1
|
Wagner M, Song Y, Jiménez-Ruiz E, Härtle S, Meissner M. The SUN-like protein TgSLP1 is essential for nuclear division in the apicomplexan parasite Toxoplasma gondii. J Cell Sci 2023; 136:jcs260337. [PMID: 37815466 PMCID: PMC10629696 DOI: 10.1242/jcs.260337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2023] [Indexed: 10/11/2023] Open
Abstract
Connections between the nucleus and the cytoskeleton are important for positioning and division of the nucleus. In most eukaryotes, the linker of nucleoskeleton and cytoskeleton (LINC) complex spans the outer and inner nuclear membranes and connects the nucleus to the cytoskeleton. In opisthokonts, it is composed of Klarsicht, ANC-1 and Syne homology (KASH) domain proteins and Sad1 and UNC-84 (SUN) domain proteins. Given that the nucleus is positioned at the posterior pole of Toxoplasma gondii, we speculated that apicomplexan parasites must have a similar mechanism that integrates the nucleus and the cytoskeleton. Here, we identified three UNC family proteins in the genome of the apicomplexan parasite T. gondii. Whereas the UNC-50 protein TgUNC1 localised to the Golgi and appeared to be not essential for the parasite, the SUN domain protein TgSLP2 showed a diffuse pattern throughout the parasite. The second SUN domain protein, TgSLP1, was expressed in a cell cycle-dependent manner and was localised close to the mitotic spindle and, more detailed, at the kinetochore. We demonstrate that conditional knockout of TgSLP1 leads to failure of nuclear division and loss of centrocone integrity.
Collapse
Affiliation(s)
- Mirjam Wagner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| | - Yuan Song
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| | - Elena Jiménez-Ruiz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| | - Sonja Härtle
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, 82152, Planegg, Germany
| |
Collapse
|
2
|
Andov B, Boulaflous-Stevens A, Pain C, Mermet S, Voisin M, Charrondiere C, Vanrobays E, Tutois S, Evans DE, Kriechbaumer V, Tatout C, Graumann K. In Depth Topological Analysis of Arabidopsis Mid-SUN Proteins and Their Interaction with the Membrane-Bound Transcription Factor MaMYB. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091787. [PMID: 37176845 PMCID: PMC10180911 DOI: 10.3390/plants12091787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Mid-SUN proteins are a neglected family of conserved type III membrane proteins of ancient origin with representatives in plants, animals, and fungi. Previous higher plant studies have associated them with functions at the nuclear envelope and the endoplasmic reticulum (ER). In this study, high-resolution confocal light microscopy is used to explore the localisation of SUN3 and SUN4 in the perinuclear region, to explore topology, and to study the role of mid-SUNs on endoplasmic reticulum morphology. The role of SUN3 in the ER is reinforced by the identification of a protein interaction between SUN3 and the ER membrane-bound transcription factor maMYB. The results highlight the importance of mid-SUNs as functional components of the ER and outer nuclear membrane.
Collapse
Affiliation(s)
- Bisa Andov
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | | | - Charlotte Pain
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Sarah Mermet
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Maxime Voisin
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Camille Charrondiere
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Emmanuel Vanrobays
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Sylvie Tutois
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - David E Evans
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Verena Kriechbaumer
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Christophe Tatout
- CNRS, Inserm, GReD Clermont-Ferrand, Université Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Katja Graumann
- Department of Biological and Molecular Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|
3
|
A tapt1 knock-out zebrafish line with aberrant lens development and impaired vision models human early-onset cataract. Hum Genet 2023; 142:457-476. [PMID: 36697720 DOI: 10.1007/s00439-022-02518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
Bi-allelic mutations in the gene coding for human trans-membrane anterior-posterior transformation protein 1 (TAPT1) result in a broad phenotypic spectrum, ranging from syndromic disease with severe skeletal and congenital abnormalities to isolated early-onset cataract. We present here the first patient with a frameshift mutation in the TAPT1 gene, resulting in both bilateral early-onset cataract and skeletal abnormalities, in addition to several dysmorphic features, in this way further expanding the phenotypic spectrum associated with TAPT1 mutations. A tapt1a/tapt1b double knock-out (KO) zebrafish model generated by CRISPR/Cas9 gene editing revealed an early larval phenotype with eye malformations, loss of vision, increased photokinetics and hyperpigmentation, without visible skeletal involvement. Ultrastructural analysis of the eyes showed a smaller condensed lens, loss of integrity of the lens capsule with formation of a secondary lens and hyperplasia of the cells in the ganglion and inner plexiform layers of the retina. Transcriptomic analysis pointed to an impaired lens development with aberrant expression of many of the crystallin and other lens-specific genes. Furthermore, the phototransduction and visual perception pathways were found to be significantly disturbed. Differences in light perception are likely the cause of the increased dark photokinetics and generalized hyperpigmentation observed in this zebrafish model. In conclusion, this study validates TAPT1 as a new gene for early-onset cataract and sheds light on its ultrastructural and molecular characteristics.
Collapse
|
4
|
Nabavizadeh N, Bressin A, Shboul M, Moreno Traspas R, Chia PH, Bonnard C, Szenker‐Ravi E, Sarıbaş B, Beillard E, Altunoglu U, Hojati Z, Drutman S, Freier S, El‐Khateeb M, Fathallah R, Casanova J, Soror W, Arafat A, Escande‐Beillard N, Mayer A, Reversade B. A progeroid syndrome caused by a deep intronic variant in TAPT1 is revealed by RNA/SI-NET sequencing. EMBO Mol Med 2023; 15:e16478. [PMID: 36652330 PMCID: PMC9906387 DOI: 10.15252/emmm.202216478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Exome sequencing has introduced a paradigm shift for the identification of germline variations responsible for Mendelian diseases. However, non-coding regions, which make up 98% of the genome, cannot be captured. The lack of functional annotation for intronic and intergenic variants makes RNA-seq a powerful companion diagnostic. Here, we illustrate this point by identifying six patients with a recessive Osteogenesis Imperfecta (OI) and neonatal progeria syndrome. By integrating homozygosity mapping and RNA-seq, we delineated a deep intronic TAPT1 mutation (c.1237-52 G>A) that segregated with the disease. Using SI-NET-seq, we document that TAPT1's nascent transcription was not affected in patients' fibroblasts, indicating instead that this variant leads to an alteration of pre-mRNA processing. Predicted to serve as an alternative splicing branchpoint, this mutation enhances TAPT1 exon 12 skipping, creating a protein-null allele. Additionally, our study reveals dysregulation of pathways involved in collagen and extracellular matrix biology in disease-relevant cells. Overall, our work highlights the power of transcriptomic approaches in deciphering the repercussions of non-coding variants, as well as in illuminating the molecular mechanisms of human diseases.
Collapse
Affiliation(s)
- Nasrinsadat Nabavizadeh
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
- Division of Genetics, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
| | | | - Mohammad Shboul
- Department of Medical Laboratory SciencesJordan University of Science and TechnologyIrbidJordan
| | - Ricardo Moreno Traspas
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
| | - Poh Hui Chia
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
| | - Carine Bonnard
- Model Development, A*STAR Skin Research Labs (A*SRL)Singapore CitySingapore
| | - Emmanuelle Szenker‐Ravi
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
| | - Burak Sarıbaş
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
| | | | - Umut Altunoglu
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Scott Drutman
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchRockefeller UniversityNew YorkNYUSA
| | - Susanne Freier
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | | | - Rajaa Fathallah
- National Center for Diabetes, Endocrinology and GeneticsAmmanJordan
| | - Jean‐Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller BranchRockefeller UniversityNew YorkNYUSA
- Laboratory of Human Genetics of Infectious Diseases, Necker BranchINSERM U1163, Necker Hospital for Sick ChildrenParisFrance
- Imagine InstituteUniversity of ParisParisFrance
- Howard Hughes Medical InstituteNew YorkNYUSA
- Pediatric Hematology and Immunology UnitNecker Hospital for Sick ChildrenParisFrance
| | - Wesam Soror
- National Center for Diabetes, Endocrinology and GeneticsAmmanJordan
| | - Alaa Arafat
- National Center for Diabetes, Endocrinology and GeneticsAmmanJordan
| | - Nathalie Escande‐Beillard
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
- Institute of Molecular and Cell Biology, A*STARSingapore CitySingapore
| | - Andreas Mayer
- Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Bruno Reversade
- Laboratory of Human Genetics & TherapeuticsGenome Institute of Singapore, A*STARSingapore CitySingapore
- Medical Genetics DepartmentKoç University School of MedicineIstanbulTurkey
- Institute of Molecular and Cell Biology, A*STARSingapore CitySingapore
- Department of PaediatricsNational University of SingaporeSingapore CitySingapore
- Smart‐Health Initiative, BESE, KAUSTThuwalKingdom of Saudi Arabia
| |
Collapse
|
5
|
Xue Y, Meng JG, Jia PF, Zhang ZR, Li HJ, Yang WC. POD1-SUN-CRT3 chaperone complex guards the ER sorting of LRR receptor kinases in Arabidopsis. Nat Commun 2022; 13:2703. [PMID: 35577772 PMCID: PMC9110389 DOI: 10.1038/s41467-022-30179-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Protein sorting in the secretory pathway is essential for cellular compartmentalization and homeostasis in eukaryotic cells. The endoplasmic reticulum (ER) is the biosynthetic and folding factory of secretory cargo proteins. The cargo transport from the ER to the Golgi is highly selective, but the molecular mechanism for the sorting specificity is unclear. Here, we report that three ER membrane localized proteins, SUN3, SUN4 and SUN5, regulate ER sorting of leucine-rich repeat receptor kinases (LRR-RKs) to the plasma membrane. The triple mutant sun3/4/5 displays mis-sorting of these cargo proteins to acidic compartments and therefore impairs the growth of pollen tubes and the whole plant. Furthermore, the extracellular LRR domain of LRR-RKs is responsible for the correct sorting. Together, this study reports a mechanism that is important for the sorting of cell surface receptors. Cargo transport from the ER to the Golgi is highly selective. Here the authors identify three secretory pathway localized proteins that regulate ER sorting of receptor kinases in Arabidopsis and are required to support pollen tube growth.
Collapse
|
6
|
Wang YW, Chen X, Tian Y, Liu L, Su P. Decreased Expression of circ_0000160 in Breast Cancer With Axillary Lymph Node Metastasis. Front Mol Biosci 2022; 8:690826. [PMID: 35211507 PMCID: PMC8861307 DOI: 10.3389/fmolb.2021.690826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 12/30/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Circular RNAs (circRNAs) have been shown to play important roles in the development and progression of human cancers. Emerging evidence shows that circRNAs have the potential to be promising biomarkers for cancer diagnosis and prognosis. However, the roles of circRNAs in breast cancer axillary lymph node metastasis (ALNM) remain to be determined.Methods: Transcriptome sequencing was utilized to screen the differentially expressed circRNAs in three breast cancer tissues with ALNM and three without ALNM. Differentially expressed circRNAs were further verified by quantitative real-time PCR. Moreover, receiver operating characteristic (ROC) curve analysis was performed to calculate the value of circRNAs to distinguish breast cancer tissues with ALNM and those without ALNM. To explore the potential mechanism of the circRNAs, a circRNA–miRNA–mRNA network was constructed based on the CircInteractome, circBank, and mirDIP online software.Results: In total, 31 differentially expressed circRNAs were identified by transcriptome sequencing; among them, 21 were upregulated and 10 were downregulated in breast cancer with ALNM compared to those without ALNM. Circ_0000160 was validated to be downregulated in breast cancer tissues with ALNM compared with those without ALNM. The ROC curve showed the ability of circ_0000160 to distinguish breast cancer tissues with ALNM and those without ALNM, with an area under the curve of 0.7435. Furthermore, bioinformatics analysis revealed that the predicted mRNAs for circ_0000160 may be related to lymph node metastasis. The predicted mRNAs for circ_0000160 may be involved in many cancer-related pathways.Conclusion: A decreased expression of circ_0000160 was found in breast cancer with axillary lymph node metastasis. Circ_0000160 may have the potential to distinguish breast cancer with axillary lymph node metastasis from those without axillary lymph node metastasis.
Collapse
Affiliation(s)
- Ya-Wen Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xu Chen
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Long Liu
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Su
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Peng Su,
| |
Collapse
|
7
|
Wilches R, Beluch WH, McConnell E, Tautz D, Chan YF. Independent evolution toward larger body size in the distinctive Faroe Island mice. G3-GENES GENOMES GENETICS 2021; 11:6062402. [PMID: 33561246 PMCID: PMC8022703 DOI: 10.1093/g3journal/jkaa051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
Most phenotypic traits in nature involve the collective action of many genes. Traits that evolve repeatedly are particularly useful for understanding how selection may act on changing trait values. In mice, large body size has evolved repeatedly on islands and under artificial selection in the laboratory. Identifying the loci and genes involved in this process may shed light on the evolution of complex, polygenic traits. Here, we have mapped the genetic basis of body size variation by making a genetic cross between mice from the Faroe Islands, which are among the largest and most distinctive natural populations of mice in the world, and a laboratory mouse strain selected for small body size, SM/J. Using this F2 intercross of 841 animals, we have identified 111 loci controlling various aspects of body size, weight and growth hormone levels. By comparing against other studies, including the use of a joint meta-analysis, we found that the loci involved in the evolution of large size in the Faroese mice were largely independent from those of a different island population or other laboratory strains. We hypothesize that colonization bottleneck, historical hybridization, or the redundancy between multiple loci have resulted in the Faroese mice achieving an outwardly similar phenotype through a distinct evolutionary path.
Collapse
Affiliation(s)
- Ricardo Wilches
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - William H Beluch
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| | - Ellen McConnell
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, 24306 Plön, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Genetics, 24306 Plön, Germany
| | - Yingguang Frank Chan
- Friedrich Miescher Laboratory of the Max Planck Society, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Patra D, Kim J, Zhang Q, Tycksen E, Sandell LJ. Site-1 protease ablation in the osterix-lineage in mice results in bone marrow neutrophilia and hematopoietic stem cell alterations. Biol Open 2020; 9:bio052993. [PMID: 32576566 PMCID: PMC7328000 DOI: 10.1242/bio.052993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023] Open
Abstract
Site-1 protease (S1P) ablation in the osterix-lineage in mice drastically reduces bone development and downregulates bone marrow-derived skeletal stem cells. Here we show that these mice also suffer from spina bifida occulta with a characteristic lack of bone fusion in the posterior neural arches. Molecular analysis of bone marrow-derived non-red blood cell cells, via single-cell RNA-Seq and protein mass spectrometry, demonstrate that these mice have a much-altered bone marrow with a significant increase in neutrophils and Ly6C-expressing leukocytes. The molecular composition of bone marrow neutrophils is also different as they express more and additional members of the stefin A (Stfa) family of proteins. In vitro, recombinant Stfa1 and Stfa2 proteins have the ability to drastically inhibit osteogenic differentiation of bone marrow stromal cells, with no effect on adipogenic differentiation. FACS analysis of hematopoietic stem cells show that despite a decrease in hematopoietic stem cells, S1P ablation results in an increased production of granulocyte-macrophage progenitors, the precursors to neutrophils. These observations indicate that S1P has a role in the lineage specification of hematopoietic stem cells and/or their progenitors for development of a normal hematopoietic niche. Our study designates a fundamental requirement of S1P for maintaining a balanced regenerative capacity of the bone marrow niche.
Collapse
Affiliation(s)
- Debabrata Patra
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joongho Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Tycksen
- McDonnell Genome Institute, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Ali A, Al-Tobasei R, Lourenco D, Leeds T, Kenney B, Salem M. Genome-wide identification of loci associated with growth in rainbow trout. BMC Genomics 2020; 21:209. [PMID: 32138655 PMCID: PMC7059289 DOI: 10.1186/s12864-020-6617-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Growth is a major economic production trait in aquaculture. Improvements in growth performance will reduce time and cost for fish to reach market size. However, genes underlying growth have not been fully explored in rainbow trout. Results A previously developed 50 K gene-transcribed SNP chip, containing ~ 21 K SNPs showing allelic imbalances potentially associated with important aquaculture production traits including body weight, muscle yield, was used for genotyping a total of 789 fish with available phenotypic data for bodyweight gain. Genotyped fish were obtained from two consecutive generations produced in the NCCCWA growth-selection breeding program. Weighted single-step GBLUP (WssGBLUP) was used to perform a genome-wide association (GWA) analysis to identify quantitative trait loci (QTL) associated with bodyweight gain. Using genomic sliding windows of 50 adjacent SNPs, 247 SNPs associated with bodyweight gain were identified. SNP-harboring genes were involved in cell growth, cell proliferation, cell cycle, lipid metabolism, proteolytic activities, chromatin modification, and developmental processes. Chromosome 14 harbored the highest number of SNPs (n = 50). An SNP window explaining the highest additive genetic variance for bodyweight gain (~ 6.4%) included a nonsynonymous SNP in a gene encoding inositol polyphosphate 5-phosphatase OCRL-1. Additionally, based on a single-marker GWA analysis, 33 SNPs were identified in association with bodyweight gain. The highest SNP explaining variation in bodyweight gain was identified in a gene coding for thrombospondin-1 (THBS1) (R2 = 0.09). Conclusion The majority of SNP-harboring genes, including OCRL-1 and THBS1, were involved in developmental processes. Our results suggest that development-related genes are important determinants for growth and could be prioritized and used for genomic selection in breeding programs.
Collapse
Affiliation(s)
- Ali Ali
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Daniela Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, 30602, USA
| | - Tim Leeds
- United States Department of Agriculture Kearneysville, National Center for Cool and Cold Water Aquaculture, Agricultural Research Service, Kearneysville, WV, USA
| | - Brett Kenney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, 26506, USA
| | - Mohamed Salem
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
10
|
Gehrke LJ, Capitan A, Scheper C, König S, Upadhyay M, Heidrich K, Russ I, Seichter D, Tetens J, Medugorac I, Thaller G. Are scurs in heterozygous polled (Pp) cattle a complex quantitative trait? Genet Sel Evol 2020; 52:6. [PMID: 32033534 PMCID: PMC7006098 DOI: 10.1186/s12711-020-0525-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Background Breeding genetically hornless, i.e. polled, cattle provides an animal welfare-friendly and non-invasive alternative to the dehorning of calves. However, the molecular regulation of the development of horns in cattle is still poorly understood. Studying genetic characters such as polledness and scurs, can provide valuable insights into this process. Scurs are hornlike formations that occur occasionally in a wide variety of sizes and forms as an unexpected phenotype when breeding polled cattle. Methods We present a unique dataset of 885 Holstein–Friesian cattle with polled parentage. The horn phenotype was carefully examined, and the phenotypic heterogeneity of the trait is described. Using a direct gene test for polledness, the polled genotype of the animals was determined. Subsequently, the existence of a putative scurs locus was investigated using high-density genotype data of a selected subset of 232 animals and two mapping approaches: mixed linear model-based association analyses and combined linkage disequilibrium and linkage analysis. Results The results of an exploratory data analysis indicated that the expression of scurs depends on age at phenotyping, sex and polled genotype. Scurs were more prevalent in males than in females. Moreover, homozygous polled animals did not express any pronounced scurs and we found that the Friesian polled allele suppresses the development of scurs more efficiently than the Celtic polled allele. Combined linkage and linkage disequilibrium mapping revealed four genome-wide significant loci that affect the development of scurs, one on BTA5 and three on BTA12. Moreover, suggestive associations were detected on BTA16, 18 and 23. The mixed linear model-based association analysis supports the results of the combined linkage and linkage disequilibrium analysis. None of the mapping approaches provided convincing evidence for a monogenic inheritance of scurs. Conclusions Our results contradict the initial and still broadly accepted model for the inheritance of horns and scurs. We hypothesise an oligogenetic model to explain the development of scurs and polledness.
Collapse
Affiliation(s)
- Lilian Johanna Gehrke
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany. .,Vereinigte Informationssysteme Tierhaltung w.V. (Vit) Verden, 27283, Verden, Germany.
| | - Aurélien Capitan
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Carsten Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-University of Gießen, 35390, Gießen, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - Kristin Heidrich
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany.,Tierzuchtforschung e.V. München, Grub, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Grub, Germany
| | | | - Jens Tetens
- Department of Animal Sciences, Georg-August University, 37077, Göttingen, Germany.,Center for Integrated Breeding Research, Georg-August-University, 37077, Göttingen, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098, Kiel, Germany
| |
Collapse
|
11
|
Fani N, Farokhi M, Azami M, Kamali A, Bakhshaiesh NL, Ebrahimi-Barough S, Ai J, Eslaminejad MB. Endothelial and Osteoblast Differentiation of Adipose-Derived Mesenchymal Stem Cells Using a Cobalt-Doped CaP/Silk Fibroin Scaffold. ACS Biomater Sci Eng 2019; 5:2134-2146. [DOI: 10.1021/acsbiomaterials.8b01372] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nesa Fani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, 1665659911, ACECR, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, 7194684471 Shiraz, Iran
| | - Nasrin Lotfi Bakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, 1665659911, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Gumber HK, McKenna JF, Estrada AL, Tolmie AF, Graumann K, Bass HW. Identification and characterization of genes encoding the nuclear envelope LINC complex in the monocot species Zea mays. J Cell Sci 2019; 132:jcs.221390. [PMID: 30659121 DOI: 10.1242/jcs.221390] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
The linker of nucleoskeleton to cytoskeleton (LINC) complex is an essential multi-protein structure spanning the nuclear envelope. It connects the cytoplasm to the nucleoplasm, functions to maintain nuclear shape and architecture and regulates chromosome dynamics during cell division. Knowledge of LINC complex composition and function in the plant kingdom is primarily limited to Arabidopsis, but critically missing from the evolutionarily distant monocots, which include grasses, the most important agronomic crops worldwide. To fill this knowledge gap, we identified and characterized 22 maize genes, including a new grass-specific KASH gene family. By using bioinformatic, biochemical and cell biological approaches, we provide evidence that representative KASH candidates localize to the nuclear periphery and interact with Zea mays (Zm)SUN2 in vivo FRAP experiments using domain deletion constructs verified that this SUN-KASH interaction was dependent on the SUN but not the coiled-coil domain of ZmSUN2. A summary working model is proposed for the entire maize LINC complex encoded by conserved and divergent gene families. These findings expand our knowledge of the plant nuclear envelope in a model grass species, with implications for both basic and applied cellular research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Hardeep K Gumber
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Joseph F McKenna
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP UK
| | - Amado L Estrada
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Andrea F Tolmie
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP UK
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP UK
| | - Hank W Bass
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
13
|
Maddirevula S, Alsahli S, Alhabeeb L, Patel N, Alzahrani F, Shamseldin HE, Anazi S, Ewida N, Alsaif HS, Mohamed JY, Alazami AM, Ibrahim N, Abdulwahab F, Hashem M, Abouelhoda M, Monies D, Al Tassan N, Alshammari M, Alsagheir A, Seidahmed MZ, Sogati S, Aglan MS, Hamad MH, Salih MA, Hamed AA, Alhashmi N, Nabil A, Alfadli F, Abdel-Salam GMH, Alkuraya H, Peitee WO, Keng WT, Qasem A, Mushiba AM, Zaki MS, Fassad MR, Alfadhel M, Alexander S, Sabr Y, Temtamy S, Ekbote AV, Ismail S, Hosny GA, Otaify GA, Amr K, Al Tala S, Khan AO, Rizk T, Alaqeel A, Alsiddiky A, Singh A, Kapoor S, Alhashem A, Faqeih E, Shaheen R, Alkuraya FS. Expanding the phenome and variome of skeletal dysplasia. Genet Med 2018; 20:1609-1616. [PMID: 29620724 DOI: 10.1038/gim.2018.50] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/13/2018] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To describe our experience with a large cohort (411 patients from 288 families) of various forms of skeletal dysplasia who were molecularly characterized. METHODS Detailed phenotyping and next-generation sequencing (panel and exome). RESULTS Our analysis revealed 224 pathogenic/likely pathogenic variants (54 (24%) of which are novel) in 123 genes with established or tentative links to skeletal dysplasia. In addition, we propose 5 genes as candidate disease genes with suggestive biological links (WNT3A, SUCO, RIN1, DIP2C, and PAN2). Phenotypically, we note that our cohort spans 36 established phenotypic categories by the International Skeletal Dysplasia Nosology, as well as 18 novel skeletal dysplasia phenotypes that could not be classified under these categories, e.g., the novel C3orf17-related skeletal dysplasia. We also describe novel phenotypic aspects of well-known disease genes, e.g., PGAP3-related Toriello-Carey syndrome-like phenotype. We note a strong founder effect for many genes in our cohort, which allowed us to calculate a minimum disease burden for the autosomal recessive forms of skeletal dysplasia in our population (7.16E-04), which is much higher than the global average. CONCLUSION By expanding the phenotypic, allelic, and locus heterogeneity of skeletal dysplasia in humans, we hope our study will improve the diagnostic rate of patients with these conditions.
Collapse
Affiliation(s)
- Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Saud Alsahli
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Lamees Alhabeeb
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nisha Patel
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fatema Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Shams Anazi
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Nour Ewida
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jawahir Y Mohamed
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Dorota Monies
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Nada Al Tassan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Muneera Alshammari
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Afaf Alsagheir
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | - Samira Sogati
- Department of Medical Genetics, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Mona S Aglan
- Clinical Genetics Department, Human Genetics & Genome Research Division, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Muddathir H Hamad
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mustafa A Salih
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahlam A Hamed
- Department of Pediatrics and Child Health, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Amira Nabil
- Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Fatima Alfadli
- Department of Pediatrics, Maternity and Children's Hospital, Medina, Saudi Arabia
| | - Ghada M H Abdel-Salam
- Clinical Genetics Department, Human Genetics & Genome Research Division, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Hisham Alkuraya
- Global Eye Care, Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | | | - W T Keng
- Clinical Genetics, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Abdullah Qasem
- Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Aziza M Mushiba
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics & Genome Research Division, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Mahmoud R Fassad
- The Human Genetics Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Majid Alfadhel
- King Abdullah International Medical Research Centre, King Saud bin Abdulaziz University for Health Sciences, Genetics Division, Department of Pediatrics, King Abdulaziz Medical City, MNGHA, Riyadh, Saudi Arabia
| | - Saji Alexander
- Department of Paediatric Endocrinology and Diabetes, Chelsea and Westminster Hospital NHS Foundation Trust, London, UK
| | - Yasser Sabr
- Department of Obstetrics and Gynecology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Samia Temtamy
- Clinical Genetics Department, Human Genetics & Genome Research Division, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Alka V Ekbote
- Clinical Genetics Unit, Christian Medical College, Vellore, India
| | - Samira Ismail
- Clinical Genetics Department, Human Genetics & Genome Research Division, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | | | - Ghada A Otaify
- Clinical Genetics Department, Human Genetics & Genome Research Division, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Khalda Amr
- Clinical Genetics Department, Human Genetics & Genome Research Division, Center of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Saeed Al Tala
- Department of Pediatrics, Armed Forces Hospital Program Southwest Region, Khamis Mushait, Saudi Arabia
| | - Arif O Khan
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Tamer Rizk
- Department of Pediatric Neurology, Dr. Sulaiman Al Habib Hospital, Riyadh, Saudi Arabia
| | - Aida Alaqeel
- Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Abdulmonem Alsiddiky
- Department of Orthopedics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ankur Singh
- Department of Pediatrics, Genetic Clinic, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Seema Kapoor
- Department of Pediatrics, Maulana Azad Medical College, New Delhi, India
| | - Amal Alhashem
- Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia.,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Department of Pediatric Subspecialties, Children's Hospital, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ranad Shaheen
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Saudi Human Genome Program, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia. .,Department of Pediatric, Prince Sultan Medical Military City, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
14
|
Liang J, Li J, Fu Y, Ren F, Xu J, Zhou M, Li P, Feng H, Wang Y. GdX/UBL4A null mice exhibit mild kyphosis and scoliosis accompanied by dysregulation of osteoblastogenesis and chondrogenesis. Cell Biochem Funct 2018; 36:129-136. [DOI: 10.1002/cbf.3324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Jiao Liang
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
| | - Jun Li
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
| | - Yanxia Fu
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
- Tsinghua University-Perking University Joint Center for Life Sciences; Beijing China
| | - Fangli Ren
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
| | - Jiake Xu
- School of Biomedical Sciences; University of Western Australia; Perth Western Australia Australia
| | - Mengyu Zhou
- Department of Dentistry; The First Affiliated Hospital of Guangxi Medical University; Nanning China
| | - Peiyu Li
- The General Hospital of the People's Liberation Army; Beijing China
| | - Haotian Feng
- Research Centre for Regenerative Medicine; Guangxi Medical University; Nanning China
| | - Yinyin Wang
- State Key Laboratory of Membrane Biology, School of Medicine; Tsinghua University; Beijing China
| |
Collapse
|
15
|
Burke B. LINC complexes as regulators of meiosis. Curr Opin Cell Biol 2018; 52:22-29. [PMID: 29414590 DOI: 10.1016/j.ceb.2018.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 01/28/2023]
Abstract
Meiosis is a key processes of sexual reproduction in eukaryotes. By combining two cell division cycles with a single round of DNA replication meiosis provides a mechanism to generate haploid gametes. Coincidentally, processes involved in ensuring appropriate segregation of homologous chromosomes also result in genetic recombination and shuffling of genes between each generation. During the first meiotic prophase, rapid telomere-led chromosome movements facilitate alignment and pairing of homologous chromosomes. Forces that produce these movements are generated by the cytoskeleton. Force transmission across the nuclear envelope is dependent upon LINC complexes. These structures consist of SUN and KASH domain proteins that span the two nuclear membranes. Together they represent a pair of links in a molecular chain that couples telomeres to the cytoskeleton. In addition to their force transducing role, LINC complexes also have essential functions ensuring the fidelity of recombination between homologous chromosomes. In this way, LINC complexes are now seen as playing an active and integral role in meiotic progression.
Collapse
Affiliation(s)
- Brian Burke
- Institute of Medical Biology, 8A Biomedical Grove, 06-06 Immunos, Singapore 138648, Singapore.
| |
Collapse
|
16
|
Nguyen D, Yamada R, Yoshimitsu N, Oguri A, Kojima T, Takahashi N. Involvement of the Mab21l1 gene in calvarial osteogenesis. Differentiation 2017; 98:70-78. [PMID: 29156428 DOI: 10.1016/j.diff.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/19/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
The Mab-21 gene family is crucial for animal development. A deficiency in the Mab-21 genes associates with several defects, including skeletal malformation in mice and humans. In this study, we observed that mice lacking Mab21l1 displayed an unclosed fontanelle, suggesting impaired calvarial bone development. Cells isolated from the calvaria of these mice showed a greater osteoblast differentiation potential as evidenced by the abundance of mineralized bone nodules and higher expression levels of osteogenic markers than wild-type cells. Mab21l1-/- osteoblasts also expressed higher levels of adipocyte genes and interferon-regulated genes at early stages of osteogenesis. Rankl/Opg expression levels were also higher in Mab21l1-/- osteoblasts than in wild-type cells. These data suggest that Mab21l1 is involved in either the regulation of mesenchymal cell proliferation and differentiation or the balance between bone formation and resorption. An alteration in these regulatory machineries, therefore, may lead to insufficient bone formation, causing the bone phenotype in Mab21l1-/- mice.
Collapse
Affiliation(s)
- Dan Nguyen
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuichi Yamada
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; RNA Company Limited, 7-25-7, Nishikamata, Ota-ku, Tokyo 114-8661, Japan
| | - Nodoka Yoshimitsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Oguri
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takuya Kojima
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan; RNA Company Limited, 7-25-7, Nishikamata, Ota-ku, Tokyo 114-8661, Japan
| | - Naoki Takahashi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
17
|
Slp1-Emp65: A Guardian Factor that Protects Folding Polypeptides from Promiscuous Degradation. Cell 2017; 171:346-357.e12. [DOI: 10.1016/j.cell.2017.08.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/06/2017] [Accepted: 08/21/2017] [Indexed: 02/05/2023]
|
18
|
|
19
|
Chang JC, Sebastian A, Murugesh DK, Hatsell S, Economides AN, Christiansen BA, Loots GG. Global molecular changes in a tibial compression induced ACL rupture model of post-traumatic osteoarthritis. J Orthop Res 2017; 35:474-485. [PMID: 27088242 PMCID: PMC5363336 DOI: 10.1002/jor.23263] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/12/2016] [Indexed: 02/04/2023]
Abstract
Joint injury causes post-traumatic osteoarthritis (PTOA). About ∼50% of patients rupturing their anterior cruciate ligament (ACL) will develop PTOA within 1-2 decades of the injury, yet the mechanisms responsible for the development of PTOA after joint injury are not well understood. In this study, we examined whole joint gene expression by RNA sequencing (RNAseq) at 1 day, 1-, 6-, and 12 weeks post injury, in a non-invasive tibial compression (TC) overload mouse model of PTOA that mimics ACL rupture in humans. We identified 1446 genes differentially regulated between injured and contralateral joints. This includes known regulators of osteoarthritis such as MMP3, FN1, and COMP, and several new genes including Suco, Sorcs2, and Medag. We also identified 18 long noncoding RNAs that are differentially expressed in the injured joints. By comparing our data to gene expression data generated using the surgical destabilization of the medial meniscus (DMM) PTOA model, we identified several common genes and shared mechanisms. Our study highlights several differences between these two models and suggests that the TC model may be a more rapidly progressing model of PTOA. This study provides the first account of gene expression changes associated with PTOA development and progression in a TC model. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 35:474-485, 2017.
Collapse
Affiliation(s)
- Jiun C. Chang
- Lawrence Livermore National LaboratoriesPhysical and Life Sciences Directorate7000 East Ave, L‐452LivermoreCalifornia94550
- UC MercedSchool of Natural SciencesMercedCalifornia
| | - Aimy Sebastian
- Lawrence Livermore National LaboratoriesPhysical and Life Sciences Directorate7000 East Ave, L‐452LivermoreCalifornia94550
- UC MercedSchool of Natural SciencesMercedCalifornia
| | - Deepa K. Murugesh
- Lawrence Livermore National LaboratoriesPhysical and Life Sciences Directorate7000 East Ave, L‐452LivermoreCalifornia94550
| | | | | | | | - Gabriela G. Loots
- Lawrence Livermore National LaboratoriesPhysical and Life Sciences Directorate7000 East Ave, L‐452LivermoreCalifornia94550
- UC MercedSchool of Natural SciencesMercedCalifornia
| |
Collapse
|
20
|
Meier I. LINCing the eukaryotic tree of life - towards a broad evolutionary comparison of nucleocytoplasmic bridging complexes. J Cell Sci 2016; 129:3523-3531. [PMID: 27591260 DOI: 10.1242/jcs.186700] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The nuclear envelope is much more than a simple barrier between nucleoplasm and cytoplasm. Nuclear envelope bridging complexes are protein complexes spanning both the inner and outer nuclear envelope membranes, thus directly connecting the cytoplasm with the nucleoplasm. In metazoans, they are involved in connecting the cytoskeleton with the nucleoskeleton, and act as anchoring platforms at the nuclear envelope for the positioning and moving of both nuclei and chromosomes. Recently, nucleocytoplasmic bridging complexes have also been identified in more evolutionarily diverse organisms, including land plants. Here, I discuss similarities and differences among and between eukaryotic supergroups, specifically of the proteins forming the cytoplasmic surface of these complexes. I am proposing a structure and function for a hypothetical ancestral nucleocytoplasmic bridging complex in the last eukaryotic common ancestor, with the goal to stimulate research in more diverse emerging model organisms.
Collapse
Affiliation(s)
- Iris Meier
- Department of Molecular Genetics and Center for RNA Biology, The Ohio State University, 520 Aronoff Laboratory, 318 W 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Ribi S, Baumhoer D, Lee K, Edison, Teo ASM, Madan B, Zhang K, Kohlmann WK, Yao F, Lee WH, Hoi Q, Cai S, Woo XY, Tan P, Jundt G, Smida J, Nathrath M, Sung WK, Schiffman JD, Virshup DM, Hillmer AM. TP53 intron 1 hotspot rearrangements are specific to sporadic osteosarcoma and can cause Li-Fraumeni syndrome. Oncotarget 2016; 6:7727-40. [PMID: 25762628 PMCID: PMC4480712 DOI: 10.18632/oncotarget.3115] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Somatic mutations of TP53 are among the most common in cancer and germline mutations of TP53 (usually missense) can cause Li-Fraumeni syndrome (LFS). Recently, recurrent genomic rearrangements in intron 1 of TP53 have been described in osteosarcoma (OS), a highly malignant neoplasm of bone belonging to the spectrum of LFS tumors. Using whole-genome sequencing of OS, we found features of TP53 intron 1 rearrangements suggesting a unique mechanism correlated with transcription. Screening of 288 OS and 1,090 tumors of other types revealed evidence for TP53 rearrangements in 46 (16%) OS, while none were detected in other tumor types, indicating this rearrangement to be highly specific to OS. We revisited a four-generation LFS family where no TP53 mutation had been identified and found a 445 kb inversion spanning from the TP53 intron 1 towards the centromere. The inversion segregated with tumors in the LFS family. Cancers in this family had loss of heterozygosity, retaining the rearranged allele and resulting in TP53 expression loss. In conclusion, intron 1 rearrangements cause p53-driven malignancies by both germline and somatic mechanisms and provide an important mechanism of TP53 inactivation in LFS, which might in part explain the diagnostic gap of formerly classified “TP53 wild-type” LFS.
Collapse
Affiliation(s)
- Sebastian Ribi
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Daniel Baumhoer
- Bone Tumor Reference Center at The Institute of Pathology, University Hospital Basel, CH-4003 Basel, Switzerland.,Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Kristy Lee
- Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Edison
- Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore
| | - Audrey S M Teo
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Babita Madan
- Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore
| | - Kang Zhang
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA 92830, USA
| | - Wendy K Kohlmann
- Huntsman Cancer Institute, University of Utah Health Care, Utah, UT 84112, USA
| | - Fei Yao
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Wah Heng Lee
- Computational & Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Qiangze Hoi
- Computational & Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Shaojiang Cai
- Computational & Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Xing Yi Woo
- Personal Genomics Solutions, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Patrick Tan
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore.,Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Gernot Jundt
- Bone Tumor Reference Center at The Institute of Pathology, University Hospital Basel, CH-4003 Basel, Switzerland
| | - Jan Smida
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,Department of Pediatrics and Wilhelm Sander Sarcoma Treatment Unit, Technische Universität München and Pediatric Oncology Center, 81675 Munich, Germany
| | - Michaela Nathrath
- Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, 85764 Neuherberg, Germany.,Department of Pediatrics and Wilhelm Sander Sarcoma Treatment Unit, Technische Universität München and Pediatric Oncology Center, 81675 Munich, Germany
| | - Wing-Kin Sung
- Computational & Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore.,School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Joshua D Schiffman
- Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - David M Virshup
- Duke-NUS Graduate Medical School Singapore, Singapore 169857, Singapore
| | - Axel M Hillmer
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Singapore 138672, Singapore
| |
Collapse
|
22
|
Kim DI, Birendra KC, Roux KJ. Making the LINC: SUN and KASH protein interactions. Biol Chem 2015; 396:295-310. [PMID: 25720065 DOI: 10.1515/hsz-2014-0267] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 01/20/2015] [Indexed: 01/15/2023]
Abstract
Cell nuclei are physically integrated with the cytoskeleton through the linker of nucleoskeleton and cytoskeleton (LINC) complex, a structure that spans the nuclear envelope to link the nucleoskeleton and cytoskeleton. Outer nuclear membrane KASH domain proteins and inner nuclear membrane SUN domain proteins interact to form the core of the LINC complex. In this review, we provide a comprehensive analysis of the reported protein-protein interactions for KASH and SUN domain proteins. This critical structure, directly connecting the genome with the rest of the cell, contributes to a myriad of cellular functions and, when perturbed, is associated with human disease.
Collapse
|
23
|
Hein MY, Hubner NC, Poser I, Cox J, Nagaraj N, Toyoda Y, Gak IA, Weisswange I, Mansfeld J, Buchholz F, Hyman AA, Mann M. A human interactome in three quantitative dimensions organized by stoichiometries and abundances. Cell 2015; 163:712-23. [PMID: 26496610 DOI: 10.1016/j.cell.2015.09.053] [Citation(s) in RCA: 913] [Impact Index Per Article: 101.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/06/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023]
Abstract
The organization of a cell emerges from the interactions in protein networks. The interactome is critically dependent on the strengths of interactions and the cellular abundances of the connected proteins, both of which span orders of magnitude. However, these aspects have not yet been analyzed globally. Here, we have generated a library of HeLa cell lines expressing 1,125 GFP-tagged proteins under near-endogenous control, which we used as input for a next-generation interaction survey. Using quantitative proteomics, we detect specific interactions, estimate interaction stoichiometries, and measure cellular abundances of interacting proteins. These three quantitative dimensions reveal that the protein network is dominated by weak, substoichiometric interactions that play a pivotal role in defining network topology. The minority of stable complexes can be identified by their unique stoichiometry signature. This study provides a rich interaction dataset connecting thousands of proteins and introduces a framework for quantitative network analysis.
Collapse
Affiliation(s)
- Marco Y Hein
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nina C Hubner
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Jürgen Cox
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | - Yusuke Toyoda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Igor A Gak
- Cell Cycle, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Ina Weisswange
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Eupheria Biotech GmbH, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, TU Dresden, 01307 Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
24
|
Sha Z, Sha L, Li W, Dou W, Shen Y, Wu L, Xu Q. Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy. Neurosci Lett 2015; 591:149-154. [PMID: 25668491 DOI: 10.1016/j.neulet.2015.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/16/2022]
Abstract
Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene.
Collapse
Affiliation(s)
- Zhiqiang Sha
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China
| | - Longze Sha
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China
| | - Wenting Li
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China
| | - Wanchen Dou
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yan Shen
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China
| | - Liwen Wu
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China.
| | - Qi Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 10005, China.
| |
Collapse
|
25
|
Zhou X, Graumann K, Meier I. The plant nuclear envelope as a multifunctional platform LINCed by SUN and KASH. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1649-59. [PMID: 25740919 DOI: 10.1093/jxb/erv082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The nuclear envelope (NE) is a double membrane system enclosing the genome of eukaryotes. Besides nuclear pore proteins, which form channels at the NE, nuclear membranes are populated by a collection of NE proteins that perform various cellular functions. However, in contrast to well-conserved nuclear pore proteins, known NE proteins share little homology between opisthokonts and plants. Recent studies on NE protein complexes formed by Sad1/UNC-84 (SUN) and Klarsicht/ANC-1/Syne-1 Homology (KASH) proteins have advanced our understanding of plant NE proteins and revealed their function in anchoring other proteins at the NE, nuclear shape determination, nuclear positioning, anti-pathogen defence, root development, and meiotic chromosome organization. In this review, we discuss the current understanding of plant SUN, KASH, and other related NE proteins, and compare their function with the opisthokont counterparts.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Katja Graumann
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 OBP, UK
| | - Iris Meier
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Tatout C, Evans DE, Vanrobays E, Probst AV, Graumann K. The plant LINC complex at the nuclear envelope. Chromosome Res 2015; 22:241-52. [PMID: 24801343 DOI: 10.1007/s10577-014-9419-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Significant advances in understanding the plant nuclear envelope have been made over the past few years; indeed, knowledge of the protein network at the nuclear envelope is rapidly growing. One such network, the linker of nucleoskeleton and cytoskeleton (LINC) complex, is known in animals to connect chromatin to the cytoskeleton through the nuclear envelope. The LINC complex is made of Sad1/Unc84 (SUN) and Klarsicht/Anc1/Syne1 homology (KASH) proteins which have been recently characterized in plants. SUN proteins are located within the inner nuclear membrane, while the KASH proteins are included into the outer nuclear membrane. SUN and KASH domains interact and bridge the two nuclear membranes. In Arabidopsis, KASH proteins also interact with the tryptophan-proline-proline (WPP) domain-interacting tail-anchored protein 1 (WIT1), associated with the nuclear pore complex and with myosin XI-i which directly interacts with the actin cytoskeleton. Although evidence for a plant LINC complex connecting the nucleus to the cytoskeleton is growing, its interaction with chromatin is still unknown, but knowledge gained from animal models strongly suggests its existence in plants. Possible functions of the plant LINC complex in cell division, nuclear shape, and chromatin organization are discussed.
Collapse
Affiliation(s)
- Christophe Tatout
- Genetic reproduction and Development (GReD), UMR CNRS 6293 - Clermont Université - INSERM U 1103, 24 avenue des Landais, BP80026, 63171, Aubière CEDEX, France,
| | | | | | | | | |
Collapse
|
27
|
Graumann K, Vanrobays E, Tutois S, Probst AV, Evans DE, Tatout C. Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6499-512. [PMID: 25217773 DOI: 10.1093/jxb/eru368] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
SUN-domain proteins belong to a gene family including classical Cter-SUN and mid-SUN subfamilies differentiated by the position of the SUN domain within the protein. Although present in animal and plant species, mid-SUN proteins have so far remained poorly described. Here, we used a combination of genetics, yeast two-hybrid and in planta transient expression methods to better characterize the SUN family in Arabidopsis thaliana. First, we validated the mid-SUN protein subfamily as a monophyletic group conserved from yeast to plant. Arabidopsis Cter-SUN (AtSUN1 and AtSUN2) and mid-SUN (AtSUN3 and AtSUN4) proteins expressed as fluorescent protein fusions are membrane-associated and localize to the nuclear envelope (NE) and endoplasmic reticulum. However, only the Cter-SUN subfamily is enriched at the NE. We investigated interactions in and between members of the two subfamilies and identified the coiled-coil domain as necessary for mediating interactions. The functional significance of the mid-SUN subfamily was further confirmed in mutant plants as essential for early seed development and involved in nuclear morphology. Finally, we demonstrated that both subfamilies interact with the KASH domain of AtWIP1 and identified a new root-specific KASH-domain protein, AtTIK. AtTIK localizes to the NE and affects nuclear morphology. Our study indicates that Arabidopsis Cter-SUN and mid-SUN proteins are involved in a complex protein network at the nuclear membranes, reminiscent of the LInker of Nucleoskeleton and Cytoskeleton (LINC) complex found in other kingdoms.
Collapse
Affiliation(s)
- Katja Graumann
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Emmanuel Vanrobays
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, 24 Avenue des Landais, BP80026 63171 Aubière Cedex, France
| | - Sylvie Tutois
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, 24 Avenue des Landais, BP80026 63171 Aubière Cedex, France
| | - Aline V Probst
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, 24 Avenue des Landais, BP80026 63171 Aubière Cedex, France
| | - David E Evans
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Christophe Tatout
- UMR CNRS 6293 INSERM U 1103 Clermont Université, GReD, 24 Avenue des Landais, BP80026 63171 Aubière Cedex, France
| |
Collapse
|
28
|
Absence of SUN-domain protein Slp1 blocks karyogamy and switches meiotic recombination and synapsis from homologs to sister chromatids. Proc Natl Acad Sci U S A 2014; 111:E4015-23. [PMID: 25210014 DOI: 10.1073/pnas.1415758111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Karyogamy, the process of nuclear fusion is required for two haploid gamete nuclei to form a zygote. Also, in haplobiontic organisms, karyogamy is required to produce the diploid nucleus/cell that then enters meiosis. We identify sun like protein 1 (Slp1), member of the mid-Sad1p, UNC-84-domain ubiquitous family, as essential for karyogamy in the filamentous fungus Sordaria macrospora, thus uncovering a new function for this protein family. Slp1 is required at the last step, nuclear fusion, not for earlier events including nuclear movements, recognition, and juxtaposition. Correspondingly, like other family members, Slp1 localizes to the endoplasmic reticulum and also to its extensions comprising the nuclear envelope. Remarkably, despite the absence of nuclear fusion in the slp1 null mutant, meiosis proceeds efficiently in the two haploid "twin" nuclei, by the same program and timing as in diploid nuclei with a single dramatic exception: the normal prophase program of recombination and synapsis between homologous chromosomes, including loading of recombination and synaptonemal complex proteins, occurs instead between sister chromatids. Moreover, the numbers of recombination-initiating double-strand breaks (DSBs) and ensuing recombinational interactions, including foci of the essential crossover factor Homo sapiens enhancer of invasion 10 (Hei10), occur at half the diploid level in each haploid nucleus, implying per-chromosome specification of DSB formation. Further, the distribution of Hei10 foci shows interference like in diploid meiosis. Centromere and spindle dynamics, however, still occur in the diploid mode during the two meiotic divisions. These observations imply that the prophase program senses absence of karyogamy and/or absence of a homolog partner and adjusts the interchromosomal interaction program accordingly.
Collapse
|
29
|
Stewart CL, Burke B. The missing LINC: a mammalian KASH-domain protein coupling meiotic chromosomes to the cytoskeleton. Nucleus 2014; 5:3-10. [PMID: 24637401 DOI: 10.4161/nucl.27819] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pairing of homologous chromosome is a unique event in meiosis that is essential for both haploidization of the genome and genetic recombination. Rapid chromosome movements during meiotic prophase are a key feature of the pairing process. This is usually telomere-led, and in metazoans is dependent upon microtubules and dynein. Chromosome movements culminate in the formation of a meiotic "bouquet" in which nuclear envelope-associated telomeres are clustered at the centrosomal pole of the nucleus. Bouquet formation is thought to facilitate homolog pairing. Recent studies reveal that coupling of telomeres to cytoplasmic dynein is mediated by SUN1 in the inner nuclear membrane (INM) and KASH5 a novel protein of the outer nuclear membrane (ONM). Together SUN1 and KASH5 assemble to form a transluminal LINC (linker of the nucleoskeleton and cytoskeleton) complex that spans both nuclear membranes. SUN1 forms attachment sites for telomeres at the INM while KASH5 functions as a dynein adaptor at the ONM. In mice deficient in KASH5, homologous chromosome pairing does not occur. The result is that meiosis is arrested at the leptotene/zygotene stage of meiotic prophase 1, and as a consequence both male and female mice are infertile. This study demonstrates an essential role for dynein directed telomere movement during meiotic prophase.
Collapse
Affiliation(s)
| | - Brian Burke
- Institute of Medical Biology; Immunos; Singapore
| |
Collapse
|
30
|
Abstract
In eukaryotes, the function of the cell's nucleus has primarily been considered to be the repository for the organism's genome. However, this rather simplistic view is undergoing a major shift, as it is increasingly apparent that the nucleus has functions extending beyond being a mere genome container. Recent findings have revealed that the structural composition of the nucleus changes during development and that many of these components exhibit cell- and tissue-specific differences. Increasing evidence is pointing to the nucleus being integral to the function of the interphase cytoskeleton, with changes to nuclear structural proteins having ramifications affecting cytoskeletal organization and the cell's interactions with the extracellular environment. Many of these functions originate at the nuclear periphery, comprising the nuclear envelope (NE) and underlying lamina. Together, they may act as a "hub" in integrating cellular functions including chromatin organization, transcriptional regulation, mechanosignaling, cytoskeletal organization, and signaling pathways. Interest in such an integral role has been largely stimulated by the discovery that many diseases and anomalies are caused by defects in proteins of the NE/lamina, the nuclear envelopathies, many of which, though rare, are providing insights into their more common variants that are some of the major issues of the twenty-first century public health. Here, we review the contributions that mouse mutants have made to our current understanding of the NE/lamina, their respective roles in disease and the use of mice in developing potential therapies for treating the diseases.
Collapse
|
31
|
Evans DE, Pawar V, Smith SJ, Graumann K. Protein interactions at the higher plant nuclear envelope: evidence for a linker of nucleoskeleton and cytoskeleton complex. FRONTIERS IN PLANT SCIENCE 2014; 5:183. [PMID: 24847341 PMCID: PMC4019843 DOI: 10.3389/fpls.2014.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/17/2014] [Indexed: 05/20/2023]
Abstract
Following the description of SAD1/UNC84 (SUN) domain proteins in higher plants, evidence has rapidly increased that plants contain a functional linker of nucleoskeleton and cytoskeleton (LINC) complex bridging the nuclear envelope (NE). While the SUN domain proteins appear to be highly conserved across kingdoms, other elements of the complex are not and some key components and interactions remain to be identified. This mini review examines components of the LINC complex, including proteins of the SUN domain family and recently identified plant Klarsicht/Anc/Syne-1 homology (KASH) domain proteins. First of these to be described were WIPs (WPP domain interacting proteins), which act as protein anchors in the outer NE. The plant KASH homologs are C-terminally anchored membrane proteins with the extreme C-terminus located in the nuclear periplasm; AtWIPs contain a highly conserved X-VPT motif at the C-terminus in contrast to PPPX in opisthokonts. The role of the LINC complex in organisms with a cell wall, and description of further LINC complex components will be considered, together with other potential plant-specific functions.
Collapse
Affiliation(s)
- David E. Evans
- *Correspondence: David E. Evans, Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK e-mail:
| | | | | | | |
Collapse
|
32
|
A molecular ensemble in the rER for procollagen maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2479-91. [DOI: 10.1016/j.bbamcr.2013.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 01/18/2023]
|
33
|
Horn HF, Kim DI, Wright GD, Wong ESM, Stewart CL, Burke B, Roux KJ. A mammalian KASH domain protein coupling meiotic chromosomes to the cytoskeleton. ACTA ACUST UNITED AC 2013; 202:1023-39. [PMID: 24062341 PMCID: PMC3787381 DOI: 10.1083/jcb.201304004] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A complex of KASH5 and Sun1 is required for meiotic homologous chromosome pairing through the coupling of telomere attachment sites to cytoplasmic dynein and microtubules. Chromosome pairing is an essential meiotic event that ensures faithful haploidization and recombination of the genome. Pairing of homologous chromosomes is facilitated by telomere-led chromosome movements and formation of a meiotic bouquet, where telomeres cluster to one pole of the nucleus. In metazoans, telomere clustering is dynein and microtubule dependent and requires Sun1, an inner nuclear membrane protein. Here we provide a functional analysis of KASH5, a mammalian dynein-binding protein of the outer nuclear membrane that forms a meiotic complex with Sun1. This protein is related to zebrafish futile cycle (Fue), a nuclear envelope (NE) constituent required for pronuclear migration. Mice deficient in this Fue homologue are infertile. Males display meiotic arrest in which pairing of homologous chromosomes fails. These findings demonstrate that telomere attachment to the NE is insufficient to promote pairing and that telomere attachment sites must be coupled to cytoplasmic dynein and the microtubule system to ensure meiotic progression.
Collapse
Affiliation(s)
- Henning F Horn
- Laborotory of Nuclear Dynamics and Architecture, 2 Laboratory of Developmental and Regenerative Biology, and 3 IMB Microscopy Unit, Institute of Medical Biology, 8A Biomedical Grove, Immunos, Singapore 138648
| | | | | | | | | | | | | |
Collapse
|
34
|
Bassik MC, Kampmann M, Lebbink RJ, Wang S, Hein MY, Poser I, Weibezahn J, Horlbeck MA, Chen S, Mann M, Hyman AA, Leproust EM, McManus MT, Weissman JS. A systematic mammalian genetic interaction map reveals pathways underlying ricin susceptibility. Cell 2013; 152:909-22. [PMID: 23394947 DOI: 10.1016/j.cell.2013.01.030] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/29/2012] [Accepted: 01/18/2013] [Indexed: 11/27/2022]
Abstract
Genetic interaction (GI) maps, comprising pairwise measures of how strongly the function of one gene depends on the presence of a second, have enabled the systematic exploration of gene function in microorganisms. Here, we present a two-stage strategy to construct high-density GI maps in mammalian cells. First, we use ultracomplex pooled shRNA libraries (25 shRNAs/gene) to identify high-confidence hit genes for a given phenotype and effective shRNAs. We then construct double-shRNA libraries from these to systematically measure GIs between hits. A GI map focused on ricin susceptibility broadly recapitulates known pathways and provides many unexpected insights. These include a noncanonical role for COPI, a previously uncharacterized protein complex affecting toxin clearance, a specialized role for the ribosomal protein RPS25, and functionally distinct mammalian TRAPP complexes. The ability to rapidly generate mammalian GI maps provides a potentially transformative tool for defining gene function and designing combination therapies based on synergistic pairs.
Collapse
Affiliation(s)
- Michael C Bassik
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94122, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhao H. Membrane trafficking in osteoblasts and osteoclasts: new avenues for understanding and treating skeletal diseases. Traffic 2012; 13:1307-14. [PMID: 22759194 DOI: 10.1111/j.1600-0854.2012.01395.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 12/21/2022]
Abstract
The endocytic and exocytic/secretory pathways are two major intracellular membrane trafficking routes that regulate numerous cellular functions in a variety of cell types. Osteoblasts and osteoclasts, two major bone cells responsible for bone remodeling and homeostasis, are no exceptions. During the past few years, emerging evidence has pinpointed a critical role for endocytic and secretory pathways in osteoblast and osteoclast differentiation and function. The endosomal membrane provides a platform to integrate bone tropic signals of hormones and growth factors in osteoblasts. In osteoclasts, endocytosis, followed by transcytosis, of degraded bone matrix promotes bone resorption. Secretory pathways, especially lysosome secretion, not only participate in bone matrix deposition by osteoblasts and degradation of mineralized bone matrix by osteoclasts; they may also be involved in the coupling of bone resorption and bone formation during bone remodeling. More importantly, mutations in genes encoding regulatory factors within the endocytic and secretory pathways have been identified as causes for bone diseases. Identification of the molecular mechanisms of these genes in bone cells may provide new therapeutic targets for skeletal disorders.
Collapse
Affiliation(s)
- Haibo Zhao
- Department of Internal Medicine, Center for Osteoporosis and Bone Metabolic Diseases, College of Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA.
| |
Collapse
|
36
|
Roemer FW, Mohr A, Guermazi A, Jiang Y, Schlechtweg P, Genant HK, Sohaskey ML. Phenotypic characterization of skeletal abnormalities of Osteopotentia mutant mice by micro-CT: a descriptive approach with emphasis on reconstruction techniques. Skeletal Radiol 2011; 40:1073-8. [PMID: 21207022 PMCID: PMC3125509 DOI: 10.1007/s00256-010-1082-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 02/02/2023]
Abstract
PURPOSE The novel protein osteopotentia (Opt) has recently been described as an essential regulator of postnatal osteoblast maturation and might possibly be responsible for some of the rarer types of osteogenesis imperfecta. Our aim was the evaluation of micro CT for the qualitative morphological assessment of skeletal abnormalities of Osteopotentia-mutant mice in comparison to radiography and histology. MATERIALS AND METHODS Four homozygous mice with insertional mutations in the Opt gene and three wild-type controls were examined ex vivo using radiography and micro-CT. Two of the homozygous animals were evaluated histologically (trichrome reagent). For the micro-CT evaluation three-dimensional (3D) surface reconstructions and two-dimensional (2D) multiplanar reformations (MPRs) were applied. RESULTS The Opt-homozygous mice exhibited severe growth. The radiographic examinations showed osteopenia and fractures with hypertrophic callus formation and pseudarthroses of the forelimbs and ribs. Micro-CT confirmed these findings and was able to demonstrate additional fractures especially at smaller bones such as the metacarpals and phalanges. Additional characterization and superior delineation of cortices and fracture fragments was achieved by 2D MPRs. Histological correlation verified several of these imaging findings. CONCLUSION Micro-CT is able to screen Opt-mutant mice for osseous pathologies and furthermore characterize these anomalies. The modality seems superior to conventional radiography, but is not able to demonstrate cellular pathology. However, histology is destructive and more time- and material-consuming than micro-CT. Additional information may be gathered by 2D MPRs.
Collapse
Affiliation(s)
- Frank W Roemer
- Department of Radiology, Klinikum Augsburg, 86156, Augsburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Makareeva E, Aviles NA, Leikin S. Chaperoning osteogenesis: new protein-folding disease paradigms. Trends Cell Biol 2010; 21:168-76. [PMID: 21183349 DOI: 10.1016/j.tcb.2010.11.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/25/2010] [Accepted: 11/18/2010] [Indexed: 11/17/2022]
Abstract
Recent discoveries of severe bone disorders in patients with deficiencies in several endoplasmic reticulum chaperones are reshaping the discussion of type I collagen folding and related diseases. Type I collagen is the most abundant protein in all vertebrates and a crucial structural molecule for bone and other connective tissues. Its misfolding causes bone fragility, skeletal deformity and other tissue failures. Studies of newly discovered bone disorders indicate that collagen folding, chaperones involved in the folding process, cellular responses to misfolding and related bone pathologies might not follow conventional protein folding paradigms. In this review, we examine the features that distinguish collagen folding from that of other proteins and describe the findings that are beginning to reveal how cells manage collagen folding and misfolding. We discuss implications of these studies for general protein folding paradigms, unfolded protein response in cells and protein folding diseases.
Collapse
Affiliation(s)
- Elena Makareeva
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
38
|
Nistala H, Lee-Arteaga S, Smaldone S, Siciliano G, Ramirez F. Extracellular microfibrils control osteoblast-supported osteoclastogenesis by restricting TGF{beta} stimulation of RANKL production. J Biol Chem 2010; 285:34126-33. [PMID: 20729550 PMCID: PMC2962511 DOI: 10.1074/jbc.m110.125328] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/11/2010] [Indexed: 01/23/2023] Open
Abstract
Mutations in fibrillin-1 or fibrillin-2, the major structural components of extracellular microfibrils, cause pleiotropic manifestations in Marfan syndrome and congenital contractural arachnodactyly, respectively. We recently found that fibrillin-1 and fibrillin-2 control bone formation by regulating osteoblast differentiation through the differential modulation of endogenous TGFβ and bone morphogenetic protein signals. Here, we describe in vivo and ex vivo experiments that implicate the fibrillins as negative regulators of bone resorption. Adult Fbn2(-/-) mice display a greater than normal osteolytic response to locally implanted lipopolysaccharide-coated titanium particles. Although isolated cultures of Fbn2(-/-) preosteoclasts exhibited normal differentiation and activity, these features were substantially augmented when mutant or wild-type preosteoclasts were co-cultured with Fbn2(-/-) but not wild-type osteoblasts. Greater osteoclastogenic potential of Fbn2(-/-) osteoblasts was largely accounted for by up-regulation of the Rankl gene secondary to heightened TGFβ activity. This conclusion was based on the findings that blockade of TGFβ signaling blunts Rankl up-regulation in Fbn2(-/-) osteoblasts and bones and that systemic TGFβ antagonism improves locally induced osteolysis in Fbn2(-/-) mice. Abnormally high Rankl expression secondary to elevated TGFβ activity was also noted in cultured osteoblasts from Fbn1(-/-) mice. Collectively our data demonstrated that extracellular microfibrils balance local catabolic and anabolic signals during bone remodeling in addition to implying distinct mechanisms of bone loss in Marfan syndrome and congenital contractural arachnodactyly.
Collapse
Affiliation(s)
- Harikiran Nistala
- From the Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10021
| | - Sui Lee-Arteaga
- From the Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10021
| | - Silvia Smaldone
- From the Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10021
| | - Gabriella Siciliano
- From the Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10021
| | - Francesco Ramirez
- From the Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York 10021
| |
Collapse
|
39
|
Sohaskey ML, Jiang Y, Zhao JJ, Mohr A, Roemer F, Harland RM. Osteopotentia regulates osteoblast maturation, bone formation, and skeletal integrity in mice. J Exp Med 2010. [DOI: 10.1084/jem2075oia17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
40
|
Leslie M. Peter Pan bone cells undermine skeleton. J Biophys Biochem Cytol 2010. [PMCID: PMC2867306 DOI: 10.1083/jcb.1893if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Protein that controls maturation of bone-building cells might be disease culprit.
Collapse
|