1
|
Mogk A, den Brave F. Fine-tuning stress responses by auxiliary feedback loops that sense damage repair. J Cell Biol 2024; 223:e202410205. [PMID: 39545955 DOI: 10.1083/jcb.202410205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Mogk and den Brave discuss exciting results from a comprehensive screen of heat shock response components in yeast, published in this issue by Pincus and colleagues (https://doi.org/10.1083/jcb.202401082). Their work reveals modulatory regulatory loops that fine-tune the timing of the shutdown of this highly conserved pathway.
Collapse
Affiliation(s)
- Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH) , Heidelberg, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn , Bonn, Germany
| |
Collapse
|
2
|
Ranaweera CB, Shiva S, Madesh S, Chauhan D, Ganta RR, Zolkiewski M. Biochemical characterization of ClpB and DnaK from Anaplasma phagocytophilum. Cell Stress Chaperones 2024; 29:540-551. [PMID: 38908470 PMCID: PMC11268196 DOI: 10.1016/j.cstres.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Anaplasma phagocytophilum is an intracellular tick-transmitted bacterial pathogen that infects neutrophils in mammals and causes granulocytic anaplasmosis. In this study, we investigated the molecular chaperones ClpB and DnaK from A. phagocytophilum. In Escherichia coli, ClpB cooperates with DnaK and its co-chaperones DnaJ and GrpE in ATP-dependent reactivation of aggregated proteins. Since ClpB is not produced in metazoans, it is a promising target for developing antimicrobial therapies, which generates interest in studies on that chaperone's role in pathogenic bacteria. We found that ClpB and DnaK are transcriptionally upregulated in A. phagocytophilum 3-5 days after infection of human HL-60 and tick ISE6 cells, which suggests an essential role of the chaperones in supporting the pathogen's intracellular life cycle. Multiple sequence alignments show that A. phagocytophilum ClpB and DnaK contain all structural domains that were identified in their previously studied orthologs from other bacteria. Both A. phagocytophilum ClpB and DnaK display ATPase activity, which is consistent with their participation in the ATP-dependent protein disaggregation system. However, despite a significant sequence similarity between the chaperones from A. phagocytophilum and those from E. coli, the former were not as effective as their E. coli orthologs during reactivation of aggregated proteins in vitro and in supporting the survival of E. coli cells under heat stress. We conclude that the A. phagocytophilum chaperones might have evolved with distinct biochemical properties to maintain the integrity of pathogenic proteins under unique stress conditions of an intracellular environment of host cells.
Collapse
Affiliation(s)
- Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Sunitha Shiva
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Swetha Madesh
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Deepika Chauhan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Roman R Ganta
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
3
|
Ruger-Herreros C, Svoboda L, Mogk A, Bukau B. Role of J-domain Proteins in Yeast Physiology and Protein Quality Control. J Mol Biol 2024; 436:168484. [PMID: 38331212 DOI: 10.1016/j.jmb.2024.168484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
The Hsp70 chaperone system is a central component of cellular protein quality control (PQC) by acting in a multitude of protein folding processes ranging from the folding of newly synthesized proteins to the disassembly and refolding of protein aggregates. This multifunctionality of Hsp70 is governed by J-domain proteins (JDPs), which act as indispensable co-chaperones that target specific substrates to Hsp70. The number of distinct JDPs present in a species always outnumbers Hsp70, documenting JDP function in functional diversification of Hsp70. In this review, we describe the physiological roles of JDPs in the Saccharomyces cerevisiae PQC system, with a focus on the abundant JDP generalists, Zuo1, Ydj1 and Sis1, which function in fundamental cellular processes. Ribosome-bound Zuo1 cooperates with the Hsp70 chaperones Ssb1/2 in folding and assembly of nascent polypeptides. Ydj1 and Sis1 cooperate with the Hsp70 members Ssa1 to Ssa4 to exert overlapping functions in protein folding and targeting of newly synthesized proteins to organelles including mitochondria and facilitating the degradation of aberrant proteins by E3 ligases. Furthermore, they act in protein disaggregation reactions, though Ydj1 and Sis1 differ in their modes of Hsp70 cooperation and substrate specificities. This results in functional specialization as seen in prion propagation and the underlying dominant role of Sis1 in targeting Hsp70 for shearing of prion amyloid fibrils.
Collapse
Affiliation(s)
- Carmen Ruger-Herreros
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n, E-41013 Sevilla, Spain
| | - Lucia Svoboda
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany.
| |
Collapse
|
4
|
Bohl V, Mogk A. When the going gets tough, the tough get going-Novel bacterial AAA+ disaggregases provide extreme heat resistance. Environ Microbiol 2024; 26:e16677. [PMID: 39039821 DOI: 10.1111/1462-2920.16677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Heat stress can lead to protein misfolding and aggregation, potentially causing cell death due to the loss of essential proteins. Bacteria, being particularly exposed to environmental stress, are equipped with disaggregases that rescue these aggregated proteins. The bacterial Hsp70 chaperone DnaK and the ATPase associated with diverse cellular activities protein ClpB form the canonical disaggregase in bacteria. While this combination operates effectively during physiological heat stress, it is ineffective against massive aggregation caused by temperature-based sterilization protocols used in the food industry and clinics. This leaves bacteria unprotected against these thermal processes. However, bacteria that can withstand extreme, man-made stress conditions have emerged. These bacteria possess novel ATPase associated with diverse cellular activities disaggregases, ClpG and ClpL, which are key players in extreme heat resistance. These disaggregases, present in selected Gram-negative or Gram-positive bacteria, respectively, function superiorly by exhibiting increased thermal stability and enhanced threading power compared to DnaK/ClpB. This enables ClpG and ClpL to operate at extreme temperatures and process large and tight protein aggregates, thereby contributing to heat resistance. The genes for ClpG and ClpL are often encoded on mobile genomic islands or conjugative plasmids, allowing for their rapid spread among bacteria via horizontal gene transfer. This threatens the efficiency of sterilization protocols. In this review, we describe the various bacterial disaggregases identified to date, characterizing their commonalities and the specific features that enable these novel disaggregases to provide stress protection against extreme stress conditions.
Collapse
Affiliation(s)
- Valentin Bohl
- Faculty of Biosciences, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| | - Axel Mogk
- Faculty of Biosciences, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg, Germany
| |
Collapse
|
5
|
Ganser SJ, McNish BA, Schwanitz GL, Delaney JL, Corpus BA, Schilke BA, Biswal AK, Sahi C, Craig EA, Hines JK. Unique characteristics of the J-domain proximal regions of Hsp70 cochaperone Apj1 in prion propagation/elimination and its overlap with Sis1 function. Front Mol Biosci 2024; 11:1392608. [PMID: 38721277 PMCID: PMC11078019 DOI: 10.3389/fmolb.2024.1392608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 09/05/2024] Open
Abstract
J-domain proteins (JDPs) are obligate cochaperones of Hsp70s. The Class A JDP Apj1 of the yeast cytosol has an unusually complex region between the N-terminal J-domain and the substrate binding region-often called the Grich or GF region in Class A and B JDPs because of its typical abundance of glycine. The N-terminal 161-residue Apj1 fragment is known to be sufficient for Apj1 function in prion curing, driven by the overexpression of Hsp104. Further analyzing the N-terminal segment of Apj1, we found that a 90-residue fragment that includes the 70-residue J-domain and the adjacent 12-residue glutamine/alanine (Q/A) segment is sufficient for curing. Furthermore, the 121-residue fragment that includes the Grich region was sufficient to not only sustain the growth of cells lacking the essential Class B JDP Sis1 but also enabled the maintenance of several prions normally dependent on Sis1 for propagation. A J-domain from another cytosolic JDP could substitute for the Sis1-related functions but not for Apj1 in prion curing. Together, these results separate the functions of JDPs in prion biology and underscore the diverse functionality of multi-domain cytosolic JDPs in yeast.
Collapse
Affiliation(s)
| | - Bridget A. McNish
- Department of Chemistry, Lafayette College, Easton, PA, United States
| | | | - John L. Delaney
- Department of Chemistry, Lafayette College, Easton, PA, United States
| | - Bridget A. Corpus
- Department of Chemistry, Lafayette College, Easton, PA, United States
| | - Brenda A. Schilke
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Anup K. Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Elizabeth A. Craig
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Justin K. Hines
- Department of Chemistry, Lafayette College, Easton, PA, United States
| |
Collapse
|
6
|
Bohl V, Hollmann NM, Melzer T, Katikaridis P, Meins L, Simon B, Flemming D, Sinning I, Hennig J, Mogk A. The Listeria monocytogenes persistence factor ClpL is a potent stand-alone disaggregase. eLife 2024; 12:RP92746. [PMID: 38598269 PMCID: PMC11006417 DOI: 10.7554/elife.92746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.
Collapse
Affiliation(s)
- Valentin Bohl
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Nele Merret Hollmann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Tobias Melzer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Lena Meins
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH)HeidelbergGermany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) HeidelbergHeidelbergGermany
- Chair of Biochemistry IV, Biophysical Chemistry, University of BayreuthBayreuthGermany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH AllianceHeidelbergGermany
| |
Collapse
|
7
|
Kohler V, Kohler A, Berglund LL, Hao X, Gersing S, Imhof A, Nyström T, Höög JL, Ott M, Andréasson C, Büttner S. Nuclear Hsp104 safeguards the dormant translation machinery during quiescence. Nat Commun 2024; 15:315. [PMID: 38182580 PMCID: PMC10770042 DOI: 10.1038/s41467-023-44538-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
The resilience of cellular proteostasis declines with age, which drives protein aggregation and compromises viability. The nucleus has emerged as a key quality control compartment that handles misfolded proteins produced by the cytosolic protein biosynthesis system. Here, we find that age-associated metabolic cues target the yeast protein disaggregase Hsp104 to the nucleus to maintain a functional nuclear proteome during quiescence. The switch to respiratory metabolism and the accompanying decrease in translation rates direct cytosolic Hsp104 to the nucleus to interact with latent translation initiation factor eIF2 and to suppress protein aggregation. Hindering Hsp104 from entering the nucleus in quiescent cells results in delayed re-entry into the cell cycle due to compromised resumption of protein synthesis. In sum, we report that cytosolic-nuclear partitioning of the Hsp104 disaggregase is a critical mechanism to protect the latent protein synthesis machinery during quiescence in yeast, ensuring the rapid restart of translation once nutrients are replenished.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Molecular Biology, Umeå University, 90187, Umeå, Sweden
| | - Andreas Kohler
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, 90187, Umeå, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Xinxin Hao
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Sarah Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 1165, Copenhagen, Denmark
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
8
|
Katikaridis P, Simon B, Jenne T, Moon S, Lee C, Hennig J, Mogk A. Structural basis of aggregate binding by the AAA+ disaggregase ClpG. J Biol Chem 2023; 299:105336. [PMID: 37827289 PMCID: PMC10641755 DOI: 10.1016/j.jbc.2023.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Severe heat stress causes massive loss of essential proteins by aggregation, necessitating a cellular activity that rescues aggregated proteins. This activity is executed by ATP-dependent, ring-forming, hexameric AAA+ disaggregases. Little is known about the recognition principles of stress-induced protein aggregates. How can disaggregases specifically target aggregated proteins, while avoiding binding to soluble non-native proteins? Here, we determined by NMR spectroscopy the core structure of the aggregate-targeting N1 domain of the bacterial AAA+ disaggregase ClpG, which confers extreme heat resistance to bacteria. N1 harbors a Zn2+-coordination site that is crucial for structural integrity and disaggregase functionality. We found that conserved hydrophobic N1 residues located on a β-strand are crucial for aggregate targeting and disaggregation activity. Analysis of mixed hexamers consisting of full-length and N1-truncated subunits revealed that a minimal number of four N1 domains must be present in a AAA+ ring for high-disaggregation activity. We suggest that multiple N1 domains increase substrate affinity through avidity effects. These findings define the recognition principle of a protein aggregate by a disaggregase, involving simultaneous contacts with multiple hydrophobic substrate patches located in close vicinity on an aggregate surface. This binding mode ensures selectivity for aggregated proteins while sparing soluble, non-native protein structures from disaggregase activity.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Timo Jenne
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Division of Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Mohan N, Jhandai S, Bhadu S, Sharma L, Kaur T, Saharan V, Pal A. Acclimation response and management strategies to combat heat stress in wheat for sustainable agriculture: A state-of-the-art review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111834. [PMID: 37597666 DOI: 10.1016/j.plantsci.2023.111834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/06/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Unpredicted variability in climate change on the planet is associated with frequent extreme high-temperature events impacting crop yield globally. Wheat is an economically and nutritionally important crop that fulfils global food requirements and each degree rise in temperature results in ∼6% of its yield reduction. Thus, understanding the impact of climate change, especially the terminal heat stress on global wheat production, becomes critically important for policymakers, crop breeders, researchers and scientists to ensure global food security. This review describes how wheat perceives heat stress and induces stress adaptation events by its morpho-physiological, phenological, molecular, and biochemical makeup. Temperature above a threshold level in crop vicinity leads to irreversible injuries, viz. destruction of cellular membranes and enzymes, generation of active oxygen species, redox imbalance, etc. To cope with these changes, wheat activates its heat tolerance mechanisms characterized by hoarding up soluble carbohydrates, signalling molecules, and heat tolerance gene expressions. Being vulnerable to heat stress, increasing wheat production without delay seeks strategies to mitigate the detrimental effects and provoke the methods for its sustainable development. Thus, to ensure the crop's resilience to stress and increasing food demand, this article circumscribes the integrated management approaches to enhance wheat's performance and adaptive capacity besides its alleviating risks of increasing temperature anticipated with climate change. Implementing these integrated strategies in the face of risks from rising temperatures will assist us in producing sustainable wheat with improved yield.
Collapse
Affiliation(s)
- Narender Mohan
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India.
| | - Sonia Jhandai
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Surina Bhadu
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Lochan Sharma
- Department of Nematology, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Taranjeet Kaur
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| | - Vinod Saharan
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan 313001, India
| | - Ajay Pal
- Department of Biochemistry, College of Basic Sciences and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana 125004, India
| |
Collapse
|
10
|
Stanford KE, Zhao X, Kim N, Masison DC, Greene LE. Overexpression of Hsp104 by Causing Dissolution of the Prion Seeds Cures the Yeast [ PSI+] Prion. Int J Mol Sci 2023; 24:10833. [PMID: 37446010 DOI: 10.3390/ijms241310833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The yeast Sup35 protein misfolds into the infectious [PSI+] prion, which is then propagated by the severing activity of the molecular chaperone, Hsp104. Unlike other yeast prions, this prion is unique in that it is efficiently cured by the overexpression as well as the inactivation of Hsp104. However, it is controversial whether curing by overexpression is due to the dissolution of the prion seeds by the trimming activity of Hsp104 or the asymmetric segregation of the prion seeds between mother and daughter cells which requires cell division. To answer this question, we conducted experiments and found no difference in the extent of curing between mother and daughter cells when half of the cells were cured by Hsp104 overexpression in one generation. Furthermore, curing was not affected by the lack of Sir2 expression, which was reported to be required for asymmetric segregation of the [PSI+] seeds. More importantly, when either hydroxyurea or ethanol were used to inhibit cell division, the extent of curing by Hsp104 overexpression was not significantly reduced. Therefore, the curing of [PSI+] by Hsp104 overexpression is not due to asymmetric segregation of the prion seeds, but rather their dissolution by Hsp104.
Collapse
Affiliation(s)
- Katherine E Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nathan Kim
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lois E Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
Jay-Garcia LM, Cornell JL, Howie RL, Faber QL, Salas A, Chernova TA, Chernoff YO. Yeast Chaperone Hsp70-Ssb Modulates a Variety of Protein-Based Heritable Elements. Int J Mol Sci 2023; 24:ijms24108660. [PMID: 37240005 DOI: 10.3390/ijms24108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Prions are transmissible self-perpetuating protein isoforms associated with diseases and heritable traits. Yeast prions and non-transmissible protein aggregates (mnemons) are frequently based on cross-β ordered fibrous aggregates (amyloids). The formation and propagation of yeast prions are controlled by chaperone machinery. Ribosome-associated chaperone Hsp70-Ssb is known (and confirmed here) to modulate formation and propagation of the prion form of the Sup35 protein [PSI+]. Our new data show that both formation and mitotic transmission of the stress-inducible prion form of the Lsb2 protein ([LSB+]) are also significantly increased in the absence of Ssb. Notably, heat stress leads to a massive accumulation of [LSB+] cells in the absence of Ssb, implicating Ssb as a major downregulator of the [LSB+]-dependent memory of stress. Moreover, the aggregated form of Gγ subunit Ste18, [STE+], behaving as a non-heritable mnemon in the wild-type strain, is generated more efficiently and becomes heritable in the absence of Ssb. Lack of Ssb also facilitates mitotic transmission, while lack of the Ssb cochaperone Hsp40-Zuo1 facilitates both spontaneous formation and mitotic transmission of the Ure2 prion, [URE3]. These results demonstrate that Ssb is a general modulator of cytosolic amyloid aggregation, whose effect is not restricted only to [PSI+].
Collapse
Affiliation(s)
- Lina M Jay-Garcia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joseph L Cornell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rebecca L Howie
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Quincy L Faber
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Abigail Salas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Kotler JLM, Street TO. Mechanisms of Protein Quality Control in the Endoplasmic Reticulum by a Coordinated Hsp40-Hsp70-Hsp90 System. Annu Rev Biophys 2023; 52:509-524. [PMID: 37159299 DOI: 10.1146/annurev-biophys-111622-091309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Hsp40, Hsp70, and Hsp90 chaperone families are ancient, highly conserved, and critical to cellular protein homeostasis. Hsp40 chaperones can transfer their protein clients to Hsp70, and Hsp70 can transfer clients to Hsp90, but the functional benefits of these transfers are unclear. Recent structural and mechanistic work has opened up the possibility of uncovering how Hsp40, Hsp70, and Hsp90 work together as unified system. In this review, we compile mechanistic data on the ER J-domain protein 3 (ERdj3) (an Hsp40), BiP (an Hsp70), and Grp94 (an Hsp90) chaperones within the endoplasmic reticulum; what is known about how these chaperones work together; and gaps in this understanding. Using calculations, we examine how client transfer could impact the solubilization of aggregates, the folding of soluble proteins, and the triage decisions by which proteins are targeted for degradation. The proposed roles of client transfer among Hsp40-Hsp70-Hsp90 chaperones are new hypotheses, and we discuss potential experimental tests of these ideas.
Collapse
Affiliation(s)
- Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
13
|
Zhao X, Stanford K, Ahearn J, Masison DC, Greene LE. Hsp70 Binding to the N-terminal Domain of Hsp104 Regulates [ PSI+] Curing by Hsp104 Overexpression. Mol Cell Biol 2023; 43:157-173. [PMID: 37099734 PMCID: PMC10153015 DOI: 10.1080/10985549.2023.2198181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 04/28/2023] Open
Abstract
Hsp104 propagates the yeast prion [PSI+], the infectious form of Sup35, by severing the prion seeds, but when Hsp104 is overexpressed, it cures [PSI+] in a process that is not yet understood but may be caused by trimming, which removes monomers from the ends of the amyloid fibers. This curing was shown to depend on both the N-terminal domain of Hsp104 and the expression level of various members of the Hsp70 family, which raises the question as to whether these effects of Hsp70 are due to it binding to the Hsp70 binding site that was identified in the N-terminal domain of Hsp104, a site not involved in prion propagation. Investigating this question, we now find, first, that mutating this site prevents both the curing of [PSI+] by Hsp104 overexpression and the trimming activity of Hsp104. Second, we find that depending on the specific member of the Hsp70 family binding to the N-terminal domain of Hsp104, both trimming and the curing caused by Hsp104 overexpression are either increased or decreased in parallel. Therefore, the binding of Hsp70 to the N-terminal domain of Hsp104 regulates both the rate of [PSI+] trimming by Hsp104 and the rate of [PSI+] curing by Hsp104 overexpression.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Ahearn
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Tak Y, Lal SS, Gopan S, Balakrishnan M, Satheesh G, Biswal AK, Verma AK, Cole SJ, Brown RE, Hayward RE, Hines JK, Sahi C. Identification of subfunctionalized aggregate-remodeling J-domain proteins in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1705-1722. [PMID: 36576197 PMCID: PMC10010614 DOI: 10.1093/jxb/erac514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
J-domain proteins (JDPs) are critical components of the cellular protein quality control machinery, playing crucial roles in preventing the formation and, solubilization of cytotoxic protein aggregates. Bacteria, yeast, and plants additionally have large, multimeric heat shock protein 100 (Hsp100)-class disaggregases that resolubilize protein aggregates. JDPs interact with aggregated proteins and specify the aggregate-remodeling activities of Hsp70s and Hsp100s. However, the aggregate-remodeling properties of plant JDPs are not well understood. Here we identify eight orthologs of Sis1 (an evolutionarily conserved Class II JDP of budding yeast) in Arabidopsis thaliana with distinct aggregate-remodeling functionalities. Six of these JDPs associate with heat-induced protein aggregates in vivo and co-localize with Hsp101 at heat-induced protein aggregate centers. Consistent with a role in solubilizing cytotoxic protein aggregates, an atDjB3 mutant had defects in both solubilizing heat-induced aggregates and acquired thermotolerance as compared with wild-type seedlings. Next, we used yeast prions as protein aggregate models to show that the six JDPs have distinct aggregate-remodeling properties. Results presented in this study, as well as findings from phylogenetic analysis, demonstrate that plants harbor multiple, evolutionarily conserved JDPs with capacity to process a variety of protein aggregate conformers induced by heat and other stressors.
Collapse
Affiliation(s)
- Yogesh Tak
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Silviya S Lal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Shilpa Gopan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Madhumitha Balakrishnan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Gouri Satheesh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Anup K Biswal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Amit K Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| | - Sierra J Cole
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | | | | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Chandan Sahi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
15
|
Shan SO. Role of Hsp70 in Post-Translational Protein Targeting: Tail-Anchored Membrane Proteins and Beyond. Int J Mol Sci 2023; 24:1170. [PMID: 36674686 PMCID: PMC9866221 DOI: 10.3390/ijms24021170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The Hsp70 family of molecular chaperones acts as a central 'hub' in the cell that interacts with numerous newly synthesized proteins to assist in their biogenesis. Apart from its central and well-established role in facilitating protein folding, Hsp70s also act as key decision points in the cellular chaperone network that direct client proteins to distinct biogenesis and quality control pathways. In this paper, we review accumulating data that illustrate a new branch in the Hsp70 network: the post-translational targeting of nascent membrane and organellar proteins to diverse cellular organelles. Work in multiple pathways suggests that Hsp70, via its ability to interact with components of protein targeting and translocation machineries, can initiate elaborate substrate relays in a sophisticated cascade of chaperones, cochaperones, and receptor proteins, and thus provide a mechanism to safeguard and deliver nascent membrane proteins to the correct cellular membrane. We discuss the mechanistic principles gleaned from better-studied Hsp70-dependent targeting pathways and outline the observations and outstanding questions in less well-studied systems.
Collapse
Affiliation(s)
- Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
16
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
17
|
Knier AS, Davis EE, Buchholz HE, Dorweiler JE, Flannagan LE, Manogaran AL. The yeast molecular chaperone, Hsp104, influences transthyretin aggregate formation. Front Mol Neurosci 2022; 15:1050472. [PMID: 36590917 PMCID: PMC9802906 DOI: 10.3389/fnmol.2022.1050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with the fatal disorder Transthyretin Amyloidosis (ATTR) experience polyneuropathy through the progressive destruction of peripheral nervous tissue. In these patients, the transthyretin (TTR) protein dissociates from its functional tetrameric structure, misfolds, and aggregates into extracellular amyloid deposits that are associated with disease progression. These aggregates form large fibrillar structures as well as shorter oligomeric aggregates that are suspected to be cytotoxic. Several studies have shown that these extracellular TTR aggregates enter the cell and accumulate intracellularly, which is associated with increased proteostasis response. However, there are limited experimental models to study how proteostasis influences internalized TTR aggregates. Here, we use a humanized yeast system to recapitulate intracellular TTR aggregating protein in vivo. The yeast molecular chaperone Hsp104 is a disaggregase that has been shown to fragment amyloidogenic aggregates associated with certain yeast prions and reduce protein aggregation associated with human neurogenerative diseases. In yeast, we found that TTR forms both SDS-resistant oligomers and SDS-sensitive large molecular weight complexes. In actively dividing cultures, Hsp104 has no impact on oligomeric or large aggregate populations, yet overexpression of Hsp104 is loosely associated with an increase in overall aggregate size. Interestingly, a potentiating mutation in the middle domain of Hsp104 consistently results in an increase in overall TTR aggregate size. These data suggest a novel approach to aggregate management, where the Hsp104 variant shifts aggregate populations away from toxic oligomeric species to more inert larger aggregates. In aged cultures Hsp104 overexpression has no impact on TTR aggregation profiles suggesting that these chaperone approaches to shift aggregate populations are not effective with age, possibly due to proteostasis decline.
Collapse
|
18
|
Abstract
Most cells live in environments that are permissive for proliferation only a small fraction of the time. Entering quiescence enables cells to survive long periods of nondivision and reenter the cell cycle when signaled to do so. Here, we describe what is known about the molecular basis for quiescence in Saccharomyces cerevisiae, with emphasis on the progress made in the last decade. Quiescence is triggered by depletion of an essential nutrient. It begins well before nutrient exhaustion, and there is extensive crosstalk between signaling pathways to ensure that all proliferation-specific activities are stopped when any one essential nutrient is limiting. Every aspect of gene expression is modified to redirect and conserve resources. Chromatin structure and composition change on a global scale, from histone modifications to three-dimensional chromatin structure. Thousands of proteins and RNAs aggregate, forming unique structures with unique fates, and the cytoplasm transitions to a glass-like state.
Collapse
Affiliation(s)
- Linda L Breeden
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; ,
| |
Collapse
|
19
|
Tassone G, Mazzorana M, Pozzi C. Structural Basis of Parasitic HSP90 ATPase Inhibition by Small Molecules. Pharmaceuticals (Basel) 2022; 15:1341. [PMID: 36355513 PMCID: PMC9692773 DOI: 10.3390/ph15111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/10/2024] Open
Abstract
Protozoan parasites are responsible for several harmful and widespread human diseases that cause high morbidity and mortality. Currently available treatments have serious limitations due to poor efficiency, strong adverse effects, and high cost. Hence, the identification of new targets and the development of specific drug therapies against parasitic diseases are urgent needs. Heat shock protein 90 (HSP90) is an ATP-dependent molecular chaperone that plays a key role in parasite survival during the various differentiation stages, spread over the vector insect and the human host, which they undergo during their life cycle. The N-terminal domain (NTD) of HSP90, containing the main determinants for ATPase activity, represents the most druggable domain for inhibitor targeting. The molecules investigated on parasite HSP90 are mainly developed from known inhibitors of the human counterpart, and they have strong limitations due to selectivity issues, accounting for the high conservation of the ATP-binding site between the parasite and human proteins. The current review highlights the recent structural progress made to support the rational design of new molecules able to effectively block the chaperone activity of parasite HSP90.
Collapse
Affiliation(s)
- Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Marco Mazzorana
- Diamond Light Source Ltd., Diamond House, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018–2022, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
20
|
Miller SC, Wegrzynowicz AK, Cole SJ, Hayward RE, Ganser SJ, Hines JK. Hsp40/JDP Requirements for the Propagation of Synthetic Yeast Prions. Viruses 2022; 14:v14102160. [PMID: 36298715 PMCID: PMC9611480 DOI: 10.3390/v14102160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Yeast prions are protein-based transmissible elements, most of which are amyloids. The chaperone protein network in yeast is inexorably linked to the spreading of prions during cell division by fragmentation of amyloid prion aggregates. Specifically, the core “prion fragmentation machinery” includes the proteins Hsp104, Hsp70 and the Hsp40/J-domain protein (JDP) Sis1. Numerous novel amyloid-forming proteins have been created and examined in the yeast system and occasionally these amyloids are also capable of continuous Hsp104-dependent propagation in cell populations, forming synthetic prions. However, additional chaperone requirements, if any, have not been determined. Here, we report the first instances of a JDP-Hsp70 system requirement for the propagation of synthetic prions. We utilized constructs from a system of engineered prions with prion-forming domains (PrDs) consisting of a polyQ stretch interrupted by a single heterologous amino acid interspersed every fifth residue. These “polyQX” PrDs are fused to the MC domains of Sup35, creating chimeric proteins of which a subset forms synthetic prions in yeast. For four of these prions, we show that SIS1 repression causes prion loss in a manner consistent with Sis1′s known role in prion fragmentation. PolyQX prions were sensitive to Sis1 expression levels to differing degrees, congruent with the variability observed among native prions. Our results expand the scope known Sis1 functionality, demonstrating that Sis1 acts on amyloids broadly, rather than through specific protein–protein interactions with individual yeast prion-forming proteins.
Collapse
|
21
|
Schneider KL, Ahmadpour D, Keuenhof KS, Eisele-Bürger AM, Berglund LL, Eisele F, Babazadeh R, Höög JL, Nyström T, Widlund PO. Using reporters of different misfolded proteins reveals differential strategies in processing protein aggregates. J Biol Chem 2022; 298:102476. [PMID: 36096201 PMCID: PMC9636550 DOI: 10.1016/j.jbc.2022.102476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 colocalized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling EM in which both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing.
Collapse
Affiliation(s)
- Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Katharina S Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Maria Eisele-Bürger
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lisa Larsson Berglund
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Per O Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
22
|
Anti-Prion Systems in Saccharomyces cerevisiae Turn an Avalanche of Prions into a Flurry. Viruses 2022; 14:v14091945. [PMID: 36146752 PMCID: PMC9503967 DOI: 10.3390/v14091945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Prions are infectious proteins, mostly having a self-propagating amyloid (filamentous protein polymer) structure consisting of an abnormal form of a normally soluble protein. These prions arise spontaneously in the cell without known reason, and their effects were generally considered to be fatal based on prion diseases in humans or mammals. However, the wide array of prion studies in yeast including filamentous fungi revealed that their effects can range widely, from lethal to very mild (even cryptic) or functional, depending on the nature of the prion protein and the specific prion variant (or strain) made by the same prion protein but with a different conformation. This prion biology is affected by an array of molecular chaperone systems, such as Hsp40, Hsp70, Hsp104, and combinations of them. In parallel with the systems required for prion propagation, yeast has multiple anti-prion systems, constantly working in the normal cell without overproduction of or a deficiency in any protein, which have negative effects on prions by blocking their formation, curing many prions after they arise, preventing prion infections, and reducing the cytotoxicity produced by prions. From the protectors of nascent polypeptides (Ssb1/2p, Zuo1p, and Ssz1p) to the protein sequesterase (Btn2p), the disaggregator (Hsp104), and the mysterious Cur1p, normal levels of each can cure the prion variants arising in its absence. The controllers of mRNA quality, nonsense-mediated mRNA decay proteins (Upf1, 2, 3), can cure newly formed prion variants by association with a prion-forming protein. The regulator of the inositol pyrophosphate metabolic pathway (Siw14p) cures certain prion variants by lowering the levels of certain organic compounds. Some of these proteins have other cellular functions (e.g., Btn2), while others produce an anti-prion effect through their primary role in the normal cell (e.g., ribosomal chaperones). Thus, these anti-prion actions are the innate defense strategy against prions. Here, we outline the anti-prion systems in yeast that produce innate immunity to prions by a multi-layered operation targeting each step of prion development.
Collapse
|
23
|
Wickner RB, Edskes HK, Son M, Wu S. Anti-Prion Systems Block Prion Transmission, Attenuate Prion Generation, Cure Most Prions as They Arise and Limit Prion-Induced Pathology in Saccharomyces cerevisiae. BIOLOGY 2022; 11:biology11091266. [PMID: 36138748 PMCID: PMC9495834 DOI: 10.3390/biology11091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Virus and bacterial infections are opposed by their hosts at many levels. Similarly, we find that infectious proteins (prions) are severely restricted by an array of host systems, acting independently to prevent infection, generation, propagation and the ill effects of yeast prions. These ‘anti-prion systems’ work in normal cells without the overproduction or deficiency of any components. DNA repair systems reverse the effects of DNA damage, with only a rare lesion propagated as a mutation. Similarly, the combined effects of several anti-prion systems cure and block the generation of all but 1 in about 5000 prions arising. We expect that application of our approach to mammalian cells will detect analogous or even homologous systems that will be useful in devising therapy for human amyloidoses, most of which are prions. Abstract All variants of the yeast prions [PSI+] and [URE3] are detrimental to their hosts, as shown by the dramatic slowing of growth (or even lethality) of a majority, by the rare occurrence in wild isolates of even the mildest variants and by the absence of reproducible benefits of these prions. To deal with the prion problem, the host has evolved an array of anti-prion systems, acting in normal cells (without overproduction or deficiency of any component) to block prion transmission from other cells, to lower the rates of spontaneous prion generation, to cure most prions as they arise and to limit the damage caused by those variants that manage to elude these (necessarily) imperfect defenses. Here we review the properties of prion protein sequence polymorphisms Btn2, Cur1, Hsp104, Upf1,2,3, ribosome-associated chaperones, inositol polyphosphates, Sis1 and Lug1, which are responsible for these anti-prion effects. We recently showed that the combined action of ribosome-associated chaperones, nonsense-mediated decay factors and the Hsp104 disaggregase lower the frequency of [PSI+] appearance as much as 5000-fold. Moreover, while Btn2 and Cur1 are anti-prion factors against [URE3] and an unrelated artificial prion, they promote [PSI+] prion generation and propagation.
Collapse
|
24
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
25
|
Sakunthala A, Datta D, Navalkar A, Gadhe L, Kadu P, Patel K, Mehra S, Kumar R, Chatterjee D, Devi J, Sengupta K, Padinhateeri R, Maji SK. Direct Demonstration of Seed Size-Dependent α-Synuclein Amyloid Amplification. J Phys Chem Lett 2022; 13:6427-6438. [PMID: 35816132 DOI: 10.1021/acs.jpclett.2c01650] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The size of amyloid seeds is known to modulate their autocatalytic amplification and cellular toxicity. However, the seed size-dependent secondary nucleation mechanism, toxicity, and disease-associated biological processes mediated by α-synuclein (α-Syn) fibrils are largely unknown. Using the cellular model and in vitro reconstitution, we showed that the size of α-Syn fibril seeds dictates not only their cellular internalization and associated cell death but also the distinct mechanisms of fibril amplification pathways involved in the pathological conformational change of α-Syn. Specifically, small fibril seeds showed elongation possibly through monomer addition at the fibril termini, whereas longer fibrils template the fibril amplification by surface-mediated nucleation as demonstrated by super-resolution microscopy. The distinct mechanism of fibril amplification and cellular uptake along with toxicity suggest that breakage of fibrils into seeds of different sizes determines the underlying pathological outcome of synucleinopathies.
Collapse
Affiliation(s)
- Arunima Sakunthala
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jyoti Devi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Kundan Sengupta
- Chromosome Biology Lab, Indian Institute of Science Education and Research, Pune 411008, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
26
|
Shoup D, Roth A, Puchalla J, Rye HS. The Impact of Hidden Structure on Aggregate Disassembly by Molecular Chaperones. Front Mol Biosci 2022; 9:915307. [PMID: 35874607 PMCID: PMC9302491 DOI: 10.3389/fmolb.2022.915307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Protein aggregation, or the uncontrolled self-assembly of partially folded proteins, is an ever-present danger for living organisms. Unimpeded, protein aggregation can result in severe cellular dysfunction and disease. A group of proteins known as molecular chaperones is responsible for dismantling protein aggregates. However, how protein aggregates are recognized and disassembled remains poorly understood. Here we employ a single particle fluorescence technique known as Burst Analysis Spectroscopy (BAS), in combination with two structurally distinct aggregate types grown from the same starting protein, to examine the mechanism of chaperone-mediated protein disaggregation. Using the core bi-chaperone disaggregase system from Escherichia coli as a model, we demonstrate that, in contrast to prevailing models, the overall size of an aggregate particle has, at most, a minor influence on the progression of aggregate disassembly. Rather, we show that changes in internal structure, which have no observable impact on aggregate particle size or molecular chaperone binding, can dramatically limit the ability of the bi-chaperone system to take aggregates apart. In addition, these structural alterations progress with surprising speed, rendering aggregates resistant to disassembly within minutes. Thus, while protein aggregate structure is generally poorly defined and is often obscured by heterogeneous and complex particle distributions, it can have a determinative impact on the ability of cellular quality control systems to process protein aggregates.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Jason Puchalla
- Department of Physics, Princeton University, Princeton, NJ, United States
| | - Hays S. Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- *Correspondence: Hays S. Rye,
| |
Collapse
|
27
|
Park S, Wang X, Xi W, Richardson R, Laue TM, Denis CL. The non-prion SUP35 preexists in large chaperone-containing molecular complexes. Proteins 2022; 90:869-880. [PMID: 34791707 PMCID: PMC8816864 DOI: 10.1002/prot.26282] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022]
Abstract
Prions, misfolded proteins that aggregate, cause an array of progressively deteriorating conditions to which, currently, there are no effective treatments. The presently accepted model indicates that the soluble non-prion forms of prion-forming proteins, such as the well-studied SUP35, do not exist in large aggregated molecular complexes. Here, we show using analytical ultracentrifugation with fluorescent detection that the non-prion form of SUP35 exists in a range of discretely sized soluble complexes (19S, 28S, 39S, 57S, and 70S-200S). Similar to the [PSI+] aggregated complexes, each of these [psi-] complexes associates at stoichiometric levels with a large variety of molecular chaperones: HSP70 proteins comprise the major component. Another yeast prion-forming protein, RNQ1 (known to promote the production of the prion SUP35 state), is also present in SUP35 complexes. These results establish that the non-prion SUP35, like its prion form, is predisposed to form large molecular complexes containing chaperones and other prion-forming proteins. These results agree with our previous studies on the huntingtin protein. That the normal forms for aggregation-prone proteins may preexist in large molecular complexes has important ramifications for the progression of diseases involving protein aggregation.
Collapse
|
28
|
Abstract
Cellular redox homeostasis is precisely balanced by generation and elimination of reactive oxygen species (ROS). ROS are not only capable of causing oxidation of proteins, lipids and DNA to damage cells but can also act as signaling molecules to modulate transcription factors and epigenetic pathways that determine cell survival and death. Hsp70 proteins are central hubs for proteostasis and are important factors to ameliorate damage from different kinds of stress including oxidative stress. Hsp70 members often participate in different cellular signaling pathways via their clients and cochaperones. ROS can directly cause oxidative cysteine modifications of Hsp70 members to alter their structure and chaperone activity, resulting in changes in the interactions between Hsp70 and their clients or cochaperones, which can then transfer redox signals to Hsp70-related signaling pathways. On the other hand, ROS also activate some redox-related signaling pathways to indirectly modulate Hsp70 activity and expression. Post-translational modifications including phosphorylation together with elevated Hsp70 expression can expand the capacity of Hsp70 to deal with ROS-damaged proteins and support antioxidant enzymes. Knowledge about the response and role of Hsp70 in redox homeostasis will facilitate our understanding of the cellular knock-on effects of inhibitors targeting Hsp70 and the mechanisms of redox-related diseases and aging.
Collapse
|
29
|
Nakagawa Y, Shen HCH, Komi Y, Sugiyama S, Kurinomaru T, Tomabechi Y, Krayukhina E, Okamoto K, Yokoyama T, Shirouzu M, Uchiyama S, Inaba M, Niwa T, Sako Y, Taguchi H, Tanaka M. Amyloid conformation-dependent disaggregation in a reconstituted yeast prion system. Nat Chem Biol 2022; 18:321-331. [PMID: 35177839 DOI: 10.1038/s41589-021-00951-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 11/23/2021] [Indexed: 01/17/2023]
Abstract
Disaggregation of amyloid fibrils is a fundamental biological process required for amyloid propagation. However, due to the lack of experimental systems, the molecular mechanism of how amyloid is disaggregated by cellular factors remains poorly understood. Here, we established a robust in vitro reconstituted system of yeast prion propagation and found that heat-shock protein 104 (Hsp104), Ssa1 and Sis1 chaperones are essential for efficient disaggregation of Sup35 amyloid. Real-time imaging of single-molecule fluorescence coupled with the reconstitution system revealed that amyloid disaggregation is achieved by ordered, timely binding of the chaperones to amyloid. Remarkably, we uncovered two distinct prion strain conformation-dependent modes of disaggregation, fragmentation and dissolution. We characterized distinct chaperone dynamics in each mode and found that transient, repeated binding of Hsp104 to the same site of amyloid results in fragmentation. These findings provide a physical foundation for otherwise puzzling in vivo observations and for therapeutic development for amyloid-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiko Nakagawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | - Howard C-H Shen
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yusuke Komi
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | - Shinju Sugiyama
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan
| | | | - Yuri Tomabechi
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | | | - Kenji Okamoto
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Susumu Uchiyama
- Research Department, U-Medico Inc., Suita, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.,Department of Creative Research, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Myodaiji, Okazaki, Japan
| | - Megumi Inaba
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tatsuya Niwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan. .,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Saitama, Japan. .,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
30
|
Differential Interactions of Molecular Chaperones and Yeast Prions. J Fungi (Basel) 2022; 8:jof8020122. [PMID: 35205876 PMCID: PMC8877571 DOI: 10.3390/jof8020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Baker’s yeast Saccharomyces cerevisiae is an important model organism that is applied to study various aspects of eukaryotic cell biology. Prions in yeast are self-perpetuating heritable protein aggregates that can be leveraged to study the interaction between the protein quality control (PQC) machinery and misfolded proteins. More than ten prions have been identified in yeast, of which the most studied ones include [PSI+], [URE3], and [PIN+]. While all of the major molecular chaperones have been implicated in propagation of yeast prions, many of these chaperones differentially impact propagation of different prions and/or prion variants. In this review, we summarize the current understanding of the life cycle of yeast prions and systematically review the effects of different chaperone proteins on their propagation. Our analysis clearly shows that Hsp40 proteins play a central role in prion propagation by determining the fate of prion seeds and other amyloids. Moreover, direct prion-chaperone interaction seems to be critically important for proper recruitment of all PQC components to the aggregate. Recent results also suggest that the cell asymmetry apparatus, cytoskeleton, and cell signaling all contribute to the complex network of prion interaction with the yeast cell.
Collapse
|
31
|
Amyloid Fragmentation and Disaggregation in Yeast and Animals. Biomolecules 2021; 11:biom11121884. [PMID: 34944528 PMCID: PMC8699242 DOI: 10.3390/biom11121884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/29/2022] Open
Abstract
Amyloids are filamentous protein aggregates that are associated with a number of incurable diseases, termed amyloidoses. Amyloids can also manifest as infectious or heritable particles, known as prions. While just one prion is known in humans and animals, more than ten prion amyloids have been discovered in fungi. The propagation of fungal prion amyloids requires the chaperone Hsp104, though in excess it can eliminate some prions. Even though Hsp104 acts to disassemble prion fibrils, at normal levels it fragments them into multiple smaller pieces, which ensures prion propagation and accelerates prion conversion. Animals lack Hsp104, but disaggregation is performed by the same complement of chaperones that assist Hsp104 in yeast—Hsp40, Hsp70, and Hsp110. Exogenous Hsp104 can efficiently cooperate with these chaperones in animals and promotes disaggregation, especially of large amyloid aggregates, which indicates its potential as a treatment for amyloid diseases. However, despite the significant effects, Hsp104 and its potentiated variants may be insufficient to fully dissolve amyloid. In this review, we consider chaperone mechanisms acting to disassemble heritable protein aggregates in yeast and animals, and their potential use in the therapy of human amyloid diseases.
Collapse
|
32
|
Gadhe L, Sakunthala A, Mukherjee S, Gahlot N, Bera R, Sawner AS, Kadu P, Maji SK. Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis. Biophys Chem 2021; 281:106736. [PMID: 34923391 DOI: 10.1016/j.bpc.2021.106736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Cytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected. Further, the oligomeric species could be the most plausible neurotoxic species causing neuronal cell death. However, understanding the structural and molecular insights of these oligomers are very challenging due to the heterogeneity and transient nature of the species. In this review, we discuss the recent advancements in understanding the formation and role of α-Syn oligomers in PD pathogenesis. We also summarize the different types of α-Syn oligomeric species and potential mechanisms to exert neurotoxicity. Finally, we address the possible ways to target α-Syn as a promising approach against PD and the possible future directions.
Collapse
Affiliation(s)
- Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
33
|
Unzipping the Secrets of Amyloid Disassembly by the Human Disaggregase. Cells 2021; 10:cells10102745. [PMID: 34685723 PMCID: PMC8534776 DOI: 10.3390/cells10102745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases (NDs) are increasingly positioned as leading causes of global deaths. The accelerated aging of the population and its strong relationship with neurodegeneration forecast these pathologies as a huge global health problem in the upcoming years. In this scenario, there is an urgent need for understanding the basic molecular mechanisms associated with such diseases. A major molecular hallmark of most NDs is the accumulation of insoluble and toxic protein aggregates, known as amyloids, in extracellular or intracellular deposits. Here, we review the current knowledge on how molecular chaperones, and more specifically a ternary protein complex referred to as the human disaggregase, deals with amyloids. This machinery, composed of the constitutive Hsp70 (Hsc70), the class B J-protein DnaJB1 and the nucleotide exchange factor Apg2 (Hsp110), disassembles amyloids of α-synuclein implicated in Parkinson’s disease as well as of other disease-associated proteins such as tau and huntingtin. We highlight recent studies that have led to the dissection of the mechanism used by this chaperone system to perform its disaggregase activity. We also discuss whether this chaperone-mediated disassembly mechanism could be used to solubilize other amyloidogenic substrates. Finally, we evaluate the implications of the chaperone system in amyloid clearance and associated toxicity, which could be critical for the development of new therapies.
Collapse
|
34
|
Kumar J, Reidy M, Masison DC. Yeast J-protein Sis1 prevents prion toxicity by moderating depletion of prion protein. Genetics 2021; 219:iyab129. [PMID: 34849884 PMCID: PMC8633096 DOI: 10.1093/genetics/iyab129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022] Open
Abstract
[PSI+] is a prion of Saccharomyces cerevisiae Sup35, an essential ribosome release factor. In [PSI+] cells, most Sup35 is sequestered into insoluble amyloid aggregates. Despite this depletion, [PSI+] prions typically affect viability only modestly, so [PSI+] must balance sequestering Sup35 into prions with keeping enough Sup35 functional for normal growth. Sis1 is an essential J-protein regulator of Hsp70 required for the propagation of amyloid-based yeast prions. C-terminally truncated Sis1 (Sis1JGF) supports cell growth in place of wild-type Sis1. Sis1JGF also supports [PSI+] propagation, yet [PSI+] is highly toxic to cells expressing only Sis1JGF. We searched extensively for factors that mitigate the toxicity and identified only Sis1, suggesting Sis1 is uniquely needed to protect from [PSI+] toxicity. We find the C-terminal substrate-binding domain of Sis1 has a critical and transferable activity needed for the protection. In [PSI+] cells that express Sis1JGF in place of Sis1, Sup35 was less soluble and formed visibly larger prion aggregates. Exogenous expression of a truncated Sup35 that cannot incorporate into prions relieved [PSI+] toxicity. Together our data suggest that Sis1 has separable roles in propagating Sup35 prions and in moderating Sup35 aggregation that are crucial to the balance needed for the propagation of what otherwise would be lethal [PSI+] prions.
Collapse
Affiliation(s)
- Jyotsna Kumar
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | - Daniel C Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| |
Collapse
|
35
|
Innate immunity to prions: anti-prion systems turn a tsunami of prions into a slow drip. Curr Genet 2021; 67:833-847. [PMID: 34319422 DOI: 10.1007/s00294-021-01203-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022]
Abstract
The yeast prions (infectious proteins) [URE3] and [PSI+] are essentially non-functional (or even toxic) amyloid forms of Ure2p and Sup35p, whose normal function is in nitrogen catabolite repression and translation termination, respectively. Yeast has an array of systems working in normal cells that largely block infection with prions, block most prion formation, cure most nascent prions and mitigate the toxic effects of those prions that escape the first three types of systems. Here we review recent progress in defining these anti-prion systems, how they work and how they are regulated. Polymorphisms of the prion domains partially block infection with prions. Ribosome-associated chaperones ensure proper folding of nascent proteins, thus reducing [PSI+] prion formation and curing many [PSI+] variants that do form. Btn2p is a sequestering protein which gathers [URE3] amyloid filaments to one place in the cells so that the prion is often lost by progeny cells. Proteasome impairment produces massive overexpression of Btn2p and paralog Cur1p, resulting in [URE3] curing. Inversely, increased proteasome activity, by derepression of proteasome component gene transcription or by 60S ribosomal subunit gene mutation, prevents prion curing by Btn2p or Cur1p. The nonsense-mediated decay proteins (Upf1,2,3) cure many nascent [PSI+] variants by associating with Sup35p directly. Normal levels of the disaggregating chaperone Hsp104 can also cure many [PSI+] prion variants. By keeping the cellular levels of certain inositol polyphosphates / pyrophosphates low, Siw14p cures certain [PSI+] variants. It is hoped that exploration of the yeast innate immunity to prions will lead to discovery of similar systems in humans.
Collapse
|
36
|
Kohler V, Andréasson C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2021; 401:1233-1248. [PMID: 32745066 DOI: 10.1515/hsz-2020-0187] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022]
Abstract
Chaperones of the 70 kDa heat shock protein (Hsp70) superfamily are key components of the cellular proteostasis system. Together with its co-chaperones, Hsp70 forms proteostasis subsystems that antagonize protein damage during physiological and stress conditions. This function stems from highly regulated binding and release cycles of protein substrates, which results in a flow of unfolded, partially folded and misfolded species through the Hsp70 subsystem. Specific factors control how Hsp70 makes decisions regarding folding and degradation fates of the substrate proteins. In this review, we summarize how the flow of Hsp70 substrates is controlled in the cell with special emphasis on recent advances regarding substrate release mechanisms.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
37
|
Katikaridis P, Bohl V, Mogk A. Resisting the Heat: Bacterial Disaggregases Rescue Cells From Devastating Protein Aggregation. Front Mol Biosci 2021; 8:681439. [PMID: 34017857 PMCID: PMC8129007 DOI: 10.3389/fmolb.2021.681439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria as unicellular organisms are most directly exposed to changes in environmental growth conditions like temperature increase. Severe heat stress causes massive protein misfolding and aggregation resulting in loss of essential proteins. To ensure survival and rapid growth resume during recovery periods bacteria are equipped with cellular disaggregases, which solubilize and reactivate aggregated proteins. These disaggregases are members of the Hsp100/AAA+ protein family, utilizing the energy derived from ATP hydrolysis to extract misfolded proteins from aggregates via a threading activity. Here, we describe the two best characterized bacterial Hsp100/AAA+ disaggregases, ClpB and ClpG, and compare their mechanisms and regulatory modes. The widespread ClpB disaggregase requires cooperation with an Hsp70 partner chaperone, which targets ClpB to protein aggregates. Furthermore, Hsp70 activates ClpB by shifting positions of regulatory ClpB M-domains from a repressed to a derepressed state. ClpB activity remains tightly controlled during the disaggregation process and high ClpB activity states are likely restricted to initial substrate engagement. The recently identified ClpG (ClpK) disaggregase functions autonomously and its activity is primarily controlled by substrate interaction. ClpG provides enhanced heat resistance to selected bacteria including pathogens by acting as a more powerful disaggregase. This disaggregase expansion reflects an adaption of bacteria to extreme temperatures experienced during thermal based sterilization procedures applied in food industry and medicine. Genes encoding for ClpG are transmissible by horizontal transfer, allowing for rapid spreading of extreme bacterial heat resistance and posing a threat to modern food production.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Valentin Bohl
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the Heidelberg University and German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
38
|
Yin Y, Feng X, Yu H, Fay A, Kovach A, Glickman MS, Li H. Structural basis for aggregate dissolution and refolding by the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. Cell Rep 2021; 35:109166. [PMID: 34038719 PMCID: PMC8209680 DOI: 10.1016/j.celrep.2021.109166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 12/30/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
The M. tuberculosis (Mtb) ClpB is a protein disaggregase that helps to rejuvenate the bacterial cell. DnaK is a protein foldase that can function alone, but it can also bind to the ClpB hexamer to physically couple protein disaggregation with protein refolding, although the molecular mechanism is not well understood. Here, we report the cryo-EM analysis of the Mtb ClpB-DnaK bi-chaperone in the presence of ATPγS and a protein substrate. We observe three ClpB conformations in the presence of DnaK, identify a conserved TGIP loop linking the oligonucleotide/oligosaccharide-binding domain and the nucleotide-binding domain that is important for ClpB function, derive the interface between the regulatory middle domain of the ClpB and the DnaK nucleotide-binding domain, and find that DnaK binding stabilizes, but does not bend or tilt, the ClpB middle domain. We propose a model for the synergistic actions of aggregate dissolution and refolding by the Mtb ClpB-DnaK bi-chaperone system. Yin et al. use cryo-EM to analyze the structure of the Mycobacterium tuberculosis ClpB-DnaK bi-chaperone system. They find that the Mtb ClpB middle domain does not bend or tilt when interacting with DnaK. They therefore propose that the Mtb DnaK facilitates protein folding following protein disaggregation by ClpB.
Collapse
Affiliation(s)
- Yanting Yin
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Xiang Feng
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongjun Yu
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Allison Fay
- Immunology Program, Sloan Kettering Institute, New York, NY, USA
| | - Amanda Kovach
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | | | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
39
|
Gersing SK, Wang Y, Grønbæk-Thygesen M, Kampmeyer C, Clausen L, Willemoës M, Andréasson C, Stein A, Lindorff-Larsen K, Hartmann-Petersen R. Mapping the degradation pathway of a disease-linked aspartoacylase variant. PLoS Genet 2021; 17:e1009539. [PMID: 33914734 PMCID: PMC8084241 DOI: 10.1371/journal.pgen.1009539] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Canavan disease is a severe progressive neurodegenerative disorder that is characterized by swelling and spongy degeneration of brain white matter. The disease is genetically linked to polymorphisms in the aspartoacylase (ASPA) gene, including the substitution C152W. ASPA C152W is associated with greatly reduced protein levels in cells, yet biophysical experiments suggest a wild-type like thermal stability. Here, we use ASPA C152W as a model to investigate the degradation pathway of a disease-causing protein variant. When we expressed ASPA C152W in Saccharomyces cerevisiae, we found a decreased steady state compared to wild-type ASPA as a result of increased proteasomal degradation. However, molecular dynamics simulations of ASPA C152W did not substantially deviate from wild-type ASPA, indicating that the native state is structurally preserved. Instead, we suggest that the C152W substitution interferes with the de novo folding pathway resulting in increased proteasomal degradation before reaching its stable conformation. Systematic mapping of the protein quality control components acting on misfolded and aggregation-prone species of C152W, revealed that the degradation is highly dependent on the molecular chaperone Hsp70, its co-chaperone Hsp110 as well as several quality control E3 ubiquitin-protein ligases, including Ubr1. In addition, the disaggregase Hsp104 facilitated refolding of aggregated ASPA C152W, while Cdc48 mediated degradation of insoluble ASPA protein. In human cells, ASPA C152W displayed increased proteasomal turnover that was similarly dependent on Hsp70 and Hsp110. Our findings underscore the use of yeast to determine the protein quality control components involved in the degradation of human pathogenic variants in order to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Sarah K. Gersing
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yong Wang
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lene Clausen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Willemoës
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Puri A, Singh P, Kumar N, Kumar R, Sharma D. Tah1, A Key Component of R2TP Complex that Regulates Assembly of snoRNP, is Involved in De Novo Generation and Maintenance of Yeast Prion [URE3]. J Mol Biol 2021; 433:166976. [PMID: 33811921 DOI: 10.1016/j.jmb.2021.166976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/02/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
The cellular chaperone machinery plays key role in the de novo formation and propagation of yeast prions (infectious protein). Though the role of Hsp70s in the prion maintenance is well studied, how Hsp90 chaperone machinery affects yeast prions remains unclear. In the current study, we examined the role of Hsp90 and its co-chaperones on yeast prions [PSI+] and [URE3]. We show that the overproduction of Hsp90 co-chaperone Tah1, cures [URE3] which is a prion form of native protein Ure2 in yeast. The Hsp90 co-chaperone Tah1 is involved in the assembly of small nucleolar ribonucleoproteins (snoRNP) and chromatin remodelling complexes. We found that Tah1 deletion improves the frequency of de novo appearance of [URE3]. The Tah1 was found to interact with Hsp70. The lack of Tah1 not only represses antagonizing effect of Ssa1 Hsp70 on [URE3] but also improves the prion strength suggesting role of Tah1 in both fibril growth and replication. We show that the N-terminal tetratricopeptide repeat domain of Tah1 is indispensable for [URE3] curing. Tah1 interacts with Ure2, improves its solubility in [URE3] strains, and affects the kinetics of Ure2 fibrillation in vitro. Its inhibitory role on Ure2 fibrillation is proposed to influence [URE3] propagation. The present study shows a novel role of Tah1 in yeast prion propagation, and that Hsp90 not only promotes its role in ribosomal RNA processing but also in the prion maintenance. SUMMARY: Prions are self-perpetuating infectious proteins. What initiates the misfolding of a protein into its prion form is still not clear. The understanding of cellular factors that facilitate or antagonize prions is crucial to gain insight into the mechanism of prion formation and propagation. In the current study, we reveal that Tah1 is a novel modulator of yeast prion [URE3]. The Hsp90 co-chaperone Tah1, is required for the formation of small nucleolar ribonucleoprotein complex. We show that the absence of Tah1 improves the induction of [URE3] prion. The overexpressed Tah1 cures [URE3], and this function is promoted by Hsp90 chaperones. The current study thus provides a novel cellular factor and the underlying mechanism, involved in the prion formation and propagation.
Collapse
Affiliation(s)
- Anuradhika Puri
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Priyanka Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Navinder Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Rajesh Kumar
- School of Basic and Applied Sciences, Central University of Punjab, Bhatinda, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India; Academy of Scientific & Innovative Research, India.
| |
Collapse
|
41
|
Katikaridis P, Römling U, Mogk A. Basic mechanism of the autonomous ClpG disaggregase. J Biol Chem 2021; 296:100460. [PMID: 33639171 PMCID: PMC8024975 DOI: 10.1016/j.jbc.2021.100460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 01/19/2023] Open
Abstract
Bacterial survival during lethal heat stress relies on the cellular ability to reactivate aggregated proteins. This activity is typically executed by the canonical 70-kDa heat shock protein (Hsp70)–ClpB bichaperone disaggregase, which is most widespread in bacteria. The ClpB disaggregase is a member of the ATPase associated with diverse cellular activities protein family and exhibits an ATP-driven threading activity. Substrate binding and stimulation of ATP hydrolysis depends on the Hsp70 partner, which initiates the disaggregation reaction. Recently elevated heat resistance in gamma-proteobacterial species was shown to be mediated by the ATPase associated with diverse cellular activities protein ClpG as an alternative disaggregase. Pseudomonas aeruginosa ClpG functions autonomously and does not cooperate with Hsp70 for substrate binding, enhanced ATPase activity, and disaggregation. With the underlying molecular basis largely unknown, the fundamental differences in ClpG- and ClpB-dependent disaggregation are reflected by the presence of sequence alterations and additional ClpG-specific domains. By analyzing the effects of mutants lacking ClpG-specific domains and harboring mutations in conserved motifs implicated in ATP hydrolysis and substrate threading, we show that the N-terminal, ClpG-specific N1 domain generally mediates protein aggregate binding as the molecular basis of autonomous disaggregation activity. Peptide substrate binding strongly stimulates ClpG ATPase activity by overriding repression by the N-terminal N1 and N2 domains. High ATPase activity requires two functional nucleotide binding domains and drives substrate threading which ultimately extracts polypeptides from the aggregate. ClpG ATPase and disaggregation activity is thereby directly controlled by substrate availability.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), A250 Chaperones and Proteases, Heidelberg, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), A250 Chaperones and Proteases, Heidelberg, Germany.
| |
Collapse
|
42
|
Differential role of cytosolic Hsp70s in longevity assurance and protein quality control. PLoS Genet 2021; 17:e1008951. [PMID: 33428620 PMCID: PMC7822560 DOI: 10.1371/journal.pgen.1008951] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/22/2021] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
70 kDa heat shock proteins (Hsp70) are essential chaperones of the protein quality control network; vital for cellular fitness and longevity. The four cytosolic Hsp70’s in yeast, Ssa1-4, are thought to be functionally redundant but the absence of Ssa1 and Ssa2 causes a severe reduction in cellular reproduction and accelerates replicative aging. In our efforts to identify which Hsp70 activities are most important for longevity assurance, we systematically investigated the capacity of Ssa4 to carry out the different activities performed by Ssa1/2 by overproducing Ssa4 in cells lacking these Hsp70 chaperones. We found that Ssa4, when overproduced in cells lacking Ssa1/2, rescued growth, mitigated aggregate formation, restored spatial deposition of aggregates into protein inclusions, and promoted protein degradation. In contrast, Ssa4 overproduction in the Hsp70 deficient cells failed to restore the recruitment of the disaggregase Hsp104 to misfolded/aggregated proteins, to fully restore clearance of protein aggregates, and to bring back the formation of the nucleolus-associated aggregation compartment. Exchanging the nucleotide-binding domain of Ssa4 with that of Ssa1 suppressed this ‘defect’ of Ssa4. Interestingly, Ssa4 overproduction extended the short lifespan of ssa1Δ ssa2Δ mutant cells to a lifespan comparable to, or even longer than, wild type cells, demonstrating that Hsp104-dependent aggregate clearance is not a prerequisite for longevity assurance in yeast. All organisms have proteins that network together to stabilize and protect the cell throughout its lifetime. One of these types of proteins are the Hsp70s (heat shock protein 70). Hsp70 proteins take part in folding other proteins to their functional form, untangling proteins from aggregates, organize aggregates inside the cell and ensure that damaged proteins are destroyed. In this study, we investigated three closely related Hsp70 proteins in yeast; Ssa1, 2 and 4, in an effort to describe the functional difference of Ssa4 compared to Ssa1 and 2 and to answer the question: What types of cellular stress protection are necessary to reach a normal lifespan? We show that Ssa4 can perform many of the same tasks as Ssa1 and 2, but Ssa4 doesn’t interact in the same manner as Ssa1 and 2 with other types of proteins. This leads to a delay in removing protein aggregates created after heat stress. Ssa4 also cannot ensure that misfolded proteins aggregate correctly inside the nucleus of the cell. However, this turns out not to be necessary for yeast cells to achieve a full lifespan, which shows us that as long as cells can prevent aggregates from forming in the first place, they can reach a full lifespan.
Collapse
|
43
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
44
|
Jonsdottir TK, Gabriela M, Gilson PR. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:141-167. [PMID: 34569024 DOI: 10.1007/978-3-030-78397-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The genus Plasmodium comprises intracellular eukaryotic parasites that infect many vertebrate groups and cause deadly malaria disease in humans. The parasites employ a suite of heat shock proteins to help traffic other proteins to different compartments within their own cells and that of the host cells they parasitise. This review will cover the role of these chaperones in protein export and host cell modification in the asexual blood stage of the human parasite P. falciparum which is the most deadly and well-studied parasite species. We will examine the role chaperones play in the import of proteins into the secretory pathway from where they are escorted to the vacuole space surrounding the intraerythrocytic parasite. Here, other heat shock proteins unfold protein cargoes and extrude them into the red blood cell (RBC) cytosol from where additional chaperones of parasite and possibly host origin refold the cargo proteins and guide them to their final functional destinations within their RBC host cells. The secretory pathway also serves as a launch pad for proteins targeted to the non-photosynthetic apicoplast organelle of endosymbiotic origin, and the role of heat shock proteins in trafficking proteins here will be reviewed. Finally, the function of chaperones in protein trafficking into the mitochondrion, the remaining organelle of endosymbiotic origin, will be discussed.
Collapse
Affiliation(s)
- Thorey K Jonsdottir
- Burnet Institute, Melbourne, VIC, Australia.,Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Mikha Gabriela
- Burnet Institute, Melbourne, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
45
|
Glaza P, Ranaweera CB, Shiva S, Roy A, Geisbrecht BV, Schoenen FJ, Zolkiewski M. Repurposing p97 inhibitors for chemical modulation of the bacterial ClpB-DnaK bichaperone system. J Biol Chem 2021; 296:100079. [PMID: 33187983 PMCID: PMC7948422 DOI: 10.1074/jbc.ra120.015413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/31/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023] Open
Abstract
The ClpB-DnaK bichaperone system reactivates aggregated cellular proteins and is essential for survival of bacteria, fungi, protozoa, and plants under stress. AAA+ ATPase ClpB is a promising target for the development of antimicrobials because a loss of its activity is detrimental for survival of many pathogens and no apparent ClpB orthologs are found in metazoans. We investigated ClpB activity in the presence of several compounds that were previously described as inhibitor leads for the human AAA+ ATPase p97, an antitumor target. We discovered that N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), the least potent among the tested p97 inhibitors, binds to ClpB with a Kd∼60 μM and inhibits the casein-activated, but not the basal, ATPase activity of ClpB with an IC50∼5 μM. The remaining p97 ligands, which displayed a higher affinity toward p97, did not affect the ClpB ATPase. DBeQ also interacted with DnaK with a Kd∼100 μM and did not affect the DnaK ATPase but inhibited the DnaK chaperone activity in vitro. DBeQ inhibited the reactivation of aggregated proteins by the ClpB-DnaK bichaperone system in vitro with an IC50∼5 μM and suppressed the growth of cultured Escherichia coli. The DBeQ-induced loss of E. coli proliferation was exacerbated by heat shock but was nearly eliminated in a ClpB-deficient E. coli strain, which demonstrates a significant selectivity of DBeQ toward ClpB in cells. Our results provide chemical validation of ClpB as a target for developing novel antimicrobials. We identified DBeQ as a promising lead compound for structural optimization aimed at selective targeting of ClpB and/or DnaK.
Collapse
Affiliation(s)
- Przemyslaw Glaza
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Chathurange B Ranaweera
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Sunitha Shiva
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas, USA; Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Frank J Schoenen
- Lead Development and Optimization Shared Resource, University of Kansas Cancer Center, Kansas City, Kansas, USA; Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas, USA
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
46
|
Huang YW, Kushnirov VV, King CY. Mutable yeast prion variants are stabilized by a defective Hsp104 chaperone. Mol Microbiol 2020; 115:774-788. [PMID: 33190361 DOI: 10.1111/mmi.14643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 11/30/2022]
Abstract
Gorkovskiy et al. observed that many [PSI+ ] prion isolates, obtained in yeast with the mutant Hsp104T160M chaperone, propagate poorly in wild-type cells and suggested that Hsp104 is part of the cellular anti-prion system, curing many nascent [PSI+ ] variants. Here, we argue that the concept may require reassessment. We induced [PSI+ ] variants in both the wild-type and the mutant background. Three new variants were isolated in the T160M background. They exhibited lower thermostability, possessed novel structural features, and were inherently mutable, changing to well-characterized VH, VK, and VL variants in wild-type cells. In contrast, VH, VK, and VL of the wild-type background, could not change freely and were lost in the mutant, due to insufficient chaperone activity. Thus, mutant Hsp104 can impose as much restriction against emerging prion variants as the wild-type protein. Such restriction conserved the transmutable variants in the T160M background, since new structures mis-templated from them could not gain a foothold. We further demonstrate excess Hsp104T160M or Hsp104∆2-147 can eliminate nearly all of the [PSI+ ] variants in their native background. This finding contradicts the generally held belief that Hsp104-induced [PSI+ ] curing requires its N-terminal domain, and may help settling the current contention regarding how excess Hsp104 cures [PSI+ ].
Collapse
Affiliation(s)
- Yu-Wen Huang
- Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Vitaly V Kushnirov
- A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - Chih-Yen King
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
47
|
Wang W, Ventura S. Prion domains as a driving force for the assembly of functional nanomaterials. Prion 2020; 14:170-179. [PMID: 32597308 PMCID: PMC7518758 DOI: 10.1080/19336896.2020.1785659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 01/06/2023] Open
Abstract
Amyloids display a highly ordered fibrillar structure. Many of these assemblies appear associated with human disease. However, the controllable, stable, tunable, and robust nature of amyloid fibrils can be exploited to build up remarkable nanomaterials with a wide range of applications in biomedicine and biotechnology. Functional prions constitute a particular class of amyloids. These transmissible proteins exhibit a modular architecture, with a disordered prion domain responsible for the assembly and one or more globular domains that account for the activity. Importantly, the original globular protein can be replaced with any protein of interest, without compromising the fibrillation potential. These genetic fusions form fibrils in which the globular domain remains folded, rendering functional nanostructures. However, in some cases, steric hindrance restricts the activity of these fibrils. This limitation can be solved by dissecting prion domains into shorter sequences that keep their self-assembling properties while allowing better access to the active protein in the fibrillar state. In this review, we will discuss the properties of prion-like functional nanomaterials and the amazing applications of these biocompatible fibrillar arrangements.
Collapse
Affiliation(s)
- Weiqiang Wang
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
48
|
Yakubu UM, Catumbela CSG, Morales R, Morano KA. Understanding and exploiting interactions between cellular proteostasis pathways and infectious prion proteins for therapeutic benefit. Open Biol 2020; 10:200282. [PMID: 33234071 PMCID: PMC7729027 DOI: 10.1098/rsob.200282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several neurodegenerative diseases of humans and animals are caused by the misfolded prion protein (PrPSc), a self-propagating protein infectious agent that aggregates into oligomeric, fibrillar structures and leads to cell death by incompletely understood mechanisms. Work in multiple biological model systems, from simple baker's yeast to transgenic mouse lines, as well as in vitro studies, has illuminated molecular and cellular modifiers of prion disease. In this review, we focus on intersections between PrP and the proteostasis network, including unfolded protein stress response pathways and roles played by the powerful regulators of protein folding known as protein chaperones. We close with analysis of promising therapeutic avenues for treatment enabled by these studies.
Collapse
Affiliation(s)
- Unekwu M Yakubu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA.,MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA
| | - Celso S G Catumbela
- MD Anderson UTHealth Graduate School at UTHealth, Houston, TX USA.,Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA
| | - Rodrigo Morales
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School at UTHealth, Houston, TX USA.,Centro integrativo de biología y química aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX USA
| |
Collapse
|
49
|
Wickner RB, Edskes HK, Son M, Wu S, Niznikiewicz M. How Do Yeast Cells Contend with Prions? Int J Mol Sci 2020; 21:ijms21134742. [PMID: 32635197 PMCID: PMC7369894 DOI: 10.3390/ijms21134742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious proteins (prions) include an array of human (mammalian) and yeast amyloid diseases in which a protein or peptide forms a linear β-sheet-rich filament, at least one functional amyloid prion, and two functional infectious proteins unrelated to amyloid. In Saccharomyces cerevisiae, at least eight anti-prion systems deal with pathogenic amyloid yeast prions by (1) blocking their generation (Ssb1,2, Ssz1, Zuo1), (2) curing most variants as they arise (Btn2, Cur1, Hsp104, Upf1,2,3, Siw14), and (3) limiting the pathogenicity of variants that do arise and propagate (Sis1, Lug1). Known mechanisms include facilitating proper folding of the prion protein (Ssb1,2, Ssz1, Zuo1), producing highly asymmetric segregation of prion filaments in mitosis (Btn2, Hsp104), competing with the amyloid filaments for prion protein monomers (Upf1,2,3), and regulation of levels of inositol polyphosphates (Siw14). It is hoped that the discovery of yeast anti-prion systems and elucidation of their mechanisms will facilitate finding analogous or homologous systems in humans, whose manipulation may be useful in treatment.
Collapse
|
50
|
Barbitoff YA, Matveenko AG, Bondarev SA, Maksiutenko EM, Kulikova AV, Zhouravleva GA. Quantitative assessment of chaperone binding to amyloid aggregates identifies specificity of Hsp40 interaction with yeast prion fibrils. FEMS Yeast Res 2020; 20:5831717. [PMID: 32379306 DOI: 10.1093/femsyr/foaa025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Yeast self-perpetuating protein aggregates (yeast prions) provide a framework to investigate the interaction of misfolded proteins with the protein quality control machinery. The major component of this system that facilitates propagation of all known yeast amyloid prions is the Hsp104 chaperone that catalyzes fibril fragmentation. Overproduction of Hsp104 cures some yeast prions via a fragmentation-independent mechanism. Importantly, major cytosolic chaperones of the Hsp40 group, Sis1 and Ydj1, oppositely affect yeast prion propagation, and are capable of stimulating different activities of Hsp104. In this work, we developed a quantitative method to investigate the Hsp40 binding to amyloid aggregates. We demonstrate that Sis1 binds fibrils formed by the Sup35NM protein with higher affinity compared to Ydj1. Moreover, the interaction of Sis1 with the fibrils formed by the other yeast prion protein, Rnq1, is orders of magnitude weaker. We show that the deletion of the dimerization domain of Sis1 (crucial for the curing of [PSI+] by excess Hsp104) decreases its affinity to both Sup35NM and Rnq1 fibrils. Taken together, these results suggest that tight binding of Hsp40 to the amyloid fibrils is likely to enhance aggregate malpartition instead of fibril fragmentation.
Collapse
Affiliation(s)
- Yury A Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| | - Evgeniia M Maksiutenko
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| | - Alexandra V Kulikova
- Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya ul. 29, St. Petersburg, 195251 Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
| |
Collapse
|