1
|
Stolpner NJ, Manzi NI, Su T, Dickinson DJ. Apical PAR-3 caps orient the mitotic spindle in C. elegans early embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534341. [PMID: 37034756 PMCID: PMC10081169 DOI: 10.1101/2023.03.27.534341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
During embryonic development, oriented cell divisions are important for patterned tissue growth and cell fate specification. Cell division orientation is controlled in part by asymmetrically localized polarity proteins, which establish functional domains of the cell membrane and interact with microtubule regulators to position the mitotic spindle. For example, in the 8-cell mouse embryo, apical polarity proteins form caps on the outside, contact-free surface of the embryo that position the mitotic spindle to execute asymmetric cell division. A similar radial or "inside-outside" polarity is established at an early stage in many other animal embryos, but in most cases it remains unclear how inside-outside polarity is established and how it influences downstream cell behaviors. Here, we explore inside-outside polarity in C. elegans somatic blastomeres using spatiotemporally controlled protein degradation and live embryo imaging. We show that PAR polarity proteins, which form apical caps at the center of the contact free membrane, localize dynamically during the cell cycle and contribute to spindle orientation and proper cell positioning. Surprisingly, apical PAR-3 can form polarity caps independently of actomyosin flows and the small GTPase CDC-42, and can regulate spindle orientation in cooperation with the key polarity kinase aPKC. Together, our results reveal a role for apical polarity caps in regulating spindle orientation in symmetrically dividing cells and provide novel insights into how these structures are formed.
Collapse
Affiliation(s)
- Naomi J. Stolpner
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Nadia I. Manzi
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Thomas Su
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| | - Daniel J. Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, 2415 Speedway, PAT 206, Austin, TX 78712
| |
Collapse
|
2
|
Schiller EA, Bergstralh DT. Interaction between Discs large and Pins/LGN/GPSM2: a comparison across species. Biol Open 2021; 10:bio058982. [PMID: 34596678 PMCID: PMC8576264 DOI: 10.1242/bio.058982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/29/2021] [Indexed: 12/20/2022] Open
Abstract
The orientation of the mitotic spindle determines the direction of cell division, and therefore contributes to tissue shape and cell fate. Interaction between the multifunctional scaffolding protein Discs large (Dlg) and the canonical spindle orienting factor GPSM2 (called Pins in Drosophila and LGN in vertebrates) has been established in bilaterian models, but its function remains unclear. We used a phylogenetic approach to test whether the interaction is obligate in animals, and in particular whether Pins/LGN/GPSM2 evolved in multicellular organisms as a Dlg-binding protein. We show that Dlg diverged in C. elegans and the syncytial sponge Opsacas minuta and propose that this divergence may correspond with differences in spindle orientation requirements between these organisms and the canonical pathways described in bilaterians. We also demonstrate that Pins/LGN/GPSM2 is present in basal animals, but the established Dlg-interaction site cannot be found in either Placozoa or Porifera. Our results suggest that the interaction between Pins/LGN/GPSM2 and Dlg appeared in Cnidaria, and we therefore speculate that it may have evolved to promote accurate division orientation in the nervous system. This work reveals the evolutionary history of the Pins/LGN/GPSM2-Dlg interaction and suggests new possibilities for its importance in spindle orientation during epithelial and neural tissue development.
Collapse
Affiliation(s)
| | - Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester NY, 14627, USA
| |
Collapse
|
3
|
Bouvrais H, Chesneau L, Le Cunff Y, Fairbrass D, Soler N, Pastezeur S, Pécot T, Kervrann C, Pécréaux J. The coordination of spindle-positioning forces during the asymmetric division of the Caenorhabditis elegans zygote. EMBO Rep 2021; 22:e50770. [PMID: 33900015 DOI: 10.15252/embr.202050770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
In Caenorhabditis elegans zygote, astral microtubules generate forces essential to position the mitotic spindle, by pushing against and pulling from the cortex. Measuring microtubule dynamics there, we revealed the presence of two populations, corresponding to pulling and pushing events. It offers a unique opportunity to study, under physiological conditions, the variations of both spindle-positioning forces along space and time. We propose a threefold control of pulling force, by polarity, spindle position and mitotic progression. We showed that the sole anteroposterior asymmetry in dynein on-rate, encoding pulling force imbalance, is sufficient to cause posterior spindle displacement. The positional regulation, reflecting the number of microtubule contacts in the posterior-most region, reinforces this imbalance only in late anaphase. Furthermore, we exhibited the first direct proof that dynein processivity increases along mitosis. It reflects the temporal control of pulling forces, which strengthens at anaphase onset following mitotic progression and independently from chromatid separation. In contrast, the pushing force remains constant and symmetric and contributes to maintaining the spindle at the cell centre during metaphase.
Collapse
Affiliation(s)
| | | | - Yann Le Cunff
- CNRS, IGDR - UMR 6290, University of Rennes, Rennes, France
| | | | - Nina Soler
- CNRS, IGDR - UMR 6290, University of Rennes, Rennes, France
| | | | - Thierry Pécot
- INRIA, Centre Rennes - Bretagne Atlantique, Rennes, France
| | | | | |
Collapse
|
4
|
Delattre M, Goehring NW. The first steps in the life of a worm: Themes and variations in asymmetric division in C. elegans and other nematodes. Curr Top Dev Biol 2021; 144:269-308. [PMID: 33992156 DOI: 10.1016/bs.ctdb.2020.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Starting with Boveri in the 1870s, microscopic investigation of early embryogenesis in a broad swath of nematode species revealed the central role of asymmetric cell division in embryonic axis specification, blastomere positioning, and cell fate specification. Notably, across the class Chromadorea, a conserved theme emerges-asymmetry is first established in the zygote and specifies its asymmetric division, giving rise to an anterior somatic daughter cell and a posterior germline daughter cell. Beginning in the 1980s, the emergence of Caenorhabditis elegans as a model organism saw the advent of genetic tools that enabled rapid progress in our understanding of the molecular mechanisms underlying asymmetric division, in many cases defining key paradigms that turn out to regulate asymmetric division in a wide range of systems. Yet, the consequence of this focus on C. elegans came at the expense of exploring the extant diversity of developmental variation exhibited across nematode species. Given the resurgent interest in evolutionary studies facilitated in part by new tools, here we revisit the diversity in this asymmetric first division, juxtaposing molecular insight into mechanisms of symmetry-breaking, spindle positioning and fate specification, with a consideration of plasticity and variability within and between species. In the process, we hope to highlight questions of evolutionary forces and molecular variation that may have shaped the extant diversity of developmental mechanisms observed across Nematoda.
Collapse
Affiliation(s)
- Marie Delattre
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Inserm, UCBL, Lyon, France.
| | | |
Collapse
|
5
|
Farhadifar R, Yu CH, Fabig G, Wu HY, Stein DB, Rockman M, Müller-Reichert T, Shelley MJ, Needleman DJ. Stoichiometric interactions explain spindle dynamics and scaling across 100 million years of nematode evolution. eLife 2020; 9:e55877. [PMID: 32966209 PMCID: PMC7511230 DOI: 10.7554/elife.55877] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/31/2020] [Indexed: 01/17/2023] Open
Abstract
The spindle shows remarkable diversity, and changes in an integrated fashion, as cells vary over evolution. Here, we provide a mechanistic explanation for variations in the first mitotic spindle in nematodes. We used a combination of quantitative genetics and biophysics to rule out broad classes of models of the regulation of spindle length and dynamics, and to establish the importance of a balance of cortical pulling forces acting in different directions. These experiments led us to construct a model of cortical pulling forces in which the stoichiometric interactions of microtubules and force generators (each force generator can bind only one microtubule), is key to explaining the dynamics of spindle positioning and elongation, and spindle final length and scaling with cell size. This model accounts for variations in all the spindle traits we studied here, both within species and across nematode species spanning over 100 million years of evolution.
Collapse
Affiliation(s)
- Reza Farhadifar
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Che-Hang Yu
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav CarusDresdenGermany
| | - Hai-Yin Wu
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - David B Stein
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Matthew Rockman
- Department of Biology and Center for Genomics & Systems Biology, New York UniversityNew YorkUnited States
| | | | - Michael J Shelley
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
- Courant Institute, New York UniversityNew YorkUnited States
| | - Daniel J Needleman
- Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| |
Collapse
|
6
|
Rodriguez-Garcia R, Chesneau L, Pastezeur S, Roul J, Tramier M, Pécréaux J. The polarity-induced force imbalance in Caenorhabditis elegans embryos is caused by asymmetric binding rates of dynein to the cortex. Mol Biol Cell 2018; 29:3093-3104. [PMID: 30332325 PMCID: PMC6340208 DOI: 10.1091/mbc.e17-11-0653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
During asymmetric cell division, the molecular motor dynein generates cortical pulling forces that position the spindle to reflect polarity and adequately distribute cell fate determinants. In Caenorhabditis elegans embryos, despite a measured anteroposterior force imbalance, antibody staining failed to reveal dynein enrichment at the posterior cortex, suggesting a transient localization there. Dynein accumulates at the microtubule plus ends, in an EBP-2EB-dependent manner. This accumulation, although not transporting dynein, contributes modestly to cortical forces. Most dyneins may instead diffuse to the cortex. Tracking of cortical dynein revealed two motions: one directed and the other diffusive-like, corresponding to force-generating events. Surprisingly, while dynein is not polarized at the plus ends or in the cytoplasm, diffusive-like tracks were more frequently found at the embryo posterior tip, where the forces are higher. This asymmetry depends on GPR-1/2LGN and LIN-5NuMA, which are enriched there. In csnk-1(RNAi) embryos, the inverse distribution of these proteins coincides with an increased frequency of diffusive-like tracks anteriorly. Importantly, dynein cortical residence time is always symmetric. We propose that the dynein-binding rate at the posterior cortex is increased, causing the polarity-reflecting force imbalance. This mechanism of control supplements the regulation of mitotic progression through the nonpolarized dynein detachment rate.
Collapse
Affiliation(s)
- Ruddi Rodriguez-Garcia
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Laurent Chesneau
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Sylvain Pastezeur
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Julien Roul
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Marc Tramier
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institute of Genetics and Development of Rennes)–UMR 6290, F-35000 Rennes, France
| |
Collapse
|
7
|
Bouvrais H, Chesneau L, Pastezeur S, Fairbrass D, Delattre M, Pécréaux J. Microtubule Feedback and LET-99-Dependent Control of Pulling Forces Ensure Robust Spindle Position. Biophys J 2018; 115:2189-2205. [PMID: 30447992 PMCID: PMC6289040 DOI: 10.1016/j.bpj.2018.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022] Open
Abstract
During asymmetric division of the Caenorhabditis elegans zygote, to properly distribute cell fate determinants, the mitotic spindle is asymmetrically localized by a combination of centering and cortical-pulling microtubule-mediated forces, the dynamics of the latter being regulated by mitotic progression. Here, we show a, to our knowledge, novel and additional regulation of these forces by spindle position itself. For that, we observed the onset of transverse spindle oscillations, which reflects the burst of anaphase pulling forces. After delaying anaphase onset, we found that the position at which the spindle starts to oscillate was unchanged compared to control embryos and uncorrelated to anaphase onset. In mapping the cortical microtubule dynamics, we measured a steep increase in microtubule contact density after the posterior centrosome reached the critical position of 70% of embryo length, strongly suggesting the presence of a positional switch for spindle oscillations. Expanding a previous model based on a force-generator temporal control, we implemented this positional switch and observed that the large increase in microtubule density accounted for the pulling force burst. Thus, we propose that the spindle position influences the cortical availability of microtubules on which the active force generators, controlled by cell cycle progression, can pull. Importantly, we found that this positional control relies on the polarity-dependent LET-99 cortical band, the boundary of which could be probed by microtubules. This dual positional and temporal control well accounted for our observation that the oscillation onset position resists changes in cellular geometry and moderate variations in the active force generator number. Finally, our model suggests that spindle position at mitosis end is more sensitive to the polarity factor LET-99, which restricts the region of active force generators to a posterior-most region, than to microtubule number or force generator number/activity. Overall, we show that robustness in spindle positioning originates in cell mechanics rather than biochemical networks.
Collapse
Affiliation(s)
| | | | | | | | - Marie Delattre
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | | |
Collapse
|
8
|
Liro MJ, Morton DG, Rose LS. The kinases PIG-1 and PAR-1 act in redundant pathways to regulate asymmetric division in the EMS blastomere of C. elegans. Dev Biol 2018; 444:9-19. [PMID: 30213539 PMCID: PMC6238631 DOI: 10.1016/j.ydbio.2018.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 08/19/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
The PAR-1 kinase of C. elegans is localized to the posterior of the one-cell embryo and its mutations affect asymmetric spindle placement and partitioning of cytoplasmic components in the first cell cycle. However, par-1 mutations do not cause failure to restrict the anterior PAR polarity complex to the same extent as mutations in the posteriorly localized PAR-2 protein. Further, it has been difficult to examine the role of PAR-1 in subsequent divisions due to the early defects in par-1 mutant embryos. Here we show that the PIG-1 kinase acts redundantly with PAR-1 to restrict the anterior PAR-3 protein for normal polarity in the one-cell embryo. By using a temperature sensitive allele of par-1, which exhibits enhanced lethality when combined with a pig-1 mutation, we have further explored roles for these genes in subsequent divisions. We find that both PIG-1 and PAR-1 regulate spindle orientation in the EMS blastomere of the four-cell stage embryo to ensure that it undergoes an asymmetric division. In this cell, PIG-1 and PAR-1 act in parallel pathways for spindle positioning, PIG-1 in the MES-1/SRC-1 pathway and PAR-1 in the Wnt pathway.
Collapse
Affiliation(s)
- Małgorzata J. Liro
- Department of Molecular and Cellular Biology and Graduate
Program in Biochemistry, Molecular, Cellular and Developmental Biology, University
of California, Davis, CA, 95616
| | - Diane G. Morton
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca NY 14853
| | - Lesilee S. Rose
- Department of Molecular and Cellular Biology and Graduate
Program in Biochemistry, Molecular, Cellular and Developmental Biology, University
of California, Davis, CA, 95616
| |
Collapse
|
9
|
Fielmich LE, Schmidt R, Dickinson DJ, Goldstein B, Akhmanova A, van den Heuvel S. Optogenetic dissection of mitotic spindle positioning in vivo. eLife 2018; 7:38198. [PMID: 30109984 PMCID: PMC6214656 DOI: 10.7554/elife.38198] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/14/2018] [Indexed: 12/25/2022] Open
Abstract
The position of the mitotic spindle determines the plane of cell cleavage, and thereby daughter cell location, size, and content. Spindle positioning is driven by dynein-mediated pulling forces exerted on astral microtubules, which requires an evolutionarily conserved complex of Gα∙GDP, GPR-1/2Pins/LGN, and LIN-5Mud/NuMA proteins. To examine individual functions of the complex components, we developed a genetic strategy for light-controlled localization of endogenous proteins in C. elegans embryos. By replacing Gα and GPR-1/2 with a light-inducible membrane anchor, we demonstrate that Gα∙GDP, Gα∙GTP, and GPR-1/2 are not required for pulling-force generation. In the absence of Gα and GPR-1/2, cortical recruitment of LIN-5, but not dynein itself, induced high pulling forces. The light-controlled localization of LIN-5 overruled normal cell-cycle and polarity regulation and provided experimental control over the spindle and cell-cleavage plane. Our results define Gα∙GDP–GPR-1/2Pins/LGN as a regulatable membrane anchor, and LIN-5Mud/NuMA as a potent activator of dynein-dependent spindle-positioning forces. A cell about to divide must decide where exactly to cut itself in two. Split right down the middle, and the two daughter cells will be identical; offset the cleavage plane to one side, and the resulting siblings will have different sizes, places and fates. In animals, the splitting of cells is dictated by the location of the spindle, a structure that forms when cable-like microtubules stretch from the cell membrane to attach to the chromosomes. At the membrane, a group of proteins tugs on the microtubules to bring the spindle into the correct position. One of these proteins, dynein, is a motor that uses microtubules as its track to pull the spindle into place. What the other parts of the complex do is still unclear, but a general assumption is that they may be serving as an anchor for dynein. To test this model, Fielmich, Schmidt et al. removed one or more proteins from the complex in the developing embryos of the nematode worm Caenorhabditis elegans. A light-activated system then linked the remaining proteins to the membrane by tying them to an artificial anchor. Two of the proteins in the complex could be replaced with the artificial anchor, but pulling forces were absent when dynein was artificially tied to the membrane. This indicates that the motor being anchored at the edge of the cell is not enough for it to pull on microtubules. Instead, the experiments showed that dynein needs to be activated by another component of the complex, a protein called LIN-5. This suggests that individual proteins in the complex have specialized roles that go beyond simply tethering dynein. In fact, steering where LIN-5 was attached on the membrane helped to control the location of the spindle, and therefore of the cleavage plane. As mammals have a protein similar to LIN-5, dissecting the roles of the components involved in positioning the spindle in C. elegans could help to understand normal and abnormal human development. In addition, these results demonstrate that creating artificial interactions between proteins using light is a powerful technique to study biological processes.
Collapse
Affiliation(s)
- Lars-Eric Fielmich
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Ruben Schmidt
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands.,Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Daniel J Dickinson
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Bob Goldstein
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, United States.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| | - Sander van den Heuvel
- Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Sugioka K, Fielmich LE, Mizumoto K, Bowerman B, van den Heuvel S, Kimura A, Sawa H. Tumor suppressor APC is an attenuator of spindle-pulling forces during C. elegans asymmetric cell division. Proc Natl Acad Sci U S A 2018; 115:E954-E963. [PMID: 29348204 PMCID: PMC5798331 DOI: 10.1073/pnas.1712052115] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adenomatous polyposis coli (APC) tumor suppressor has dual functions in Wnt/β-catenin signaling and accurate chromosome segregation and is frequently mutated in colorectal cancers. Although APC contributes to proper cell division, the underlying mechanisms remain poorly understood. Here we show that Caenorhabditis elegans APR-1/APC is an attenuator of the pulling forces acting on the mitotic spindle. During asymmetric cell division of the C. elegans zygote, a LIN-5/NuMA protein complex localizes dynein to the cell cortex to generate pulling forces on astral microtubules that position the mitotic spindle. We found that APR-1 localizes to the anterior cell cortex in a Par-aPKC polarity-dependent manner and suppresses anterior centrosome movements. Our combined cell biological and mathematical analyses support the conclusion that cortical APR-1 reduces force generation by stabilizing microtubule plus-ends at the cell cortex. Furthermore, APR-1 functions in coordination with LIN-5 phosphorylation to attenuate spindle-pulling forces. Our results document a physical basis for the attenuation of spindle-pulling force, which may be generally used in asymmetric cell division and, when disrupted, potentially contributes to division defects in cancer.
Collapse
Affiliation(s)
- Kenji Sugioka
- Multicellular Organization Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Lars-Eric Fielmich
- Developmental Biology, Biology Department, Science 4 Life, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Kota Mizumoto
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Sander van den Heuvel
- Developmental Biology, Biology Department, Science 4 Life, Utrecht University, 3584 CH Utrecht, The Netherlands;
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan;
- Department of Genetics, School of Life Science, Sokendai, 411-8540 Mishima, Japan
| | - Hitoshi Sawa
- Multicellular Organization Laboratory, National Institute of Genetics, 411-8540 Mishima, Japan;
- RIKEN Center for Developmental Biology, Chuo-ku, 650-0047 Kobe, Japan
- Department of Genetics, School of Life Science, Sokendai, 411-8540 Mishima, Japan
| |
Collapse
|
11
|
Price KL, Rose LS. LET-99 functions in the astral furrowing pathway, where it is required for myosin enrichment in the contractile ring. Mol Biol Cell 2017; 28:2360-2373. [PMID: 28701343 PMCID: PMC5576900 DOI: 10.1091/mbc.e16-12-0874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 11/11/2022] Open
Abstract
LET-99 is required for furrowing during cytokinesis in both symmetrically and asymmetrically dividing cells. This function is distinct from the role of LET-99 in spindle positioning with Gα signaling. LET-99 is localized to the furrow, where it acts to promote myosin enrichment. The anaphase spindle determines the position of the cytokinesis furrow, such that the contractile ring assembles in an equatorial zone between the two spindle poles. Contractile ring formation is mediated by RhoA activation at the equator by the centralspindlin complex and midzone microtubules. Astral microtubules also inhibit RhoA accumulation at the poles. In the Caenorhabditis elegans one-cell embryo, the astral microtubule–dependent pathway requires anillin, NOP-1, and LET-99. LET-99 is well characterized for generating the asymmetric cortical localization of the Gα-dependent force-generating complex that positions the spindle during asymmetric division. However, whether the role of LET-99 in cytokinesis is specific to asymmetric division and whether it acts through Gα to promote furrowing are unclear. Here we show that LET-99 contributes to furrowing in both asymmetrically and symmetrically dividing cells, independent of its function in spindle positioning and Gα regulation. LET-99 acts in a pathway parallel to anillin and is required for myosin enrichment into the contractile ring. These and other results suggest a positive feedback model in which LET-99 localizes to the presumptive cleavage furrow in response to the spindle and myosin. Once positioned there, LET-99 enhances myosin accumulation to promote furrowing in both symmetrically and asymmetrically dividing cells.
Collapse
Affiliation(s)
- Kari L Price
- Department of Molecular and Cellular Biology and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Program, University of California, Davis, Davis, CA 95616
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Program, University of California, Davis, Davis, CA 95616
| |
Collapse
|
12
|
Guild J, Ginzberg MB, Hueschen CL, Mitchison TJ, Dumont S. Increased lateral microtubule contact at the cell cortex is sufficient to drive mammalian spindle elongation. Mol Biol Cell 2017; 28:1975-1983. [PMID: 28468979 PMCID: PMC5541847 DOI: 10.1091/mbc.e17-03-0171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/28/2017] [Accepted: 04/28/2017] [Indexed: 11/30/2022] Open
Abstract
Dynamic cell confinement is used to show that increasing lateral contacts between astral microtubules and the cell cortex is sufficient to drive spindle elongation in mammals. This study suggests a mechanism—a change of microtubule-to-cortex contact geometry—for translating changes in cell shape into dramatic intracellular remodeling. The spindle is a dynamic structure that changes its architecture and size in response to biochemical and physical cues. For example, a simple physical change, cell confinement, can trigger centrosome separation and increase spindle steady-state length at metaphase. How this occurs is not understood, and is the question we pose here. We find that metaphase and anaphase spindles elongate at the same rate when confined, suggesting that similar elongation forces can be generated independent of biochemical and spindle structural differences. Furthermore, this elongation does not require bipolar spindle architecture or dynamic microtubules. Rather, confinement increases numbers of astral microtubules laterally contacting the cortex, shifting contact geometry from “end-on” to “side-on.” Astral microtubules engage cortically anchored motors along their length, as demonstrated by outward sliding and buckling after ablation-mediated release from the centrosome. We show that dynein is required for confinement-induced spindle elongation, and both chemical and physical centrosome removal demonstrate that astral microtubules are required for such spindle elongation and its maintenance. Together the data suggest that promoting lateral cortex–microtubule contacts increases dynein-mediated force generation and is sufficient to drive spindle elongation. More broadly, changes in microtubule-to-cortex contact geometry could offer a mechanism for translating changes in cell shape into dramatic intracellular remodeling.
Collapse
Affiliation(s)
- Joshua Guild
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94131
| | - Miriam B Ginzberg
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115.,The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Christina L Hueschen
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94131.,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94131
| | | | - Sophie Dumont
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94131 .,Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94131.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
13
|
Bergstralh DT, Dawney NS, St Johnston D. Spindle orientation: a question of complex positioning. Development 2017; 144:1137-1145. [DOI: 10.1242/dev.140764] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The direction in which a cell divides is determined by the orientation of its mitotic spindle at metaphase. Spindle orientation is therefore important for a wide range of developmental processes, ranging from germline stem cell division to epithelial tissue homeostasis and regeneration. In multiple cell types in multiple animals, spindle orientation is controlled by a conserved biological machine that mediates a pulling force on astral microtubules. Restricting the localization of this machine to only specific regions of the cortex can thus determine how the mitotic spindle is oriented. As we review here, recent findings based on studies in tunicate, worm, fly and vertebrate cells have revealed that the mechanisms for mediating this restriction are surprisingly diverse.
Collapse
Affiliation(s)
- Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Nicole S. Dawney
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
14
|
Pacquelet A. Asymmetric Cell Division in the One-Cell C. elegans Embryo: Multiple Steps to Generate Cell Size Asymmetry. Results Probl Cell Differ 2017; 61:115-140. [PMID: 28409302 DOI: 10.1007/978-3-319-53150-2_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first division of the one-cell C. elegans embryo has been a fundamental model in deciphering the mechanisms underlying asymmetric cell division. Polarization of the one-cell zygote is induced by a signal from the sperm centrosome and results in the asymmetric distribution of PAR proteins. Multiple mechanisms then maintain PAR polarity until the end of the first division. Once asymmetrically localized, PAR proteins control several essential aspects of asymmetric division, including the position of the mitotic spindle along the polarity axis. Coordination of the spindle and cytokinetic furrow positions is the next essential step to ensure proper asymmetric division. In this chapter, I review the different mechanisms underlying these successive steps of asymmetric division. Work from the last 30 years has revealed the existence of multiple and redundant regulatory pathways which ensure division robustness. Besides the essential role of PAR proteins, this work also emphasizes the importance of both microtubules and actomyosin throughout the different steps of asymmetric division.
Collapse
Affiliation(s)
- Anne Pacquelet
- CNRS, UMR6290, Rennes, France. .,Université de Rennes 1, Institut de Génétique et Développement de Rennes, Rennes, France. .,CNRS UMR6290-IGDR, 2 avenue du Professeur Léon Bernard, 35043, Rennes Cedex, France.
| |
Collapse
|
15
|
Wu HY, Nazockdast E, Shelley MJ, Needleman DJ. Forces positioning the mitotic spindle: Theories, and now experiments. Bioessays 2016; 39. [PMID: 28026040 DOI: 10.1002/bies.201600212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The position of the spindle determines the position of the cleavage plane, and is thus crucial for cell division. Although spindle positioning has been extensively studied, the underlying forces ultimately responsible for moving the spindle remain poorly understood. A recent pioneering study by Garzon-Coral et al. uses magnetic tweezers to perform the first direct measurements of the forces involved in positioning the mitotic spindle. Combining this with molecular perturbations and geometrical effects, they use their data to argue that the forces that keep the spindle in its proper position for cell division arise from astral microtubules growing and pushing against the cell's cortex. Here, we review these ground-breaking experiments, the various biomechanical models for spindle positioning that they seek to differentiate, and discuss new questions raised by these measurements.
Collapse
Affiliation(s)
- Hai-Yin Wu
- Department of Physics, Harvard University, Cambridge, MA, USA
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Ehssan Nazockdast
- Center for Computational Biology, Simons Foundation, New York, NY, USA
| | - Michael J Shelley
- Center for Computational Biology, Simons Foundation, New York, NY, USA
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Daniel J Needleman
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
16
|
Coffman VC, McDermott MBA, Shtylla B, Dawes AT. Stronger net posterior cortical forces and asymmetric microtubule arrays produce simultaneous centration and rotation of the pronuclear complex in the early Caenorhabditis elegans embryo. Mol Biol Cell 2016; 27:3550-3562. [PMID: 27733624 PMCID: PMC5221587 DOI: 10.1091/mbc.e16-06-0430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/04/2016] [Indexed: 01/06/2023] Open
Abstract
Experimental and theoretical approaches are used to demonstrate the importance of asymmetries in microtubule arrays and cortical pulling forces mediated by dynein in positioning the pronuclear complex before nuclear envelope breakdown in the early Caenorhabditis elegans embryo. Positioning of microtubule-organizing centers (MTOCs) incorporates biochemical and mechanical cues for proper alignment of the mitotic spindle and cell division site. Current experimental and theoretical studies in the early Caenorhabditis elegans embryo assume remarkable changes in the origin and polarity of forces acting on the MTOCs. These changes must occur over a few minutes, between initial centration and rotation of the pronuclear complex and entry into mitosis, and the models do not replicate in vivo timing of centration and rotation. Here we propose a model that incorporates asymmetry in the microtubule arrays generated by each MTOC, which we demonstrate with in vivo measurements, and a similar asymmetric force profile to that required for posterior-directed spindle displacement during mitosis. We find that these asymmetries are capable of and important for recapitulating the simultaneous centration and rotation of the pronuclear complex observed in vivo. The combination of theoretical and experimental evidence provided here offers a unified framework for the spatial organization and forces needed for pronuclear centration, rotation, and spindle displacement in the early C. elegans embryo.
Collapse
Affiliation(s)
- Valerie C Coffman
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | | | - Blerta Shtylla
- Mathematics Department, Pomona College, Claremont, CA 91711
| | - Adriana T Dawes
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210 .,Department of Mathematics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
17
|
Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA. Genetics 2016; 204:1177-1189. [PMID: 27672093 DOI: 10.1534/genetics.116.192831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism.
Collapse
|
18
|
Besseling J, Bringmann H. Engineered non-Mendelian inheritance of entire parental genomes in C. elegans. Nat Biotechnol 2016; 34:982-6. [PMID: 27479498 DOI: 10.1038/nbt.3643] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 07/05/2016] [Indexed: 11/09/2022]
Abstract
The ability to rewrite the rules of genetic segregation would open new possibilities in diverse areas of biotechnology ranging from breeding to epigenetics. Here we engineer non-Mendelian inheritance of the entire maternal or paternal genome in Caenorhabditis elegans by changing the structure of the mitotic spindle during the first cell division of the zygote. Using germline-specific overexpression of a single protein, the conserved microtubule force regulator GPR-1, we increase forces that pull on spindle poles to convert the single bipolar mitotic spindle to two monopolar spindles. This generates two-cell embryos in which one cell contains only the maternal chromosomes and the other cell contains only the paternal chromosomes. As the embryo develops, each cell of the animal, including the germ cells, contains the genetic material of only one parent, resulting in hybrid F1 animals. Progeny of these animals (F2) inherit either only F0 maternal or only F0 paternal chromosomes, and thus descend from only either of their grandparents' gametes.
Collapse
Affiliation(s)
- Judith Besseling
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henrik Bringmann
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
19
|
Letort G, Nedelec F, Blanchoin L, Théry M. Centrosome centering and decentering by microtubule network rearrangement. Mol Biol Cell 2016; 27:2833-43. [PMID: 27440925 PMCID: PMC5025270 DOI: 10.1091/mbc.e16-06-0395] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/11/2016] [Indexed: 11/11/2022] Open
Abstract
Numerical simulations are used to investigate the role of microtubule network architecture in centrosome positioning. Microtubule gliding along cell edges and pivoting around the centrosome are key regulators of the orientation of pushing forces, the magnitude of which depends on the number, dynamics, and stiffness of microtubules. The centrosome is positioned at the cell center by pushing and pulling forces transmitted by microtubules (MTs). Centrosome decentering is often considered to result from asymmetric, cortical pulling forces exerted in particular by molecular motors on MTs and controlled by external cues affecting the cell cortex locally. Here we used numerical simulations to investigate the possibility that it could equally result from the redistribution of pushing forces due to a reorientation of MTs. We first showed that MT gliding along cell edges and pivoting around the centrosome regulate MT rearrangement and thereby direct the spatial distribution of pushing forces, whereas the number, dynamics, and stiffness of MTs determine the magnitude of these forces. By modulating these parameters, we identified different regimes, involving both pushing and pulling forces, characterized by robust centrosome centering, robust off-centering, or “reactive” positioning. In the last-named conditions, weak asymmetric cues can induce a misbalance of pushing and pulling forces, resulting in an abrupt transition from a centered to an off-centered position. Taken together, these results point to the central role played by the configuration of the MTs on the distribution of pushing forces that position the centrosome. We suggest that asymmetric external cues should not be seen as direct driver of centrosome decentering and cell polarization but instead as inducers of an effective reorganization of the MT network, fostering centrosome motion to the cell periphery.
Collapse
Affiliation(s)
- Gaëlle Letort
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, 38054 Grenoble, France
| | - Francois Nedelec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Laurent Blanchoin
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, 38054 Grenoble, France CytoMorpho Lab, Hopital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/Université Paris Diderot, 75010 Paris, France
| | - Manuel Théry
- CytoMorpho Lab, Biosciences and Biotechnology Institute of Grenoble, UMR5168, CEA/INRA/CNRS/Université Grenoble-Alpes, 38054 Grenoble, France CytoMorpho Lab, Hopital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/Université Paris Diderot, 75010 Paris, France
| |
Collapse
|
20
|
Wu JC, Espiritu EB, Rose LS. The 14-3-3 protein PAR-5 regulates the asymmetric localization of the LET-99 spindle positioning protein. Dev Biol 2016; 412:288-297. [PMID: 26921457 DOI: 10.1016/j.ydbio.2016.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 01/03/2023]
Abstract
PAR proteins play important roles in establishing cytoplasmic polarity as well as regulating spindle positioning during asymmetric division. However, the molecular mechanisms by which the PAR proteins generate asymmetry in different cell types are still being elucidated. Previous studies in Caenorhabditis elegans revealed that PAR-3 and PAR-1 regulate the asymmetric localization of LET-99, which in turn controls spindle positioning by affecting the distribution of the conserved force generating complex. In wild-type embryos, LET-99 is localized in a lateral cortical band pattern, via inhibition at the anterior by PAR-3 and at the posterior by PAR-1. In this report, we show that the 14-3-3 protein PAR-5 is also required for cortical LET-99 asymmetry. PAR-5 associated with LET-99 in pull-down assays, and two PAR-5 binding sites were identified in LET-99 using the yeast two-hybrid assay. Mutation of these sites abolished binding in yeast and altered LET-99 localization in vivo: LET-99 was present at the highest levels at the posterior pole of the embryo instead of a band in par-5 embryos. Together the results indicate that PAR-5 acts in a mechanism with PAR-1 to regulate LET-99 cortical localization.
Collapse
Affiliation(s)
- Jui-Ching Wu
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| | - Eugenel B Espiritu
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| | - Lesilee S Rose
- Department of Molecular and Cellular Biology, University of California, Davis, USA
| |
Collapse
|
21
|
Woodruff JB, Wueseke O, Hyman AA. Pericentriolar material structure and dynamics. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0459. [PMID: 25047613 PMCID: PMC4113103 DOI: 10.1098/rstb.2013.0459] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A centrosome consists of two barrel-shaped centrioles embedded in a matrix of proteins known as the pericentriolar material (PCM). The PCM serves as a platform for protein complexes that regulate organelle trafficking, protein degradation and spindle assembly. Perhaps most important for cell division, the PCM concentrates tubulin and serves as the primary organizing centre for microtubules in metazoan somatic cells. Thus, similar to other well-described organelles, such as the nucleus and mitochondria, the cell has compartmentalized a multitude of vital biochemical reactions in the PCM. However, unlike these other organelles, the PCM is not membrane bound, but rather a dynamic collection of protein complexes and nucleic acids that constitute the organelle's interior and determine its boundary. How is the complex biochemical machinery necessary for the myriad centrosome functions concentrated and maintained in the PCM? Recent advances in proteomics and RNAi screening have unveiled most of the key PCM components and hinted at their molecular interactions (
table 1). Now we must understand how the interactions between these molecules contribute to the mesoscale organization and the assembly of the centrosome. Among outstanding questions are the intrinsic mechanisms that determine PCM shape and size, and how it functions as a biochemical reaction hub.
Collapse
Affiliation(s)
- Jeffrey B Woodruff
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Oliver Wueseke
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
22
|
Spiró Z, Thyagarajan K, De Simone A, Träger S, Afshar K, Gönczy P. Clathrin regulates centrosome positioning by promoting acto-myosin cortical tension in C. elegans embryos. Development 2014; 141:2712-23. [PMID: 24961801 DOI: 10.1242/dev.107508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regulation of centrosome and spindle positioning is crucial for spatial cell division control. The one-cell Caenorhabditis elegans embryo has proven attractive for dissecting the mechanisms underlying centrosome and spindle positioning in a metazoan organism. Previous work revealed that these processes rely on an evolutionarily conserved force generator complex located at the cell cortex. This complex anchors the motor protein dynein, thus allowing cortical pulling forces to be exerted on astral microtubules emanating from microtubule organizing centers (MTOCs). Here, we report that the clathrin heavy chain CHC-1 negatively regulates pulling forces acting on centrosomes during interphase and on spindle poles during mitosis in one-cell C. elegans embryos. We establish a similar role for the cytokinesis/apoptosis/RNA-binding protein CAR-1 and uncover that CAR-1 is needed to maintain proper levels of CHC-1. We demonstrate that CHC-1 is necessary for normal organization of the cortical acto-myosin network and for full cortical tension. Furthermore, we establish that the centrosome positioning phenotype of embryos depleted of CHC-1 is alleviated by stabilizing the acto-myosin network. Conversely, we demonstrate that slight perturbations of the acto-myosin network in otherwise wild-type embryos results in excess centrosome movements resembling those in chc-1(RNAi) embryos. We developed a 2D computational model to simulate cortical rigidity-dependent pulling forces, which recapitulates the experimental data and further demonstrates that excess centrosome movements are produced at medium cortical rigidity values. Overall, our findings lead us to propose that clathrin plays a critical role in centrosome positioning by promoting acto-myosin cortical tension.
Collapse
Affiliation(s)
- Zoltán Spiró
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Kalyani Thyagarajan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Alessandro De Simone
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Sylvain Träger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Katayoun Afshar
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology (EPFL) Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
23
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
24
|
Sendoel A, Maida S, Zheng X, Teo Y, Stergiou L, Rossi CA, Subasic D, Pinto SM, Kinchen JM, Shi M, Boettcher S, Meyer JN, Manz MG, Bano D, Hengartner MO. DEPDC1/LET-99 participates in an evolutionarily conserved pathway for anti-tubulin drug-induced apoptosis. Nat Cell Biol 2014; 16:812-20. [PMID: 25064737 DOI: 10.1038/ncb3010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Microtubule-targeting chemotherapeutics induce apoptosis in cancer cells by promoting the phosphorylation and degradation of the anti-apoptotic BCL-2 family member MCL1. The signalling cascade linking microtubule disruption to MCL1 degradation remains however to be defined. Here, we establish an in vivo screening strategy in Caenorhabditis elegans to uncover genes involved in chemotherapy-induced apoptosis. Using an RNAi-based screen, we identify three genes required for vincristine-induced apoptosis. We show that the DEP domain protein LET-99 acts upstream of the heterotrimeric G protein alpha subunit GPA-11 to control activation of the stress kinase JNK-1. The human homologue of LET-99, DEPDC1, similarly regulates vincristine-induced cell death by promoting JNK-dependent degradation of the BCL-2 family protein MCL1. Collectively, these data uncover an evolutionarily conserved mediator of anti-tubulin drug-induced apoptosis and suggest that DEPDC1 levels could be an additional determinant for therapy response upstream of MCL1.
Collapse
Affiliation(s)
- Ataman Sendoel
- 1] Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland [2] Division of Hematology, University Hospital Zurich, Raemistrasse 190 CH-8091 Zurich, Switzerland [3]
| | - Simona Maida
- German Center for Neurodegenerative Diseases (DZNE) e.V. Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Xue Zheng
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Youjin Teo
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Lilli Stergiou
- 1] Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland [2]
| | - Carlo-Alberto Rossi
- German Center for Neurodegenerative Diseases (DZNE) e.V. Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Deni Subasic
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Sergio M Pinto
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Jason M Kinchen
- Center for Cell Clearance, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Moyin Shi
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| | - Steffen Boettcher
- Division of Hematology, University Hospital Zurich, Raemistrasse 190 CH-8091 Zurich, Switzerland
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina 27708, USA
| | - Markus G Manz
- Division of Hematology, University Hospital Zurich, Raemistrasse 190 CH-8091 Zurich, Switzerland
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE) e.V. Ludwig-Erhard-Allee 2, D-53175 Bonn, Germany
| | - Michael O Hengartner
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190 CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
Akhshi TK, Wernike D, Piekny A. Microtubules and actin crosstalk in cell migration and division. Cytoskeleton (Hoboken) 2013; 71:1-23. [DOI: 10.1002/cm.21150] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Denise Wernike
- Department of Biology; Concordia University; Montreal Quebec Canada
| | - Alisa Piekny
- Department of Biology; Concordia University; Montreal Quebec Canada
| |
Collapse
|
26
|
Bergstralh DT, Haack T, St Johnston D. Epithelial polarity and spindle orientation: intersecting pathways. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130291. [PMID: 24062590 PMCID: PMC3785970 DOI: 10.1098/rstb.2013.0291] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.
Collapse
Affiliation(s)
- Dan T Bergstralh
- The Gurdon Institute and the Department of Genetics, University of Cambridge, , Tennis Court Road, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
27
|
Abstract
Accurate positioning of spindles is essential for asymmetric mitotic and meiotic cell divisions that are crucial for animal development and oocyte maturation, respectively. The predominant model for spindle positioning, termed "cortical pulling," involves attachment of the microtubule-based motor cytoplasmic dynein to the cortex, where it exerts a pulling force on microtubules that extend from the spindle poles to the cell cortex, thereby displacing the spindle. Recent studies have addressed important details of the cortical pulling mechanism and have revealed alternative mechanisms that may be used when microtubules do not extend from the spindle to the cortex.
Collapse
Affiliation(s)
- Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Fievet BT, Rodriguez J, Naganathan S, Lee C, Zeiser E, Ishidate T, Shirayama M, Grill S, Ahringer J. Systematic genetic interaction screens uncover cell polarity regulators and functional redundancy. Nat Cell Biol 2013; 15:103-12. [PMID: 23242217 PMCID: PMC3836181 DOI: 10.1038/ncb2639] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/02/2012] [Indexed: 02/08/2023]
Abstract
Although single-gene loss-of-function analyses can identify components of particular processes, important molecules are missed owing to the robustness of biological systems. Here we show that large-scale RNAi screening for suppression interactions with functionally related mutants greatly expands the repertoire of genes known to act in a shared process and reveals a new layer of functional relationships. We performed RNAi screens for 17 Caenorhabditis elegans cell polarity mutants, generating the most comprehensive polarity network in a metazoan, connecting 184 genes. Of these, 72% were not previously linked to cell polarity and 80% have human homologues. We experimentally confirmed functional roles predicted by the network and characterized through biophysical analyses eight myosin regulators. In addition, we discovered functional redundancy between two unknown polarity genes. Similar systematic genetic interaction screens for other biological processes will help uncover the inventory of relevant genes and their patterns of interactions.
Collapse
Affiliation(s)
- Bruno Thomas Fievet
- The Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Collins ES, Balchand SK, Faraci JL, Wadsworth P, Lee WL. Cell cycle-regulated cortical dynein/dynactin promotes symmetric cell division by differential pole motion in anaphase. Mol Biol Cell 2012; 23:3380-90. [PMID: 22809624 PMCID: PMC3431930 DOI: 10.1091/mbc.e12-02-0109] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence is presented for dynamic cortical association of dynein and dynactin in mammalian cells and its regulation by Plk1, astral microtubules, and the cell cycle. The asymmetric spindle positioning in LLC-Pk1 cells and its correction by dynein and dynactin provide a new system for analysis of spindle position and symmetric cell division. In cultured mammalian cells, how dynein/dynactin contributes to spindle positioning is poorly understood. To assess the role of cortical dynein/dynactin in this process, we generated mammalian cell lines expressing localization and affinity purification (LAP)–tagged dynein/dynactin subunits from bacterial artificial chromosomes and observed asymmetric cortical localization of dynein and dynactin during mitosis. In cells with asymmetrically positioned spindles, dynein and dynactin were both enriched at the cortex distal to the spindle. NuMA, an upstream targeting factor, localized asymmetrically along the cell cortex in a manner similar to dynein and dynactin. During spindle motion toward the distal cortex, dynein and dynactin were locally diminished and subsequently enriched at the new distal cortex. At anaphase onset, we observed a transient increase in cortical dynein, followed by a reduction in telophase. Spindle motion frequently resulted in cells entering anaphase with an asymmetrically positioned spindle. These cells gave rise to symmetric daughter cells by dynein-dependent differential spindle pole motion in anaphase. Our results demonstrate that cortical dynein and dynactin dynamically associate with the cell cortex in a cell cycle–regulated manner and are required to correct spindle mispositioning in LLC-Pk1 epithelial cells.
Collapse
|
30
|
Schulze J, Schierenberg E. Evolution of embryonic development in nematodes. EvoDevo 2011; 2:18. [PMID: 21929824 PMCID: PMC3195109 DOI: 10.1186/2041-9139-2-18] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/20/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nematodes can be subdivided into basal Enoplea (clades 1 and 2) and more derived Chromadorea (clades 3 to 12). Embryogenesis of Caenorhabditis elegans (clade 9) has been analyzed in most detail. Their establishment of polarity and asymmetric cleavage requires the differential localization of PAR proteins. Earlier studies on selected other nematodes revealed that embryonic development of nematodes is more diverse than the essentially invariant development of C. elegans and the classic study object Ascaris had suggested. To obtain a more detailed picture of variations and evolutionary trends we compared embryonic cell lineages and pattern formation in embryos of all 12 nematode clades. METHODS The study was conducted using 4-D microscopy and 3-D modeling of developing embryos. RESULTS We found dramatic differences compared to C. elegans in Enoplea but also considerable variations among Chromadorea. We discovered 'Polarity Organizing Centers' (POCs) that orient cleavage spindles along the anterior-posterior axis in distinct cells over consecutive cell generations. The resulting lineally arranged blastomeres represent a starting point for the establishment of bilateral symmetry within individual lineages. We can discern six different early cleavage types and suggest that these variations are due to modifications in the activity of the POCs in conjunction with changes in the distribution of PAR proteins. In addition, our studies indicate that lineage complexity advanced considerably during evolution, that is we observe trends towards an increase of somatic founder cells, from monoclonal to polyclonal lineages and from a variable (position-dependent) to an invariable (lineage-dependent) way of cell fate specification. In contrast to the early phase of embryogenesis, the second half ('morphogenesis') appears similar in all studied nematodes. Comparison of early cleavage between the basal nematode Tobrilus stefanskii and the tardigrade Hypsibius dujardini revealed surprising similarities indicating that the presence of POCs is not restricted to nematode embryos. CONCLUSIONS The pattern of cleavage, spatial arrangement and differentiation of cells diverged dramatically during the history of the phylum Nematoda without corresponding changes in the phenotype. While in all studied representatives the same distinctive developmental steps need to be taken, cell behavior leading to these is not conserved.
Collapse
Affiliation(s)
- Jens Schulze
- University of Cologne, Biocenter, Zuelpicher Str. 47b 50967 Köln, Germany
| | | |
Collapse
|
31
|
aPKC phosphorylates NuMA-related LIN-5 to position the mitotic spindle during asymmetric division. Nat Cell Biol 2011; 13:1132-8. [DOI: 10.1038/ncb2315] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022]
|
32
|
Decker M, Jaensch S, Pozniakovsky A, Zinke A, O'Connell KF, Zachariae W, Myers E, Hyman AA. Limiting amounts of centrosome material set centrosome size in C. elegans embryos. Curr Biol 2011; 21:1259-67. [PMID: 21802300 DOI: 10.1016/j.cub.2011.06.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/31/2011] [Accepted: 06/01/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND The ways in which cells set the size of intracellular structures is an important but largely unsolved problem [1]. Early embryonic divisions pose special problems in this regard. Many checkpoints common in somatic cells are missing from these divisions, which are characterized by rapid reductions in cell size and short cell cycles [2]. Embryonic cells must therefore possess simple and robust mechanisms that allow the size of many of their intracellular structures to rapidly scale with cell size. RESULTS Here, we study the mechanism by which one structure, the centrosome, scales in size during the early embryonic divisions of C. elegans. We show that centrosome size is directly related to cell size and is independent of lineage. Two findings suggest that the total amount of maternally supplied centrosome proteins could limit centrosome size. First, the combined volume of all centrosomes formed at any one time in the developing embryo is constant. Second, the total volume of centrosomes in any one cell is independent of centrosome number. By increasing the amount of centrosome proteins in the cell, we provide evidence that one component that limits centrosome size is the conserved pericentriolar material protein SPD-2 [3], which we show binds to and targets polo-like kinase 1 [3, 4] to centrosomes. CONCLUSIONS We propose a limiting component hypothesis, in which the volume of the cell sets centrosome size by limiting the total amount of centrosome components. This idea could be a general mechanism for setting the size of intracellular organelles during development.
Collapse
Affiliation(s)
- Markus Decker
- Max Planck Institute for Cell Biology and Genetics, Dresden 01307 Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Mitotic Spindle Orientation in Asymmetric and Symmetric Cell Divisions during Animal Development. Dev Cell 2011; 21:102-19. [DOI: 10.1016/j.devcel.2011.06.012] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/06/2011] [Accepted: 06/08/2011] [Indexed: 11/17/2022]
|
34
|
Begasse ML, Hyman AA. The first cell cycle of the Caenorhabditis elegans embryo: spatial and temporal control of an asymmetric cell division. Results Probl Cell Differ 2011; 53:109-33. [PMID: 21630143 DOI: 10.1007/978-3-642-19065-0_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Throughout the development of an organism, it is essential that the cell cycle machinery is fine-tuned to generate cells of different fate. A series of asymmetric cell divisions leads to lineage specification. The Caenorhabditis elegans embryo is an excellent system to study various aspects of the early embryonic cell cycle. The invariant nature of the rapid cell divisions is the key feature for studying the effects of small perturbations to a complex process such as the cell cycle. The thorough characterization of the asymmetric first cell division of the C. elegans embryo has given great insight on how the oscillations of the cell cycle coordinate with the cytoplasmic rearrangements that ultimately lead to two developmentally distinct daughter cells.
Collapse
Affiliation(s)
- Maria L Begasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|