center for Vascular and Inflammatory Diseases, .,Department of Pathology, and.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201 and
| |
Collapse
|
13
|
Zhao P, Chen B, Li L, Wu H, Li Y, Shaneen B, Zhan X, Gu N. Missing-in-metastasis protein promotes internalization of magnetic nanoparticles via association with clathrin light chain and Rab7. Biochim Biophys Acta Gen Subj 2019; 1863:502-510. [PMID: 30528490 PMCID: PMC8218922 DOI: 10.1016/j.bbagen.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/05/2018] [Accepted: 12/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Magnetic nanoparticles (MNPs) have been widely used in biomedical applications. Proper control of the duration of MNPs in circulation promises to improve further their applications, in particularly drug delivery. It is known that the uptake of tissue-associated MNPs is mainly carried out by macrophages. Yet, the molecular mechanism to control MNPs internalization in macrophages remains to be elusive. Missing-in-metastasis (MIM) is a scaffolding protein that is highly expressed in macrophages and regulates receptor-mediated endocytosis. We hypothesize that uptake of MNPs may also involve the function of MIM. METHODS We investigated the effect of MIM expression on the intracellular trafficking of MNPs by transmission electronic microscopy, flow cytometry, o-phenanthroline photometric analysis, Perl's staining, immunofluorescence microscopy and co-immunoprecipitation. To explore the molecular events in MIM-mediated MNPs uptake, we examined the effect of MNPs on the interaction of MIM with clathrin, Rab5 and Rab7. RESULTS Uptake of MNPs was significantly enhanced in cells overexpressing MIM. Upon exposure to MNPs, MIM was associated with clathrin light chain in endocytic vesicles and Rab7, a protein that regulates late endosomes. However, MNPs caused dissociation of MIM with Rab5, an early endosome-associated protein. CONCLUSIONS MIM regulates internalization of MNPs via promoting their trafficking from plasma membrane to late endosomes. GENERAL SIGNIFICANCE Our data unveiled a novel pathway which MNPs internalization and intracellular trafficking in macrophages. This new pathway may allow us to control the uptake of MNPs within cells by targeting MIM, thereby improving their medical applications.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China
| | - Bo Chen
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Materials Science and Devices Institute, Suzhou University of Science and Technology, 1 Kerui Road, Suzhou, Jiangsu 215009, PR China
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hao Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, PR China
| | - Yan Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China
| | - Baxter Shaneen
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China; Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou 215123, PR China.
| |
Collapse
|
14
|
MTSS1/Src family kinase dysregulation underlies multiple inherited ataxias. Proc Natl Acad Sci U S A 2018; 115:E12407-E12416. [PMID: 30530649 DOI: 10.1073/pnas.1816177115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.
Collapse
|
15
|
Kawabata Galbraith K, Fujishima K, Mizuno H, Lee SJ, Uemura T, Sakimura K, Mishina M, Watanabe N, Kengaku M. MTSS1 Regulation of Actin-Nucleating Formin DAAM1 in Dendritic Filopodia Determines Final Dendritic Configuration of Purkinje Cells. Cell Rep 2018; 24:95-106.e9. [DOI: 10.1016/j.celrep.2018.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/01/2018] [Accepted: 06/01/2018] [Indexed: 10/28/2022] Open
|
16
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
17
|
Zhu X, Xu X, Du K, Lu J, Song E. I-BAR protein IRSp53 regulates clathrin-independent endocytosis in a biphasic manner. Sci Bull (Beijing) 2018; 63:149-151. [PMID: 36658998 DOI: 10.1016/j.scib.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Xinyu Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojun Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kang Du
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingze Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
18
|
Post S, Karashchuk G, Wade JD, Sajid W, De Meyts P, Tatar M. Drosophila Insulin-Like Peptides DILP2 and DILP5 Differentially Stimulate Cell Signaling and Glycogen Phosphorylase to Regulate Longevity. Front Endocrinol (Lausanne) 2018; 9:245. [PMID: 29892262 PMCID: PMC5985746 DOI: 10.3389/fendo.2018.00245] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023] Open
Abstract
Insulin and IGF signaling (IIS) is a complex system that controls diverse processes including growth, development, metabolism, stress responses, and aging. Drosophila melanogaster IIS is propagated by eight Drosophila insulin-like peptides (DILPs), homologs of both mammalian insulin and IGFs, with various spatiotemporal expression patterns and functions. DILPs 1-7 are thought to act through a single Drosophila insulin/IGF receptor, InR, but it is unclear how the DILPs thereby mediate a range of physiological phenotypes. We determined the distinct cell signaling effects of DILP2 and DILP5 stimulation upon Drosophila S2 cells. DILP2 and DILP5 induced similar transcriptional patterns but differed in signal transduction kinetics. DILP5 induced sustained phosphorylation of Akt, while DILP2 produced acute, transient Akt phosphorylation. Accordingly, we used phosphoproteomic analysis to identify distinct patterns of non-genomic signaling induced by DILP2 and DILP5. Across all treatments and replicates, 5,250 unique phosphopeptides were identified, representing 1,575 proteins. Among these peptides, DILP2, but not DILP5, dephosphorylated Ser15 on glycogen phosphorylase (GlyP), and DILP2, but not DILP5, was subsequently shown to repress enzymatic GlyP activity in S2 cells. The functional consequences of this difference were evaluated in adult Drosophila dilp mutants: dilp2 null adults have elevated GlyP enzymatic activity relative to wild type, while dilp5 mutants have reduced GlyP activity. In flies with intact insulin genes, GlyP overexpression extended lifespan in a Ser15 phosphorylation-dependent manner. In dilp2 mutants, that are otherwise long-lived, longevity was repressed by expression of phosphonull GlyP that is enzymatically inactive. Overall, DILP2, unlike DILP5, signals to affect longevity in part through its control of phosphorylation to deactivate glycogen phosphorylase, a central modulator of glycogen storage and gluconeogenesis.
Collapse
Affiliation(s)
- Stephanie Post
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| | - Galina Karashchuk
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - John D. Wade
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- School of Chemistry, University of Melbourne, Melbourne, VIC, Australia
| | | | - Pierre De Meyts
- Department of Cell Signalling, de Duve Institute, Brussels, Belgium
- Department of Stem Cell Research Novo Nordisk A/S, Måløv, Denmark
| | - Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
- *Correspondence: Stephanie Post, ; Marc Tatar,
| |
Collapse
|
19
|
Bushnell HL, Feiler CE, Ketosugbo KF, Hellerman MB, Nazzaro VL, Johnson RI. JNK is antagonized to ensure the correct number of interommatidial cells pattern the Drosophila retina. Dev Biol 2018; 433:94-107. [PMID: 29133184 PMCID: PMC6010229 DOI: 10.1016/j.ydbio.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/29/2017] [Accepted: 11/04/2017] [Indexed: 11/25/2022]
Abstract
Apoptosis is crucial during the morphogenesis of most organs and tissues, and is utilized for tissues to achieve their proper size, shape and patterning. Many signaling pathways contribute to the precise regulation of apoptosis. Here we show that Jun N-terminal Kinase (JNK) activity contributes to the coordinated removal of interommatidial cells via apoptosis in the Drosophila pupal retina. This is consistent with previous findings that JNK activity promotes apoptosis in other epithelia. However, we found that JNK activity is repressed by Cindr (the CIN85 and CD2AP ortholog) in order to promote cell survival. Reducing the amount of Cindr resulted in ectopic cell death. Increased expression of the Drosophila JNK basket in the setting of reduced cindr expression was found to result in even more severe apoptosis, whilst ectopic death was found to be reduced if retinas were heterozygous for basket. Hence Cindr is required to properly restrict JNK-mediated apoptosis in the pupal eye, resulting in the correct number of interommatidial cells. A lack of precise control over developmental apoptosis can lead to improper tissue morphogenesis.
Collapse
Affiliation(s)
- Henry L Bushnell
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Christina E Feiler
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Kwami F Ketosugbo
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Mark B Hellerman
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA
| | - Valerie L Nazzaro
- Quantitative Analysis Center, Wesleyan University, 222 Church Street, Middletown, CT, USA
| | - Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
20
|
Huang XY, Huang ZL, Niu T, Wu ZQ, Xu B, Xu YH, Huang XY, Zheng Q, Zhou J, Chen Z, Tang ZY. Missing-in-metastasis B (MIM-B) combined with caveolin-1 promotes metastasis of hepatocellular carcinoma. Oncotarget 2017; 8:95450-95465. [PMID: 29221140 PMCID: PMC5707034 DOI: 10.18632/oncotarget.20735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Increasing amounts of evidence indicate that Missing in metastasis B (MIM-B) promotes cancer metastasis. Here, we sought to better understand the mechanism through which MIM-B promotes tumor metastasis in hepatocellular carcinoma (HCC). METHODS We performed confocal microscopy analysis to determine the distributions of MIM-B and caveolin-1 and conducted co-immunoprecipitation assays to detect the interactions between MIM-B and caveolin-1 in vitro. We performed transwell assays to analyze the invasive ability of HCC cells. Changes in the expression levels of key genes and some molecular makers were detected by immunohistochemistry and western blotting in HCC tissue samples. RESULTS We found that MIM-B co-localizes with caveolin-1 and demonstrated that MIM-B and caveolin-1 interact in vitro. Repressing MIM-B and caveolin-1 expression inhibited the epidermal growth factor receptor signaling pathway. We overexpressed MIM-B and caveolin-1 in Hep3B cells, which enhanced Hep3B cell invasiveness. Furthermore, MHCC97H cell invasiveness was significantly decreased in cells in which MIM-B and caveolin-1 expression was inhibited. Additionally, we found that MIM-B and caveolin-1 were expressed at higher levels in HCC tissues than in paired normal tissues. Moreover, HCC patients with MIM-B and caveolin-1 up-regulation experienced significantly worse outcomes than controls (P < 0.001), and HCC patients with high MIM-B and caveolin-1 expression levels often developed pulmonary metastasis (P < 0.001). CONCLUSIONS MIM-B combined with caveolin-1 promotes metastasis of HCC, and elevated MIM-B and caveolin-1 expression levels are associated with a poor prognosis in HCC patients; therefore, MIM-B and caveolin-1 may represent novel targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Xiu-Yan Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Zi-Li Huang
- Department of Radiology, Xuhui Central Hospital, Shanghai, P.R. China
| | - Tao Niu
- Department of General Surgery, People's Hospital of Menghai County, Yunnan Province, P.R. China
| | - Zhen-Qian Wu
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Bin Xu
- Department of General Surgery, The Tenth People's Hospital of Tongji University, Shanghai, P.R. China
| | - Yong-Hua Xu
- Department of Radiology, Xuhui Central Hospital, Shanghai, P.R. China
| | - Xin-Yu Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Qi Zheng
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, P.R. China
| | - Jian Zhou
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Zi Chen
- Thayer School of Engineering, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
21
|
Ortega FE, Rengarajan M, Chavez N, Radhakrishnan P, Gloerich M, Bianchini J, Siemers K, Luckett WS, Lauer P, Nelson WJ, Theriot JA. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells. Mol Biol Cell 2017; 28:2945-2957. [PMID: 28877987 PMCID: PMC5662255 DOI: 10.1091/mbc.e16-12-0851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes invades epithelial cells by binding to the host cell receptor E-cadherin, a component of the adherens junction. E-cadherin serves primarily as an adhesive to mediate bacterial invasion; the canonical E-cadherin/catenin/F-actin complex is not required for this process. The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required.
Collapse
Affiliation(s)
- Fabian E Ortega
- Department of Biochemistry, Stanford University, Stanford, CA 94305
| | | | - Natalie Chavez
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | | | - Julie Bianchini
- Department of Biology, Stanford University, Stanford, CA 94305
| | | | | | | | - W James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| | - Julie A Theriot
- Department of Biochemistry, Stanford University, Stanford, CA 94305 .,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305.,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
22
|
Li L, Baxter SS, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci 2017; 130:1475-1485. [PMID: 28264927 DOI: 10.1242/jcs.198937] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/27/2017] [Indexed: 01/09/2023] Open
Abstract
Surface expression of chemokine receptor CXCR4 is downregulated by missing-in-metastasis protein (MIM; also known as MTSS1), a member of the inverse BAR (I-BAR)-domain protein family that recognizes and generates membranes with negative curvature. Yet, the mechanism for the regulation is unknown. Here, we show that MIM forms a complex with CXCR4 by binding to E3 ubiquitin ligase AIP4 (also known as ITCH) in response to stromal cell-derived factor 1 (SDF-1; also known as CXCL12). Overexpression of MIM promoted CXCR4 ubiquitylation, inhibited cellular response to SDF-1, caused accumulation and aggregation of multivesicular bodies (MVBs) in the cytoplasm, and promoted CXCR4 sorting into MVBs in a manner depending on binding to AIP4. In response to SDF-1, MIM also bound transiently to the small GTPase Rab5 at 5 min and to Rab7 at 30 min. Binding to Rab7 requires an N-terminal coiled-coil motif, deletion of which abolished MIM-mediated MVB formation and CXCR4 internalization. Our results unveil a previously unknown property of MIM that establishes the linkage of protein ubiquitylation with Rab-guided trafficking of CXCR4 in endocytic vesicles.
Collapse
Affiliation(s)
- Lushen Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shaneen S Baxter
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ning Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xi Zhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
23
|
Saadin A, Starz-Gaiano M. Circuitous Genetic Regulation Governs a Straightforward Cell Migration. Trends Genet 2016; 32:660-673. [PMID: 27600524 DOI: 10.1016/j.tig.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 12/19/2022]
Abstract
Drosophila border cells undergo a straightforward and stereotypical collective migration during egg development. However, a complex genetic program underlies this process. A variety of approaches, including biochemical, genetic, and imaging strategies have identified many regulatory components, revealing layers of control. This complexity suggests that the active processes of evaluating the environment, remodeling the cytoskeleton, and coordinating movements among cells, demand rapid systems for modulating cell behaviors. Multiple signaling inputs, nodes of integration, and feedback loops act as molecular rheostats to fine-tune gene expression levels and physical responses. Since key genetic regulators of border cell migration have been shown to be required in other types of cell migration, this model system continues to provide an important avenue for genetic discovery.
Collapse
Affiliation(s)
- Afsoon Saadin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
24
|
MIM-Induced Membrane Bending Promotes Dendritic Spine Initiation. Dev Cell 2015; 33:644-59. [PMID: 26051541 DOI: 10.1016/j.devcel.2015.04.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/28/2015] [Accepted: 04/21/2015] [Indexed: 11/21/2022]
Abstract
Proper morphogenesis of neuronal dendritic spines is essential for the formation of functional synaptic networks. However, it is not known how spines are initiated. Here, we identify the inverse-BAR (I-BAR) protein MIM/MTSS1 as a nucleator of dendritic spines. MIM accumulated to future spine initiation sites in a PIP2-dependent manner and deformed the plasma membrane outward into a proto-protrusion via its I-BAR domain. Unexpectedly, the initial protrusion formation did not involve actin polymerization. However, PIP2-dependent activation of Arp2/3-mediated actin assembly was required for protrusion elongation. Overexpression of MIM increased the density of dendritic protrusions and suppressed spine maturation. In contrast, MIM deficiency led to decreased density of dendritic protrusions and larger spine heads. Moreover, MIM-deficient mice displayed altered glutamatergic synaptic transmission and compatible behavioral defects. Collectively, our data identify an important morphogenetic pathway, which initiates spine protrusions by coupling phosphoinositide signaling, direct membrane bending, and actin assembly to ensure proper synaptogenesis.
Collapse
|
25
|
Suetsugu S, Kurisu S, Takenawa T. Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 2014; 94:1219-48. [PMID: 25287863 DOI: 10.1152/physrev.00040.2013] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All cellular compartments are separated from the external environment by a membrane, which consists of a lipid bilayer. Subcellular structures, including clathrin-coated pits, caveolae, filopodia, lamellipodia, podosomes, and other intracellular membrane systems, are molded into their specific submicron-scale shapes through various mechanisms. Cells construct their micro-structures on plasma membrane and execute vital functions for life, such as cell migration, cell division, endocytosis, exocytosis, and cytoskeletal regulation. The plasma membrane, rich in anionic phospholipids, utilizes the electrostatic nature of the lipids, specifically the phosphoinositides, to form interactions with cytosolic proteins. These cytosolic proteins have three modes of interaction: 1) electrostatic interaction through unstructured polycationic regions, 2) through structured phosphoinositide-specific binding domains, and 3) through structured domains that bind the membrane without specificity for particular phospholipid. Among the structured domains, there are several that have membrane-deforming activity, which is essential for the formation of concave or convex membrane curvature. These domains include the amphipathic helix, which deforms the membrane by hemi-insertion of the helix with both hydrophobic and electrostatic interactions, and/or the BAR domain superfamily, known to use their positively charged, curved structural surface to deform membranes. Below the membrane, actin filaments support the micro-structures through interactions with several BAR proteins as well as other scaffold proteins, resulting in outward and inward membrane micro-structure formation. Here, we describe the characteristics of phospholipids, and the mechanisms utilized by phosphoinositides to regulate cellular events. We then summarize the precise mechanisms underlying the construction of membrane micro-structures and their involvements in physiological and pathological processes.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Shusaku Kurisu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Tadaomi Takenawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan; Biosignal Research Center, Kobe University, Kobe, Hyogo, Japan; and Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
26
|
Balakrishnan SS, Basu U, Raghu P. Phosphoinositide signalling in Drosophila. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:770-84. [PMID: 25449646 DOI: 10.1016/j.bbalip.2014.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 10/08/2014] [Accepted: 10/22/2014] [Indexed: 01/28/2023]
Abstract
Phosphoinositides (PtdInsPs) are lipids that mediate a range of conserved cellular processes in eukaryotes. These include the transduction of ligand binding to cell surface receptors, vesicular transport and cytoskeletal function. The nature and functions of PtdInsPs were initially elucidated through biochemical experiments in mammalian cells. However, over the years, genetic and cell biological analysis in a range of model organisms including S. cerevisiae, D. melanogaster and C. elegans have contributed to an understanding of the involvement of PtdInsPs in these cellular events. The fruit fly Drosophila is an excellent genetic model for the analysis of cell and developmental biology as well as physiological processes, particularly analysis of the complex relationship between the cell types of a metazoan in mediating animal physiology. PtdInsP signalling pathways are underpinned by enzymes that synthesise and degrade these molecules and also by proteins that bind to these lipids in cells. In this review we provide an overview of the current understanding of PtdInsP signalling in Drosophila. We provide a comparative genomic analysis of the PtdInsP signalling toolkit between Drosophila and mammalian systems. We also review some areas of cell and developmental biology where analysis in Drosophila might provide insights into the role of this lipid-signalling pathway in metazoan biology. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Sruthi S Balakrishnan
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Urbashi Basu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Padinjat Raghu
- National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India.
| |
Collapse
|
27
|
Phospho-NHE3 forms membrane patches and interacts with beta-actin to sense and maintain constant direction during cell migration. Exp Cell Res 2014; 324:13-29. [PMID: 24657527 DOI: 10.1016/j.yexcr.2014.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/14/2023]
Abstract
The Na(+)/H(+) exchanger NHE3 colocalizes with beta-actin at the leading edge of directionally migrating cells. Using human osteosarcoma cells (SaOS-2), rat osteoblasts (calvaria), and human embryonic kidney (HEK) cells, we identified a novel role for NHE3 via beta-actin in anode and cathode directed motility, during electrotaxis. NHE3 knockdown by RNAi revealed that NHE3 expression is required to achieve constant directionality and polarity in migrating cells. Phosphorylated NHE3 (pNHE3) and beta-actin complex formation was impaired by the NHE3 inhibitor S3226 (IC50 0.02µM). Fluorescence cross-correlation spectroscopy (FCCS) revealed that the molecular interactions between NHE3 and beta-actin in membrane protrusions increased 1.7-fold in the presence of a directional cue and decreased 3.3-fold in the presence of cytochalasin D. Data from flow cytometric analysis showed that membrane potential of cells (Vmem) decreases in directionally migrating, NHE3-deficient osteoblasts and osteosarcoma cells whereas only Vmem of wild type osteoblasts is affected during directional migration. These findings suggest that pNHE3 has a mechanical function via beta-actin that is dependent on its physiological activity and Vmem. Furthermore, phosphatidylinositol 3,4,5-trisphosphate (PIP3) levels increase while PIP2 remains stable when cells have persistent directionality. Both PI3 kinase (PI3K) and Akt expression levels change proportionally to NHE3 levels. Interestingly, however, the content of pNHE3 level does not change when PI3K/Akt is inhibited. Therefore, we conclude that NHE3 can act as a direction sensor for cells and that NHE3 phosphorylation in persistent directional cell migration does not involve PI3K/Akt during electrotaxis.
Collapse
|
28
|
Mertz KD, Pathria G, Wagner C, Saarikangas J, Sboner A, Romanov J, Gschaider M, Lenz F, Neumann F, Schreiner W, Nemethova M, Glassmann A, Lappalainen P, Stingl G, Small JV, Fink D, Chin L, Wagner SN. MTSS1 is a metastasis driver in a subset of human melanomas. Nat Commun 2014; 5:3465. [PMID: 24632752 DOI: 10.1038/ncomms4465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/18/2014] [Indexed: 12/21/2022] Open
Abstract
In cancers with a highly altered genome, distinct genetic alterations drive subsets rather than the majority of individual tumours. Here we use a sequential search across human tumour samples for transcript outlier data points with associated gene copy number variations that correlate with patient's survival to identify genes with pro-invasive functionality. Employing loss and gain of function approaches in vitro and in vivo, we show that one such gene, MTSS1, promotes the ability of melanocytic cells to metastasize and engages actin dynamics via Rho-GTPases and cofilin in this process. Indeed, high MTSS1 expression defines a subgroup of primary melanomas with unfavourable prognosis. These data underscore the biological, clinical and potential therapeutic implications of molecular subsets within genetically complex cancers.
Collapse
Affiliation(s)
- Kirsten D Mertz
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] [3]
| | - Gaurav Pathria
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Christine Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2]
| | - Juha Saarikangas
- 1] Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland [2]
| | - Andrea Sboner
- Department of Pathology and Laboratory Medicine, Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York 10021, USA
| | - Julia Romanov
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Melanie Gschaider
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Lenz
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Friederike Neumann
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Schreiner
- Section for Biosimulation and Bioinformatics, Center for Medical Statistics, Informatics and Intelligent Systems, Medical University of Vienna, 1090 Vienna, Austria
| | - Maria Nemethova
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | | | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, 00100 Helsinki, Finland
| | - Georg Stingl
- Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - J Victor Small
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Dieter Fink
- Institute for Laboratory Animal Sciences, Department of Biomedical Sciences, University for Veterinary Medicine, 1210 Vienna, Austria
| | - Lynda Chin
- Department of Genomic Medicine and Institute for Applied Cancer Science, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Stephan N Wagner
- 1] Division of Immunology, Allergy and Infectious Diseases (DIAID), Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria [2] Center for Molecular Medicine (CeMM), Austrian Academy of Sciences, 1090 Vienna, Austria
| |
Collapse
|
29
|
Simionescu-Bankston A, Leoni G, Wang Y, Pham PP, Ramalingam A, DuHadaway JB, Faundez V, Nusrat A, Prendergast GC, Pavlath GK. The N-BAR domain protein, Bin3, regulates Rac1- and Cdc42-dependent processes in myogenesis. Dev Biol 2013; 382:160-71. [PMID: 23872330 DOI: 10.1016/j.ydbio.2013.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/01/2013] [Accepted: 07/05/2013] [Indexed: 11/28/2022]
Abstract
Actin dynamics are necessary at multiple steps in the formation of multinucleated muscle cells. BAR domain proteins can regulate actin dynamics in several cell types, but have been little studied in skeletal muscle. Here, we identify novel functions for the N-BAR domain protein, Bridging integrator 3 (Bin3), during myogenesis in mice. Bin3 plays an important role in regulating myofiber size in vitro and in vivo. During early myogenesis, Bin3 promotes migration of differentiated muscle cells, where it colocalizes with F-actin in lamellipodia. In addition, Bin3 forms a complex with Rac1 and Cdc42, Rho GTPases involved in actin polymerization, which are known to be essential for myotube formation. Importantly, a Bin3-dependent pathway is a major regulator of Rac1 and Cdc42 activity in differentiated muscle cells. Overall, these data classify N-BAR domain proteins as novel regulators of actin-dependent processes in myogenesis, and further implicate BAR domain proteins in muscle growth and repair.
Collapse
Affiliation(s)
- Adriana Simionescu-Bankston
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Becalska AN, Kelley CF, Berciu C, Stanishneva-Konovalova TB, Fu X, Wang S, Sokolova OS, Nicastro D, Rodal AA. Formation of membrane ridges and scallops by the F-BAR protein Nervous Wreck. Mol Biol Cell 2013; 24:2406-18. [PMID: 23761074 PMCID: PMC3727933 DOI: 10.1091/mbc.e13-05-0271] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic cells are defined by extensive intracellular compartmentalization, which requires dynamic membrane remodeling. FER/Cip4 homology-Bin/amphiphysin/Rvs (F-BAR) domain family proteins form crescent-shaped dimers, which can bend membranes into buds and tubules of defined geometry and lipid composition. However, these proteins exhibit an unexplained wide diversity of membrane-deforming activities in vitro and functions in vivo. We find that the F-BAR domain of the neuronal protein Nervous Wreck (Nwk) has a novel higher-order structure and membrane-deforming activity that distinguishes it from previously described F-BAR proteins. The Nwk F-BAR domain assembles into zigzags, creating ridges and periodic scallops on membranes in vitro. This activity depends on structural determinants at the tips of the F-BAR dimer and on electrostatic interactions of the membrane with the F-BAR concave surface. In cells, Nwk-induced scallops can be extended by cytoskeletal forces to produce protrusions at the plasma membrane. Our results define a new F-BAR membrane-deforming activity and illustrate a molecular mechanism by which positively curved F-BAR domains can produce a variety of membrane curvatures. These findings expand the repertoire of F-BAR domain mediated membrane deformation and suggest that unique modes of higher-order assembly can define how these proteins sculpt the membrane.
Collapse
Affiliation(s)
- Agata N Becalska
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Landscape of protein-protein interactions in Drosophila immune deficiency signaling during bacterial challenge. Proc Natl Acad Sci U S A 2013; 110:10717-22. [PMID: 23749869 DOI: 10.1073/pnas.1304380110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Drosophila defense against pathogens largely relies on the activation of two signaling pathways: immune deficiency (IMD) and Toll. The IMD pathway is triggered mainly by Gram-negative bacteria, whereas the Toll pathway responds predominantly to Gram-positive bacteria and fungi. The activation of these pathways leads to the rapid induction of numerous NF-κB-induced immune response genes, including antimicrobial peptide genes. The IMD pathway shows significant similarities with the TNF receptor pathway. Recent evidence indicates that the IMD pathway is also activated in response to various noninfectious stimuli (i.e., inflammatory-like reactions). To gain a better understanding of the molecular machinery underlying the pleiotropic functions of this pathway, we first performed a comprehensive proteomics analysis to identify the proteins interacting with the 11 canonical members of the pathway initially identified by genetic studies. We identified 369 interacting proteins (corresponding to 291 genes) in heat-killed Escherichia coli-stimulated Drosophila S2 cells, 92% of which have human orthologs. A comparative analysis of gene ontology from fly or human gene annotation databases points to four significant common categories: (i) the NuA4, nucleosome acetyltransferase of H4, histone acetyltransferase complex, (ii) the switching defective/sucrose nonfermenting-type chromatin remodeling complex, (iii) transcription coactivator activity, and (iv) translation factor activity. Here we demonstrate that sumoylation of the IκB kinase homolog immune response-deficient 5 plays an important role in the induction of antimicrobial peptide genes through a highly conserved sumoylation consensus site during bacterial challenge. Taken together, the proteomics data presented here provide a unique avenue for a comparative functional analysis of proteins involved in innate immune reactions in flies and mammals.
Collapse
|
32
|
Eikenes ÅH, Brech A, Stenmark H, Haglund K. Spatiotemporal control of Cindr at ring canals during incomplete cytokinesis in the Drosophila male germline. Dev Biol 2013; 377:9-20. [PMID: 23499247 DOI: 10.1016/j.ydbio.2013.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/08/2023]
Abstract
During male and female gametogenesis in species ranging from insects to mammals, germ cell cyst formation by incomplete cytokinesis involves the stabilization of cleavage furrows and the formation of stable intercellular bridges called ring canals. Accurate regulation of incomplete cytokinesis is required for both female and male fertility in Drosophila melanogaster. Nevertheless, the molecular mechanisms controlling complete versus incomplete cytokinesis are largely unknown. Here, we show that the scaffold protein Cindr is a novel component of both mitotic and meiotic ring canals during Drosophila spermatogenesis. Strikingly, unlike other male germline ring canal components, including Anillin and Pavarotti, Cindr and contractile ring F-actin dissociate from mitotic ring canals and translocate to the fusome upon completion of the mitotic germ cell divisions. We provide evidence that the loss of Cindr from mitotic ring canals is coordinated by signals that mediate the transition from germ cell mitosis to differentiation. Interestingly, Cindr loss from ring canals coincides with completion of the mitotic germ cell divisions in both Drosophila females and males, thus marking a common step of gametogenesis. We also show that Cindr co-localizes with Anillin at mitotic and meiotic ring canals and is recruited to the contractile ring by Anillin during male germ cell meiotic cytokinesis. Taken together, our analyses reveal a key step of incomplete cytokinesis at the endpoint of the mitotic germ cell divisions in D. melanogaster.
Collapse
Affiliation(s)
- Åsmund H Eikenes
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Montebello, Oslo, Norway
| | | | | | | |
Collapse
|
33
|
Geisbrecht ER, Sawant K, Su Y, Liu ZC, Silver DL, Burtscher A, Wang X, Zhu AJ, McDonald JA. Genetic interaction screens identify a role for hedgehog signaling in Drosophila border cell migration. Dev Dyn 2013; 242:414-31. [PMID: 23335293 DOI: 10.1002/dvdy.23926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/22/2012] [Accepted: 12/28/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cell motility is essential for embryonic development and physiological processes such as the immune response, but also contributes to pathological conditions such as tumor progression and inflammation. However, our understanding of the mechanisms underlying migratory processes is incomplete. Drosophila border cells provide a powerful genetic model to identify the roles of genes that contribute to cell migration. RESULTS Members of the Hedgehog signaling pathway were uncovered in two independent screens for interactions with the small GTPase Rac and the polarity protein Par-1 in border cell migration. Consistent with a role in migration, multiple Hh signaling components were enriched in the migratory border cells. Interference with Hh signaling by several different methods resulted in incomplete cell migration. Moreover, the polarized distribution of E-Cadherin and a marker of tyrosine kinase activity were altered when Hh signaling was disrupted. Conservation of Hh-Rac and Hh-Par-1 signaling was illustrated in the wing, in which Hh-dependent phenotypes were enhanced by loss of Rac or par-1. CONCLUSIONS We identified a pathway by which Hh signaling connects to Rac and Par-1 in cell migration. These results further highlight the importance of modifier screens in the identification of new genes that function in developmental pathways.
Collapse
Affiliation(s)
- Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012; 13:631-45. [PMID: 23000794 DOI: 10.1038/nrm3433] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.
Collapse
|
35
|
Johnson RI, Bao S, Cagan RL. Interactions between Drosophila IgCAM adhesion receptors and cindr, the Cd2ap/Cin85 ortholog. Dev Dyn 2012; 241:1933-43. [PMID: 23027549 DOI: 10.1002/dvdy.23879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Morphogenetic modeling of tissues requires coordinated regulation of adhesion. For its correct patterning, the Drosophila pupal eye requires several Immunoglobulin superfamily cell adhesion molecules (IgCAMs) and the adaptor protein Cindr. Orthologs of these proteins are essential components of specialized junctions of the vertebrate kidney; the Cindr ortholog Cd2ap is essential for the integrity of this structure. RESULTS Reducing Cindr during fly eye development led to incorrect distribution of the IgCAMs Roughest (Rst) and Hibris (Hbs). Both bound Cindr. Disrupting endocytosis similarly led to Rst and Hbs mis-localization; our data suggests an additional early requirement for endocytosis in regulating Hbs localization or stability. Finally, Rst and Hbs localized correctly only when in stable membrane complexes and we propose that Cindr anchors these to the cytoskeleton. This regulation likely does not extend to IgCAMs Kin of irre (Kirre) and Sticks and stones (Sns) in the pupal eye; neither interacted with Cindr in in vitro assays. Nonetheless, Kirre and Sns partially mis-localized when Cindr was reduced, possibly due to interactions with Rst/Hbs. CONCLUSIONS Our data suggests Cindr recapitulates both proposed functions of its mammalian orthologs Cd2ap and Cin85: targeting the IgCAMs Rst and Hbs for endocytosis and stabilizing these heterophilic IgCAM complexes.
Collapse
Affiliation(s)
- Ruth I Johnson
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | |
Collapse
|
36
|
Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 2012; 37:526-33. [PMID: 23058040 DOI: 10.1016/j.tibs.2012.09.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/26/2023]
Abstract
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the Bin/amphiphysin/Rvs (BAR) domain proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR domain proteins sense, stabilize, and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent.
Collapse
|
37
|
Abstract
Endocytosis includes a number of processes by which cells internalize segments of their plasma membrane, enclosing a wide variety of material from outside the cell. Endocytosis can contribute to uptake of nutrients, regulation of signaling molecules, control of osmotic pressure, and function of synapses. The actin cytoskeleton plays an essential role in several of these processes. Actin assembly can create protrusions that encompass extracellular materials. Actin can also support the processes of invagination of a membrane segment into the cytoplasm, elongation of the invagination, scission of the new vesicle from the plasma membrane, and movement of the vesicle away from the membrane. We briefly discuss various types of endocytosis, including phagocytosis, macropinocytosis, and clathrin-independent endocytosis. We focus mainly on new findings on the relative importance of actin in clathrin-mediated endocytosis (CME) in yeast versus mammalian cells.
Collapse
Affiliation(s)
- Olivia L Mooren
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
38
|
Kelsey JS, Fastman NM, Noratel EF, Blumberg DD. Ndm, a coiled-coil domain protein that suppresses macropinocytosis and has effects on cell migration. Mol Biol Cell 2012; 23:3407-19. [PMID: 22809629 PMCID: PMC3431939 DOI: 10.1091/mbc.e12-05-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ampA gene has a role in cell migration in Dictyostelium discoideum. Cells overexpressing AmpA show an increase in cell migration, forming large plaques on bacterial lawns. A second-site suppressor of this ampA-overexpressing phenotype identified a previously uncharacterized gene, ndm, which is described here. The Ndm protein is predicted to contain a coiled-coil BAR-like domain-a domain involved in endocytosis and membrane bending. ndm-knockout and Ndm-monomeric red fluorescent protein-expressing cell lines were used to establish a role for ndm in suppressing endocytosis. An increase in the rate of endocytosis and in the number of endosomes was detected in ndm(-) cells. During migration ndm(-) cells formed numerous endocytic cups instead of the broad lamellipodia structure characteristic of moving cells. A second lamellipodia-based function-cell spreading-was also defective in the ndm(-) cells. The increase in endocytosis and the defect in lamellipodia formation were associated with reduced chemotaxis in ndm(-) cells. Immunofluorescence results and glutathione S-transferase pull-down assays revealed an association of Ndm with coronin and F-actin. The results establish ndm as a gene important in regulating the balance between formation of endocytic cups and lamellipodia structures.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
39
|
Dawson JC, Timpson P, Kalna G, Machesky LM. Mtss1 regulates epidermal growth factor signaling in head and neck squamous carcinoma cells. Oncogene 2012; 31:1781-93. [PMID: 21927027 PMCID: PMC3245856 DOI: 10.1038/onc.2011.376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 07/13/2011] [Accepted: 07/22/2011] [Indexed: 12/11/2022]
Abstract
Mtss1 is located within chromosomal region 8q23-24, which is one of the three most commonly amplified regions in head and neck squamous cell carcinoma (HNSCC). Mtss1 is lost in metastatic cells, but confusingly is commonly overexpressed in primary tumors. Here we address possible reasons why Mtss1 is positively selected for in primary tumors. We find that Mtss1 enhances the localization of the epidermal growth factor (EGF) receptor to the plasma membrane, prolonging EGF signaling and resulting in enhanced proliferation in HNSCC. Depletion of Mtss1 results in decreased EGF receptor levels and decreased phosphorylation of Erk1/2 and Akt. However, when cells are at high density and adherent to each other, analogous to conditions in a solid tumor, Mtss1 does not confer any growth advantage, either in basal conditions or following EGF stimulation. This could indicate why Mtss1 might be lost in metastases, but preserved in early primary tumors. This is supported by an organotypic assay showing that Mtss1-expressing cells display a less proliferative more epithelial-like morphology on top of a collagen matrix. Furthermore, xenograft tumors expressing Mtss1 initially grow more rapidly, but later show less proliferation and more differentiation. Mtss1 positively modulates EGF signaling at low cell densities to promote proliferation and, therefore, may be beneficial for the early stages of primary HNSCC tumor growth. However, at high cell densities, Mtss1 impacts negatively on EGF signaling and this suggests why it inhibits metastasis.
Collapse
Affiliation(s)
- John C. Dawson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Paul Timpson
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Gabriela Kalna
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - Laura M. Machesky
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| |
Collapse
|
40
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Dawson JC, Bruche S, Spence HJ, Braga VMM, Machesky LM. Mtss1 promotes cell-cell junction assembly and stability through the small GTPase Rac1. PLoS One 2012; 7:e31141. [PMID: 22479308 PMCID: PMC3313965 DOI: 10.1371/journal.pone.0031141] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/03/2012] [Indexed: 11/19/2022] Open
Abstract
Cell-cell junctions are an integral part of epithelia and are often disrupted in cancer cells during epithelial-to-mesenchymal transition (EMT), which is a main driver of metastatic spread. We show here that Metastasis suppressor-1 (Mtss1; Missing in Metastasis, MIM), a member of the IMD-family of proteins, inhibits cell-cell junction disassembly in wound healing or HGF-induced scatter assays by enhancing cell-cell junction strength. Mtss1 not only makes cells more resistant to cell-cell junction disassembly, but also accelerates the kinetics of adherens junction assembly. Mtss1 drives enhanced junction formation specifically by elevating Rac-GTP. Lastly, we show that Mtss1 depletion reduces recruitment of F-actin at cell-cell junctions. We thus propose that Mtss1 promotes Rac1 activation and actin recruitment driving junction maintenance. We suggest that the observed loss of Mtss1 in cancers may compromise junction stability and thus promote EMT and metastasis.
Collapse
Affiliation(s)
- John C. Dawson
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Susann Bruche
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Vania M. M. Braga
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | |
Collapse
|
42
|
Qualmann B, Koch D, Kessels MM. Let's go bananas: revisiting the endocytic BAR code. EMBO J 2011; 30:3501-15. [PMID: 21878992 DOI: 10.1038/emboj.2011.266] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022] Open
Abstract
Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.
Collapse
Affiliation(s)
- Britta Qualmann
- Institute for Biochemistry I, University Hospital Jena-Friedrich Schiller University Jena, Germany.
| | | | | |
Collapse
|
43
|
Hayn-Leichsenring G, Liebig C, Miething A, Schulz A, Kumar S, Schwalbe M, Eiberger B, Baader S. Cellular distribution of metastasis suppressor 1 and the shape of cell bodies are temporarily altered in Engrailed-2 overexpressing cerebellar Purkinje cells. Neuroscience 2011; 189:68-78. [DOI: 10.1016/j.neuroscience.2011.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/05/2011] [Accepted: 05/16/2011] [Indexed: 02/07/2023]
|
44
|
Pykäläinen A, Boczkowska M, Zhao H, Saarikangas J, Rebowski G, Jansen M, Hakanen J, Koskela EV, Peränen J, Vihinen H, Jokitalo E, Salminen M, Ikonen E, Dominguez R, Lappalainen P. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures. Nat Struct Mol Biol 2011; 18:902-7. [PMID: 21743456 DOI: 10.1038/nsmb.2079] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 05/05/2011] [Indexed: 12/16/2022]
Abstract
Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.
Collapse
Affiliation(s)
- Anette Pykäläinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Quiñones GA, Oro AE. BAR domain competition during directional cellular migration. Cell Cycle 2011; 9:2522-8. [PMID: 20581461 DOI: 10.4161/cc.9.13.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While directed cellular migration facilitates the coordinated movement of cells during development and tissue repair, the precise mechanisms regulating the interplay between the extracellular environment, the actin cytoskeleton, and the overlying plasma membrane remain inadequately understood. The BAR domain family of lipid binding, actin cytoskeletal regulators are gaining greater appreciation for their role in these critical processes. BAR domain proteins are involved as both positive and negative regulators of endocytosis, membrane plasticity, and directional cell migration. This review focuses on the functional relationship between different classes of BAR domain proteins and their role in guiding cell migration through regulation of the endocytic machinery. Competition for key signaling substrates by positive and negative BAR domain endocytic regulators appears to mediate control of directional cell migration, and may have wider applicability to other trafficking functions associated with development and carcinogenesis.
Collapse
Affiliation(s)
- Gabriel A Quiñones
- Program in Epithelial Biology and Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
46
|
Murine missing in metastasis (MIM) mediates cell polarity and regulates the motility response to growth factors. PLoS One 2011; 6:e20845. [PMID: 21695258 PMCID: PMC3111439 DOI: 10.1371/journal.pone.0020845] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 05/14/2011] [Indexed: 11/19/2022] Open
Abstract
Background Missing in metastasis (MIM) is a member of the inverse BAR-domain protein family, and in vitro studies have implied MIM plays a role in deforming membrane curvature into filopodia-like protrusions and cell dynamics. Yet, the physiological role of the endogenous MIM in mammalian cells remains undefined. Principal Findings We have examined mouse embryonic fibroblasts (MEFs) derived from mice in which the MIM locus was targeted by a gene trapping vector. MIM−/− MEFs showed a less polarized architecture characterized by smooth edges and fewer cell protrusions as compared to wild type cells, although the formation of filopodia-like microprotrusions appeared to be normal. Immunofluorescent staining further revealed that MIM−/− cells were partially impaired in the assembly of stress fibers and focal adhesions but were enriched with transverse actin filaments at the periphery. Poor assembly of stress fibers was apparently correlated with attenuation of the activity of Rho GTPases and partially relieved upon overexpressing of Myc-RhoAQ63L, a constitutively activated RhoA mutant. MIM−/− cells were also spread less effectively than wild type cells during attachment to dishes and substratum. Upon treatment with PDGF MIM−/− cells developed more prominent dorsal ruffles along with increased Rac1 activity. Compared to wild type cells, MIM−/− cells had a slower motility in the presence of a low percentage of serum-containing medium but migrated normally upon adding growth factors such as 10% serum, PDGF or EGF. MIM−/− cells were also partially impaired in the internalization of transferrin, fluorescent dyes, foreign DNAs and PDGF receptor alpha. On the other hand, the level of tyrosine phosphorylation of PDGF receptors was more elevated in MIM depleted cells than wild type cells upon PDGF treatment. Conclusions Our data suggests that endogenous MIM protein regulates globally the cell architecture and endocytosis that ultimately influence a variety of cellular behaviors, including cell polarity, motility, receptor signaling and membrane ruffling.
Collapse
|
47
|
Liu W, Komiya Y, Mezzacappa C, Khadka DK, Runnels L, Habas R. MIM regulates vertebrate neural tube closure. Development 2011; 138:2035-47. [PMID: 21471152 DOI: 10.1242/dev.058800] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neural tube closure is a critical morphogenetic event that is regulated by dynamic changes in cell shape and behavior. Although previous studies have uncovered a central role for the non-canonical Wnt signaling pathway in neural tube closure, the underlying mechanism remains poorly resolved. Here, we show that the missing in metastasis (MIM; Mtss1) protein, previously identified as a Hedgehog response gene and actin and membrane remodeling protein, specifically binds to Daam1 and couples non-canonical Wnt signaling to neural tube closure. MIM binds to a conserved domain within Daam1, and this interaction is positively regulated by Wnt stimulation. Spatial expression of MIM is enriched in the anterior neural plate and neural folds, and depletion of MIM specifically inhibits anterior neural fold closure without affecting convergent extension movements or mesoderm cell fate specification. Particularly, we find that MIM is required for neural fold elevation and apical constriction along with cell polarization and elongation in both the superficial and deep layers of the anterior neural plate. The function of MIM during neural tube closure requires both its membrane-remodeling domain and its actin-binding domain. Finally, we show that the effect of MIM on neural tube closure is not due to modulation of Hedgehog signaling in the Xenopus embryo. Together, our studies define a morphogenetic pathway involving Daam1 and MIM that transduces non-canonical Wnt signaling for the cytoskeletal changes and membrane dynamics required for vertebrate neural tube closure.
Collapse
Affiliation(s)
- Wei Liu
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | |
Collapse
|
48
|
Saarikangas J, Mattila PK, Varjosalo M, Bovellan M, Hakanen J, Calzada-Wack J, Tost M, Jennen L, Rathkolb B, Hans W, Horsch M, Hyvönen ME, Perälä N, Fuchs H, Gailus-Durner V, Esposito I, Wolf E, de Angelis MH, Frilander MJ, Savilahti H, Sariola H, Sainio K, Lehtonen S, Taipale J, Salminen M, Lappalainen P. Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia. J Cell Sci 2011; 124:1245-55. [PMID: 21406566 DOI: 10.1242/jcs.082610] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
MIM/MTSS1 is a tissue-specific regulator of plasma membrane dynamics, whose altered expression levels have been linked to cancer metastasis. MIM deforms phosphoinositide-rich membranes through its I-BAR domain and interacts with actin monomers through its WH2 domain. Recent work proposed that MIM also potentiates Sonic hedgehog (Shh)-induced gene expression. Here, we generated MIM mutant mice and found that full-length MIM protein is dispensable for embryonic development. However, MIM-deficient mice displayed a severe urinary concentration defect caused by compromised integrity of kidney epithelia intercellular junctions, which led to bone abnormalities and end-stage renal failure. In cultured kidney epithelial (MDCK) cells, MIM displayed dynamic localization to adherens junctions, where it promoted Arp2/3-mediated actin filament assembly. This activity was dependent on the ability of MIM to interact with both membranes and actin monomers. Furthermore, results from the mouse model and cell culture experiments suggest that full-length MIM is not crucial for Shh signaling, at least during embryogenesis. Collectively, these data demonstrate that MIM modulates interplay between the actin cytoskeleton and plasma membrane to promote the maintenance of intercellular contacts in kidney epithelia.
Collapse
Affiliation(s)
- Juha Saarikangas
- Institute of Biotechnology, PO Box 56, University of Helsinki, 00014 Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rengaraj D, Lee BR, Park KJ, Lee SI, Kang KS, Choi JW, Kang SJ, Song G, Han JY. The distribution of neuron-specific gene family member 1 in brain and germ cells: Implications for the regulation of germ-line development by brain. Dev Dyn 2011; 240:850-61. [DOI: 10.1002/dvdy.22575] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2011] [Indexed: 11/07/2022] Open
|
50
|
Polesello C, Roch F, Gobert V, Haenlin M, Waltzer L. Modeling cancers in Drosophila. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:51-82. [PMID: 21377624 DOI: 10.1016/b978-0-12-384878-9.00002-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The basic cellular processes deregulated during carcinogenesis and the vast majority of the genes implicated in cancer appear conserved from humans to flies. This conservation, together with an ever-expanding fly genetic toolbox, has made of Drosophila melanogaster a remarkably profitable model to study many fundamental aspects of carcinogenesis. In particular, Drosophila has played a major role in the identification of genes and pathways implicated in cancer and in disclosing novel functional relationships between cancer genes. It has also proved to be a genetically tractable system where to mimic cancer-like situations and characterize the mode of action of human oncogenes. Here, we outline some advances in the study of cancer, both at the basic and more translational levels, which have benefited from research carried out in flies.
Collapse
Affiliation(s)
- Cédric Polesello
- Université de Toulouse, UPS, CBD, Centre de Biologie du Développement, Bâtiment 4R3, 118 route de Narbonne, F-31062, CNRS, F-31062 Toulouse, France
| | | | | | | | | |
Collapse
|