1
|
Li Y, Zhang Q, Li L, Hao D, Cheng P, Li K, Li X, Wang J, Wang Q, Du Z, Ji H, Chen H. LKB1 deficiency upregulates RELM-α to drive airway goblet cell metaplasia. Cell Mol Life Sci 2021; 79:42. [PMID: 34921639 PMCID: PMC8738459 DOI: 10.1007/s00018-021-04044-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023]
Abstract
Targeting airway goblet cell metaplasia is a novel strategy that can potentially reduce the chronic obstructive pulmonary disease (COPD) symptoms. Tumor suppressor liver kinase B1 (LKB1) is an important regulator of the proliferation and differentiation of stem/progenitor cells. In this study, we report that LKB1 expression was downregulated in the lungs of patients with COPD and in those of cigarette smoke-exposed mice. Nkx2.1Cre; Lkb1f/f mice with conditional loss of Lkb1 in mouse lung epithelium displayed airway mucus hypersecretion and pulmonary macrophage infiltration. Single-cell transcriptomic analysis of the lung tissues from Nkx2.1Cre; Lkb1f/f mice further revealed that airway goblet cell differentiation was altered in the absence of LKB1. An organoid culture study demonstrated that Lkb1 deficiency in mouse airway (club) progenitor cells promoted the expression of FIZZ1/RELM-α, which drove airway goblet cell differentiation and pulmonary macrophage recruitment. Additionally, monocyte-derived macrophages in the lungs of Nkx2.1Cre; Lkb1f/f mice exhibited an alternatively activated M2 phenotype, while expressing RELM-α, which subsequently aggravated airway goblet cell metaplasia. Our findings suggest that the LKB1-mediated crosstalk between airway progenitor cells and macrophages regulates airway goblet cell metaplasia. Moreover, our data suggest that LKB1 agonists might serve as a potential therapeutic option to treat respiratory disorders associated with goblet cell metaplasia.
Collapse
Affiliation(s)
- Yu Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qiuyang Zhang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Li Li
- Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - De Hao
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
| | - Kuan Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qi Wang
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Zhongchao Du
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, 300350, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China.
| |
Collapse
|
2
|
Chung WC, Challagundla L, Zhou Y, Li M, Atfi A, Xu K. Loss of Jag1 cooperates with oncogenic Kras to induce pancreatic cystic neoplasms. Life Sci Alliance 2020; 4:4/2/e201900503. [PMID: 33268505 PMCID: PMC7756968 DOI: 10.26508/lsa.201900503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Notch signaling exerts both oncogenic and tumor-suppressive functions in the pancreas. In this study, deletion of Jag1 in conjunction with oncogenic Kras G12D expression in the mouse pancreas induced rapid development of acinar-to-ductal metaplasia and early stage pancreatic intraepithelial neoplasm; however, culminating in cystic neoplasms rather than ductal adenocarcinoma. Most cystic lesions in these mice were reminiscent of serous cystic neoplasm, and the rest resembled intraductal papillary mucinous neoplasm. Jag1 expression was lost or decreased in cystic lesions but retained in adenocarcinoma in these mice, so was the expression of Sox9. In pancreatic cancer patients, JAG1 expression is higher in cancerous tissue, and high JAG1 is associated with poor overall survival. Expression of SOX9 is correlated with JAG1, and high SOX9 is also associated with poor survival. Mechanistically, Jag1 regulates expression of Lkb1, a tumor suppressor involved in the development of pancreatic cystic neoplasm. Collectively, Jag1 can act as a tumor suppressor in the pancreas by delaying precursor lesions, whereas loss of Jag1 promoted a phenotypic switch from malignant carcinoma to benign cystic lesions.
Collapse
Affiliation(s)
- Wen-Cheng Chung
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lavanya Challagundla
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Yunyun Zhou
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS, USA
| | - Min Li
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Azeddine Atfi
- Cellular and Molecular Pathogenesis Division, Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Keli Xu
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS, USA .,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
3
|
Ideno N, Yamaguchi H, Okumura T, Huang J, Brun MJ, Ho ML, Suh J, Gupta S, Maitra A, Ghosh B. A pipeline for rapidly generating genetically engineered mouse models of pancreatic cancer using in vivo CRISPR-Cas9-mediated somatic recombination. J Transl Med 2019; 99:1233-1244. [PMID: 30728464 DOI: 10.1038/s41374-018-0171-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/13/2018] [Accepted: 12/02/2018] [Indexed: 12/20/2022] Open
Abstract
Genetically engineered mouse models (GEMMs) that recapitulate the major genetic drivers in pancreatic ductal adenocarcinoma (PDAC) have provided unprecedented insights into the pathogenesis of this lethal neoplasm. Nonetheless, generating an autochthonous model is an expensive, time consuming and labor intensive process, particularly when tissue specific expression or deletion of compound alleles are involved. In addition, many of the current PDAC GEMMs cause embryonic, pancreas-wide activation or loss of driver alleles, neither of which reflects the cognate human disease scenario. The advent of CRISPR/Cas9 based gene editing can potentially circumvent many of the aforementioned shortcomings of conventional breeding schema, but ensuring the efficiency of gene editing in vivo remains a challenge. Here we have developed a pipeline for generating PDAC GEMMs of complex genotypes with high efficiency using a single "workhorse" mouse strain expressing Cas9 in the adult pancreas under a p48 promoter. Using adeno-associated virus (AAV) mediated delivery of multiplexed guide RNAs (sgRNAs) to the adult murine pancreas of p48-Cre; LSL-Cas9 mice, we confirm our ability to express an oncogenic Kras G12D allele through homology-directed repair (HDR), in conjunction with CRISPR-induced disruption of cooperating alleles (Trp53, Lkb1 and Arid1A). The resulting GEMMs demonstrate a spectrum of precursor lesions (pancreatic intraepithelial neoplasia [PanIN] or Intraductal papillary mucinous neoplasm [IPMN] with eventual progression to PDAC. Next generation sequencing of the resulting murine PDAC confirms HDR of oncogenic KrasG12D allele at the endogenous locus, and insertion deletion ("indel") and frameshift mutations of targeted tumor suppressor alleles. By using a single "workhorse" mouse strain and optimal AAV serotype for in vivo gene editing with combination of driver alleles, we present a facile autochthonous platform for interrogation of the PDAC genome.
Collapse
Affiliation(s)
- Noboru Ideno
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroshi Yamaguchi
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Takashi Okumura
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathon Huang
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mitchell J Brun
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Michelle L Ho
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sonal Gupta
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA.
| | - Bidyut Ghosh
- Department of Translational Molecular Pathology and Sheikh Ahmed Pancreatic Cancer Research Center, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Tasoulas J, Rodon L, Kaye FJ, Montminy M, Amelio AL. Adaptive Transcriptional Responses by CRTC Coactivators in Cancer. Trends Cancer 2019; 5:111-127. [PMID: 30755304 DOI: 10.1016/j.trecan.2018.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023]
Abstract
Adaptive stress signaling networks directly influence tumor development and progression. These pathways mediate responses that allow cancer cells to cope with both tumor cell-intrinsic and cell-extrinsic insults and develop acquired resistance to therapeutic interventions. This is mediated in part by constant oncogenic rewiring at the transcriptional level by integration of extracellular cues that promote cell survival and malignant transformation. The cAMP-regulated transcriptional coactivators (CRTCs) are a newly discovered family of intracellular signaling integrators that serve as the conduit to the basic transcriptional machinery to regulate a host of adaptive response genes. Thus, somatic alterations that lead to CRTC activation are emerging as key driver events in the development and progression of many tumor subtypes.
Collapse
Affiliation(s)
- Jason Tasoulas
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; These authors contributed equally
| | - Laura Rodon
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA; These authors contributed equally
| | - Frederic J Kaye
- Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA; UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Marc Montminy
- Peptide Biology Laboratories, Salk Institute, La Jolla, CA, USA
| | - Antonio L Amelio
- Department of Oral and Craniofacial Health Sciences, UNC School of Dentistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Lineberger Comprehensive Cancer Center, Cancer Cell Biology Program, UNC School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Müsch A. From a common progenitor to distinct liver epithelial phenotypes. Curr Opin Cell Biol 2018; 54:18-23. [PMID: 29505983 DOI: 10.1016/j.ceb.2018.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/23/2022]
Abstract
The vertebrate liver presents a fascinating case study for how cell form is optimized for function. To execute its duties the liver assembles two distinct lumen-forming epithelial phenotypes: Firstly, cords with a branched, capillary-like luminal network formed between hepatocytes (bile canaliculi); and secondly, tubular ducts formed by biliary epithelial cells arranged around a central cavity and connected to the bile canaliculi. How these remarkably different epithelial polarity phenotypes are generated and joined into a contiguous luminal network are major unresolved questions. Recent studies have characterized the divergence of the two epithelial lineages from common progenitors, described the coordination of bile canaliculi formation with bile duct branching during biliary tree morphogenesis and implicated RhoA-dependent E-cadherin adhesion in the decision to polarize with hepatocytic or biliary phenotype.
Collapse
Affiliation(s)
- Anne Müsch
- Department of Developmental and Molecular Biology at Albert-Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| |
Collapse
|
6
|
Viotti M, Wilson C, McCleland M, Koeppen H, Haley B, Jhunjhunwala S, Klijn C, Modrusan Z, Arnott D, Classon M, Stephan JP, Mellman I. SUV420H2 is an epigenetic regulator of epithelial/mesenchymal states in pancreatic cancer. J Cell Biol 2017; 217:763-777. [PMID: 29229751 PMCID: PMC5800801 DOI: 10.1083/jcb.201705031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Epithelial-to-mesenchymal transition is implicated in metastasis. Viotti et al. show that the histone methyltransferase SUV420H2 favors the mesenchymal identity in pancreatic tumor cells by silencing key drivers of the epithelial state. High levels of SUV420H2 also correlate with a loss of epithelial characteristics in invasive cancer. Epithelial-to-mesenchymal transition is implicated in metastasis, where carcinoma cells lose sessile epithelial traits and acquire mesenchymal migratory potential. The mesenchymal state is also associated with cancer stem cells and resistance to chemotherapy. It might therefore be therapeutically beneficial to promote epithelial identity in cancer. Because large-scale cell identity shifts are often orchestrated on an epigenetic level, we screened for candidate epigenetic factors and identified the histone methyltransferase SUV420H2 (KMT5C) as favoring the mesenchymal identity in pancreatic cancer cell lines. Through its repressive mark H4K20me3, SUV420H2 silences several key drivers of the epithelial state. Its knockdown elicited mesenchymal-to-epithelial transition on a molecular and functional level, and cells displayed decreased stemness and increased drug sensitivity. An analysis of human pancreatic cancer biopsies was concordant with these findings, because high levels of SUV420H2 correlated with a loss of epithelial characteristics in progressively invasive cancer. Together, these data indicate that SUV420H2 is an upstream epigenetic regulator of epithelial/mesenchymal state control.
Collapse
|
7
|
Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics. Sci Rep 2017; 7:39498. [PMID: 28045069 PMCID: PMC5206731 DOI: 10.1038/srep39498] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/23/2016] [Indexed: 11/08/2022] Open
Abstract
Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics.
Collapse
|
8
|
Sallé-Lefort S, Miard S, Nolin MA, Boivin L, Paré MÈ, Debigaré R, Picard F. Hypoxia upregulates Malat1 expression through a CaMKK/AMPK/HIF-1α axis. Int J Oncol 2016; 49:1731-6. [PMID: 27499160 DOI: 10.3892/ijo.2016.3630] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/17/2016] [Indexed: 11/06/2022] Open
Abstract
Increased expression levels of the long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1) have been associated with enhanced proliferation and metastasis of several cancer cell types. Hypoxia, a hallmark characteristic of solid tumors, has been linked to an increase in the activity of the ATP-generating AMPK protein. Since Malat1 was recently shown to be upregulated during hypoxia, the objective of this study was to determine the contribution of AMPK in the mechanistic pathways regulating Malat1 expression in low oxygen conditions. Compared to those cultured in 21% O2 conditions, HeLa cells incubated in 1.5% O2 expressed more Malat1 transcripts. This observation was mimicked in HEK293T cells using a synthetic reporter construct containing 5.6 kb of the human Malat1 promoter, suggesting that hypoxia directly impacted Malat1 gene transcription. Interestingly, pharmacological stimulation of AMPK increased Malat1 promoter transactivation in 21% O2 conditions, whereas inhibition of either AMPK or its upstream activator CaMKK completely abolished the augmentation of Malat1 under hypoxia. Pharmacological modulation of LKB1, another major regulator of AMPK, had no impact on Malat1 promoter transactivation, suggesting that calcium inputs are important in the control of Malat1 expression by AMPK. Overexpression of hypoxia-inducible factor-1α (HIF-1α) increased Malat1 expression in 21% O2 conditions, whereas pharmacological inhibition of HIF-1α blocked the impact of hypoxia on the Malat1 promoter. Taken together, these findings strongly suggest that Malat1 expression is regulated in hypoxic conditions by a CaMKK/AMPK/HIF-1α axis. More research is needed in physiological settings to test the clinical relevance of this pathway.
Collapse
Affiliation(s)
| | - Stéphanie Miard
- IUCPQ Research Center, Quebec Heart and Lung Institute, Québec, Canada
| | | | - Louise Boivin
- IUCPQ Research Center, Quebec Heart and Lung Institute, Québec, Canada
| | - Marie-Ève Paré
- IUCPQ Research Center, Quebec Heart and Lung Institute, Québec, Canada
| | - Richard Debigaré
- IUCPQ Research Center, Quebec Heart and Lung Institute, Québec, Canada
| | - Frédéric Picard
- IUCPQ Research Center, Quebec Heart and Lung Institute, Québec, Canada
| |
Collapse
|
9
|
Konen J, Wilkinson S, Lee B, Fu H, Zhou W, Jiang Y, Marcus AI. LKB1 kinase-dependent and -independent defects disrupt polarity and adhesion signaling to drive collagen remodeling during invasion. Mol Biol Cell 2016; 27:1069-84. [PMID: 26864623 PMCID: PMC4814216 DOI: 10.1091/mbc.e15-08-0569] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/05/2016] [Indexed: 12/23/2022] Open
Abstract
LKB1 is a serine/threonine kinase and a commonly mutated gene in lung adenocarcinoma. The majority of LKB1 mutations are truncations that disrupt its kinase activity and remove its C-terminal domain (CTD). Because LKB1 inactivation drives cancer metastasis in mice and leads to aberrant cell invasion in vitro, we sought to determine how compromised LKB1 function affects lung cancer cell polarity and invasion. Using three-dimensional models, we show that LKB1 kinase activity is essential for focal adhesion kinase-mediated cell adhesion and subsequent collagen remodeling but not cell polarity. Instead, cell polarity is overseen by the kinase-independent function of its CTD and more specifically its farnesylation. This occurs through a mesenchymal-amoeboid morphological switch that signals through the Rho-GTPase RhoA. These data suggest that a combination of kinase-dependent and -independent defects by LKB1 inactivation creates a uniquely invasive cell with aberrant polarity and adhesion signaling that drives invasion into the microenvironment.
Collapse
Affiliation(s)
- Jessica Konen
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322 Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322
| | - Scott Wilkinson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322 Graduate Program in Cancer Biology, Emory University, Atlanta, GA 30322
| | - Byoungkoo Lee
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30302
| | - Haian Fu
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322 Department of Pharmacology, Emory University, Atlanta, GA 30322
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322
| | - Yi Jiang
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30302
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322
| |
Collapse
|
10
|
Mettu NB, Abbruzzese JL. Clinical Insights Into the Biology and Treatment of Pancreatic Cancer. J Oncol Pract 2016; 12:17-23. [DOI: 10.1200/jop.2015.009092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pancreatic cancer is a devastating disease with a universally poor prognosis. In 2015, it is estimated that there will be 48,960 new cases of pancreatic cancer and that 40,560 people will die of the disease. The 5-year survival rate is 7.2% for all patients with pancreatic cancer; however, survival depends greatly on the stage at diagnosis. Unfortunately, 53% of patients already have metastatic disease at diagnosis, which corresponds to a 5-year survival rate of 2.4%. Even for the 9% of patients with localized disease confined to the pancreas, the 5-year survival is still modest at only 27.1%. These grim statistics highlight the need for ways to identify cohorts of individuals at highest risk, methods to screen those at highest risk to identify preinvasive pathologic precursors, and development of effective systemic therapies. Recent clinical and translational progress has emphasized the relationship with diabetes, the role of the stroma, and the interplay of each of these with inflammation in the pathobiology of pancreatic cancer. In this article, we will discuss these relationships and how they might translate into novel management strategies for the treatment of this disease.
Collapse
|
11
|
Just PA, Poncy A, Charawi S, Dahmani R, Traore M, Dumontet T, Drouet V, Dumont F, Gilgenkrantz H, Colnot S, Terris B, Coulouarn C, Lemaigre F, Perret C. LKB1 and Notch Pathways Interact and Control Biliary Morphogenesis. PLoS One 2015; 10:e0145400. [PMID: 26689699 PMCID: PMC4687046 DOI: 10.1371/journal.pone.0145400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/03/2015] [Indexed: 12/18/2022] Open
Abstract
Background LKB1 is an evolutionary conserved kinase implicated in a wide range of cellular functions including inhibition of cell proliferation, regulation of cell polarity and metabolism. When Lkb1 is inactivated in the liver, glucose homeostasis is perturbed, cellular polarity is affected and cholestasis develops. Cholestasis occurs as a result from deficient bile duct development, yet how LKB1 impacts on biliary morphogenesis is unknown. Methodology/Principal Findings We characterized the phenotype of mice in which deletion of the Lkb1 gene has been specifically targeted to the hepatoblasts. Our results confirmed that lack of LKB1 in the liver results in bile duct paucity leading to cholestasis. Immunostaining analysis at a prenatal stage showed that LKB1 is not required for differentiation of hepatoblasts to cholangiocyte precursors but promotes maturation of the primitive ductal structures to mature bile ducts. This phenotype is similar to that obtained upon inactivation of Notch signaling in the liver. We tested the hypothesis of a functional overlap between the LKB1 and Notch pathways by gene expression profiling of livers deficient in Lkb1 or in the Notch mediator RbpJκ and identified a mutual cross-talk between LKB1 and Notch signaling. In vitro experiments confirmed that Notch activity was deficient upon LKB1 loss. Conclusion LKB1 and Notch share a common genetic program in the liver, and regulate bile duct morphogenesis.
Collapse
Affiliation(s)
- Pierre-Alexandre Just
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
- APHP, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Pathology department, F-75014 Paris, France
| | - Alexis Poncy
- de Duve Institute and Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Sara Charawi
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
| | - Rajae Dahmani
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
| | - Massiré Traore
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
| | - Typhanie Dumontet
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
| | - Valérie Drouet
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
| | - Florent Dumont
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
| | - Hélène Gilgenkrantz
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
| | - Sabine Colnot
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
| | - Benoit Terris
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
- APHP, Hôpitaux Universitaires Paris Centre, Hôpital Cochin, Pathology department, F-75014 Paris, France
| | | | - Frédéric Lemaigre
- de Duve Institute and Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Christine Perret
- INSERM, U1016, Institut Cochin, F-75014 Paris, France
- CNRS, UMR8104, F-75014 Paris, France
- Université Paris Descartes, F-75014 Paris, France
- Equipe labellisée LNCC Paris, Paris, France
- * E-mail:
| |
Collapse
|
12
|
Dasgupta B, Chhipa RR. Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer. Trends Pharmacol Sci 2015; 37:192-206. [PMID: 26711141 DOI: 10.1016/j.tips.2015.11.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 02/08/2023]
Abstract
AMP kinase (AMPK) is an evolutionarily conserved enzyme required for adaptive responses to various physiological and pathological conditions. AMPK executes numerous cellular functions, some of which are often perceived at odds with each other. While AMPK is essential for embryonic growth and development, its full impact in adult tissues is revealed under stressful situations that organisms face in the real world. Conflicting reports about its cellular functions, particularly in cancer, are intriguing and a growing number of AMPK activators are being developed to treat human diseases such as cancer and diabetes. Whether these drugs will have only context-specific benefits or detrimental effects in the treatment of human cancer will be a subject of intense research. Here we review the current state of AMPK research with an emphasis on cancer and discuss the yet unresolved context-dependent functions of AMPK in human cancer.
Collapse
Affiliation(s)
- Biplab Dasgupta
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Rishi Raj Chhipa
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
13
|
Shan T, Zhang P, Liang X, Bi P, Yue F, Kuang S. Lkb1 is indispensable for skeletal muscle development, regeneration, and satellite cell homeostasis. Stem Cells 2015; 32:2893-907. [PMID: 25069613 DOI: 10.1002/stem.1788] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/14/2014] [Accepted: 06/19/2014] [Indexed: 12/17/2022]
Abstract
Serine/threonine kinase 11, commonly known as liver kinase b1 (Lkb1), is a tumor suppressor that regulates cellular energy metabolism and stem cell function. Satellite cells are skeletal muscle resident stem cells that maintain postnatal muscle growth and repair. Here, we used MyoD(Cre)/Lkb1(flox/flox) mice (called MyoD-Lkb1) to delete Lkb1 in embryonic myogenic progenitors and their descendant satellite cells and myofibers. The MyoD-Lkb1 mice exhibit a severe myopathy characterized by central nucleated myofibers, reduced mobility, growth retardation, and premature death. Although tamoxifen-induced postnatal deletion of Lkb1 in satellite cells using Pax7(CreER) mice bypasses the developmental defects and early death, Lkb1 null satellite cells lose their regenerative capacity cell-autonomously. Strikingly, Lkb1 null satellite cells fail to maintain quiescence in noninjured resting muscles and exhibit accelerated proliferation but reduced differentiation kinetics. At the molecular level, Lkb1 limits satellite cell proliferation through the canonical AMP-activated protein kinase/mammalian target of rapamycin pathway, but facilitates differentiation through phosphorylation of GSK-3β, a key component of the WNT signaling pathway. Together, these results establish a central role of Lkb1 in muscle stem cell homeostasis, muscle development, and regeneration.
Collapse
Affiliation(s)
- Tizhong Shan
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | | | | | | | | | | |
Collapse
|
14
|
Chiou SH, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, Brady JJ, Yang D, Grüner BM, Chuang CH, Caswell DR, Zeng H, Chu P, Kim GE, Carpizo DR, Kim SK, Winslow MM. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev 2015; 29:1576-85. [PMID: 26178787 PMCID: PMC4526740 DOI: 10.1101/gad.264861.115] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/19/2015] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a genomically diverse, prevalent, and almost invariably fatal malignancy. Although conventional genetically engineered mouse models of human PDAC have been instrumental in understanding pancreatic cancer development, these models are much too labor-intensive, expensive, and slow to perform the extensive molecular analyses needed to adequately understand this disease. Here we demonstrate that retrograde pancreatic ductal injection of either adenoviral-Cre or lentiviral-Cre vectors allows titratable initiation of pancreatic neoplasias that progress into invasive and metastatic PDAC. To enable in vivo CRISPR/Cas9-mediated gene inactivation in the pancreas, we generated a Cre-regulated Cas9 allele and lentiviral vectors that express Cre and a single-guide RNA. CRISPR-mediated targeting of Lkb1 in combination with oncogenic Kras expression led to selection for inactivating genomic alterations, absence of Lkb1 protein, and rapid tumor growth that phenocopied Cre-mediated genetic deletion of Lkb1. This method will transform our ability to rapidly interrogate gene function during the development of this recalcitrant cancer.
Collapse
Affiliation(s)
- Shin-Heng Chiou
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Ian P Winters
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Santiago Naranjo
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Crissy Dudgeon
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA; Department of Surgery, Rutgers Robert Wood Johnson University Medical School, New Brunswick, New Jersey 08903, USA; Department of Pharmacology, Rutgers Robert Wood Johnson University Medical School, New Brunswick, New Jersey 08903, USA
| | - Fiona B Tamburini
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Dian Yang
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Barbara M Grüner
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Deborah R Caswell
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hong Zeng
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA; Transgenic, Knockout, and Tumor Model Center, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Pauline Chu
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Grace E Kim
- Department of Pathology, University of California at San Francisco, San Francisco, California 94143, USA
| | - Darren R Carpizo
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA; Department of Surgery, Rutgers Robert Wood Johnson University Medical School, New Brunswick, New Jersey 08903, USA; Department of Pharmacology, Rutgers Robert Wood Johnson University Medical School, New Brunswick, New Jersey 08903, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA; Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
15
|
Han SH, Malaga-Dieguez L, Chinga F, Kang HM, Tao J, Reidy K, Susztak K. Deletion of Lkb1 in Renal Tubular Epithelial Cells Leads to CKD by Altering Metabolism. J Am Soc Nephrol 2015; 27:439-53. [PMID: 26054542 DOI: 10.1681/asn.2014121181] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/12/2015] [Indexed: 12/30/2022] Open
Abstract
Renal tubule epithelial cells are high-energy demanding polarized epithelial cells. Liver kinase B1 (LKB1) is a key regulator of polarity, proliferation, and cell metabolism in epithelial cells, but the function of LKB1 in the kidney is unclear. Our unbiased gene expression studies of human control and CKD kidney samples identified lower expression of LKB1 and regulatory proteins in CKD. Mice with distal tubule epithelial-specific Lkb1 deletion (Ksp-Cre/Lkb1(flox/flox)) exhibited progressive kidney disease characterized by flattened dedifferentiated tubule epithelial cells, interstitial matrix accumulation, and dilated cystic-appearing tubules. Expression of epithelial polarity markers β-catenin and E-cadherin was not altered even at later stages. However, expression levels of key regulators of metabolism, AMP-activated protein kinase (Ampk), peroxisome proliferative activated receptor gamma coactivator 1-α (Ppargc1a), and Ppara, were significantly lower than those in controls and correlated with fibrosis development. Loss of Lkb1 in cultured epithelial cells resulted in energy depletion, apoptosis, less fatty acid oxidation and glycolysis, and a profibrotic phenotype. Treatment of Lkb1-deficient cells with an AMP-activated protein kinase (AMPK) agonist (A769662) or a peroxisome proliferative activated receptor alpha agonist (fenofibrate) restored the fatty oxidation defect and reduced apoptosis. In conclusion, we show that loss of LKB1 in renal tubular epithelial cells has an important role in kidney disease development by influencing intracellular metabolism.
Collapse
Affiliation(s)
- Seung Hyeok Han
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Laura Malaga-Dieguez
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Frank Chinga
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyun Mi Kang
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jianling Tao
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Nephrology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Kimberly Reidy
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York; and
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania;
| |
Collapse
|
16
|
Chan KT, Asokan SB, King SJ, Bo T, Dubose ES, Liu W, Berginski ME, Simon JM, Davis IJ, Gomez SM, Sharpless NE, Bear JE. LKB1 loss in melanoma disrupts directional migration toward extracellular matrix cues. ACTA ACUST UNITED AC 2015; 207:299-315. [PMID: 25349262 PMCID: PMC4210439 DOI: 10.1083/jcb.201404067] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The LKB1 kinase regulates directional migration in response to extracellular matrix gradients and may inhibit invasive motility by sensing inhibitory matrix cues. Somatic inactivation of the serine/threonine kinase gene STK11/LKB1/PAR-4 occurs in a variety of cancers, including ∼10% of melanoma. However, how the loss of LKB1 activity facilitates melanoma invasion and metastasis remains poorly understood. In LKB1-null cells derived from an autochthonous murine model of melanoma with activated Kras and Lkb1 loss and matched reconstituted controls, we have investigated the mechanism by which LKB1 loss increases melanoma invasive motility. Using a microfluidic gradient chamber system and time-lapse microscopy, in this paper, we uncover a new function for LKB1 as a directional migration sensor of gradients of extracellular matrix (haptotaxis) but not soluble growth factor cues (chemotaxis). Systematic perturbation of known LKB1 effectors demonstrated that this response does not require canonical adenosine monophosphate–activated protein kinase (AMPK) activity but instead requires the activity of the AMPK-related microtubule affinity-regulating kinase (MARK)/PAR-1 family kinases. Inhibition of the LKB1–MARK pathway facilitated invasive motility, suggesting that loss of the ability to sense inhibitory matrix cues may promote melanoma invasion.
Collapse
Affiliation(s)
- Keefe T Chan
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Sreeja B Asokan
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Samantha J King
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Tao Bo
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Evan S Dubose
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Wenjin Liu
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Matthew E Berginski
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Jeremy M Simon
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Ian J Davis
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Shawn M Gomez
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - Norman E Sharpless
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| | - James E Bear
- University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599 University of North Carolina Lineberger Comprehensive Cancer Center, Department of Cell Biology and Physiology, Department of Genetics, Department of Biomedical Engineering, Carolina Center for Genome Science, Department of Pediatrics, and Howard Hughes Medical Institute, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
17
|
Wu Y, Cheng M, Shi Z, Feng Z, Guan X. Dynamic expression and localization of c-MET isoforms in the developing rat pancreas. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:8563-8572. [PMID: 25674220 PMCID: PMC4313954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Pancreata from Sprague Dawley rats of different developmental stages were studied to determine the expression and cellular localization of different c-MET isoforms in the developing rat pancreas. Pancreatic mRNA and protein expression levels of c-MET at different developmental stages from embryo to adult were detected by reverse transcription-polymerase chain reaction and by western blotting. To identify the cellular localization of c-MET protein in the developing rat pancreas, double immunofluorescent staining was performed using antibodies for cell type-specific markers and for c-MET. The expression of two isoforms of c-MET (190 kDa and 170 kDa) coincided with the development of the pancreas. The 190 kDa isoform of c-MET is expressed during embryonic stages, and its expression is replaced by the expression of the 170 kDa isoform as the pancreas develops. Only the 170 kDa isoform is expressed in the adult rat pancreas. Throughout all stages of pancreatic development, c-MET is expressed by vimentin-positive cells. In contrast, c-MET staining was stronger in rat pancreata from newborn to adult stages and overlapped with insulin-positive beta-cells. The dynamic expression and localization of different c-MET isoforms in the rat pancreas during different developmental stages indicates that distinct c-MET isoform might be involved in different aspects of pancreatic development.
Collapse
Affiliation(s)
- Yulong Wu
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical UniversityNanjing, Jiangsu, P.R. China
- School of Basic Medical Science, Binzhou Medical UniversityBinzhou, Shandong, P.R. China
| | - Mei Cheng
- School of Nursing, Binzhou Medical UniversityBinzhou, Shandong, P.R. China
| | - Zhen Shi
- School of Basic Medical Science, Binzhou Medical UniversityBinzhou, Shandong, P.R. China
| | - Zhenqing Feng
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical UniversityNanjing, Jiangsu, P.R. China
| | - Xiaohong Guan
- Key Lab of Antibody Technique of Health Ministry, Nanjing Medical UniversityNanjing, Jiangsu, P.R. China
| |
Collapse
|
18
|
Gödde NJ, Pearson HB, Smith LK, Humbert PO. Dissecting the role of polarity regulators in cancer through the use of mouse models. Exp Cell Res 2014; 328:249-57. [PMID: 25179759 DOI: 10.1016/j.yexcr.2014.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
Abstract
Loss of cell polarity and tissue architecture is a hallmark of aggressive epithelial cancers. In addition to serving as an initial barrier to tumorigenesis, evidence in the literature has pointed towards a highly conserved role for many polarity regulators during tumor formation and progression. Here, we review recent developments in the field that have been driven by genetically engineered mouse models that establish the tumor suppressive and context dependent oncogenic function of cell polarity regulators in vivo. These studies emphasize the complexity of the polarity network during cancer formation and progression, and reveal the need to interpret polarity protein function in a cell-type and tissue specific manner. They also highlight how aberrant polarity signaling could provide a novel route for therapeutic intervention to improve our management of malignancies in the clinic.
Collapse
Affiliation(s)
- Nathan J Gödde
- Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A׳Beckett Street, Melbourne, VIC 8006, Australia
| | - Helen B Pearson
- Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A׳Beckett Street, Melbourne, VIC 8006, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Lorey K Smith
- Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A׳Beckett Street, Melbourne, VIC 8006, Australia
| | - Patrick O Humbert
- Cell Cycle and Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Centre, Locked Bag 1, A׳Beckett Street, Melbourne, VIC 8006, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia; Departments of Pathology, The University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
19
|
Hsu JL, Liu SP, Lee CC, Hsu LC, Ho YF, Huang HS, Guh JH. A unique amidoanthraquinone derivative displays antiproliferative activity against human hormone-refractory metastatic prostate cancers through activation of LKB1-AMPK-mTOR signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:979-90. [DOI: 10.1007/s00210-014-0998-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
|
20
|
Burns TA, Watts MR, Weber PS, McCutcheon LJ, Geor RJ, Belknap JK. Effect of dietary nonstructural carbohydrate content on activation of 5'-adenosine monophosphate-activated protein kinase in liver, skeletal muscle, and digital laminae of lean and obese ponies. J Vet Intern Med 2014; 28:1280-8. [PMID: 24750267 PMCID: PMC4857936 DOI: 10.1111/jvim.12356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/13/2013] [Accepted: 03/05/2014] [Indexed: 01/16/2023] Open
Abstract
Background In EMS‐associated laminitis, laminar failure may occur in response to energy failure related to insulin resistance (IR) or to the effect of hyperinsulinemia on laminar tissue. 5′‐Adenosine‐monophosphate‐activated protein kinase (AMPK) is a marker of tissue energy deprivation, which may occur in IR. Hypothesis/Objectives To characterize tissue AMPK regulation in ponies subjected to a dietary carbohydrate (CHO) challenge. Animals Twenty‐two mixed‐breed ponies. Methods Immunohistochemistry and immunoblotting for total AMPK and phospho(P)‐AMPK and RT‐qPCR for AMPK‐responsive genes were performed on laminar, liver, and skeletal muscle samples collected after a 7‐day feeding protocol in which ponies stratified on body condition score (BCS; obese or lean) were fed either a low‐CHO diet (ESC + starch, approximately 7% DM; n = 5 obese, 5 lean) or a high‐CHO diet (ESC + starch, approximately 42% DM; n = 6 obese, 6 lean). Results 5′‐Adenosine‐monophosphate‐activated protein kinase was immunolocalized to laminar keratinocytes, dermal constituents, and hepatocytes. A high‐CHO diet resulted in significantly decreased laminar [P‐AMPK] in lean ponies (P = .03), but no changes in skeletal muscle (lean, P = .33; obese, P = .43) or liver (lean, P = .84; obese, P = .13) [P‐AMPK]. An inverse correlation existed between [blood glucose] and laminar [P‐AMPK] in obese ponies on a high‐CHO diet. Conclusions and Clinical Importance Laminar tissue exhibited a normal response to a high‐CHO diet (decreased [P‐AMPK]), whereas this response was not observed in liver and skeletal muscle in both lean (skeletal muscle, P = .33; liver, P = .84) and obese (skeletal muscle, P = .43; liver, P = .13) ponies.
Collapse
Affiliation(s)
- T A Burns
- The Ohio State University College of Veterinary Medicine, Columbus, OH
| | | | | | | | | | | |
Collapse
|
21
|
Homolya L, Fu D, Sengupta P, Jarnik M, Gillet JP, Vitale-Cross L, Gutkind JS, Lippincott-Schwartz J, Arias IM. LKB1/AMPK and PKA control ABCB11 trafficking and polarization in hepatocytes. PLoS One 2014; 9:e91921. [PMID: 24643070 PMCID: PMC3958433 DOI: 10.1371/journal.pone.0091921] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/16/2014] [Indexed: 11/19/2022] Open
Abstract
Polarization of hepatocytes is manifested by bile canalicular network formation and activation of LKB1 and AMPK, which control cellular energy metabolism. The bile acid, taurocholate, also regulates development of the canalicular network through activation of AMPK. In the present study, we used collagen sandwich hepatocyte cultures from control and liver-specific LKB1 knockout mice to examine the role of LKB1 in trafficking of ABCB11, the canalicular bile acid transporter. In polarized hepatocytes, ABCB11 traffics from Golgi to the apical plasma membrane and endogenously cycles through the rab 11a-myosin Vb recycling endosomal system. LKB1 knockout mice were jaundiced, lost weight and manifested impaired bile canalicular formation and intracellular trafficking of ABCB11, and died within three weeks. Using live cell imaging, fluorescence recovery after photobleaching (FRAP), particle tracking, and biochemistry, we found that LKB1 activity is required for microtubule-dependent trafficking of ABCB11 to the canalicular membrane. In control hepatocytes, ABCB11 trafficking was accelerated by taurocholate and cAMP; however, in LKB1 knockout hepatocytes, ABCB11 trafficking to the apical membrane was greatly reduced and restored only by cAMP, but not taurocholate. cAMP acted through a PKA-mediated pathway which did not activate AMPK. Our studies establish a regulatory role for LKB1 in ABCB11 trafficking to the canalicular membrane, hepatocyte polarization, and canalicular network formation.
Collapse
Affiliation(s)
- László Homolya
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Cell Biology, Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- * E-mail:
| | - Dong Fu
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Prabuddha Sengupta
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michal Jarnik
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Laboratory of Molecular Cancer Biology, Molecular Physiology Research Unit – URPhyM, Namur Research Institute for Life Sciences (NARILIS), Faculty of Medicine, University of Namur, Belgium University of Namur, Belgium
| | - Lynn Vitale-Cross
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - J. Silvio Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Irwin M. Arias
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
22
|
Rewiring cell polarity signaling in cancer. Oncogene 2014; 34:939-50. [PMID: 24632617 DOI: 10.1038/onc.2014.59] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 02/07/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Disrupted cell polarity is a feature of epithelial cancers. The Crumbs, Par and Scribble polarity complexes function to specify and maintain apical and basolateral membrane domains, which are essential to organize intracellular signaling pathways that maintain epithelial homeostasis. Disruption of apical-basal polarity proteins facilitates rewiring of oncogene and tumor suppressor signaling pathways to deregulate proliferation, apoptosis, invasion and metastasis. Moreover, apical-basal polarity integrates intracellular signaling with the microenvironment by regulating metabolic signaling, extracellular matrix remodeling and tissue level organization. In this review, we discuss recent advances in our understanding of how polarity proteins regulate diverse signaling pathways throughout cancer progression from initiation to metastasis.
Collapse
|
23
|
Yano T, Matsui T, Tamura A, Uji M, Tsukita S. The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. ACTA ACUST UNITED AC 2014; 203:605-14. [PMID: 24385485 PMCID: PMC3840929 DOI: 10.1083/jcb.201304194] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cingulin phosphorylation by AMPK promotes its binding to α-tubulin and is required for the association of planar apical microtubules with epithelial tight junctions. Epithelial cells characteristically have noncentrosomal microtubules that are arranged in the apicobasal direction. In this paper, we examined cell sheets formed by an epithelial (Eph4) cell line by structure illumination microscopy and found a previously not clearly described planar apical network of noncentrosomal microtubules (MTs) in which the sides of the MT bundles were associated with tight junctions (TJs). In a gel overlay assay with taxol-stabilized MTs, cingulin showed strong binding to MTs, and a domain analysis showed that this binding occurred through cingulin’s N-terminal region. The association of planar apical MTs with TJs was compromised by cingulin knockdown (KD) or the expression of dephosphomimetic mutants of cingulin at its adenosine monophosphate–activated protein kinase (AMPK) target sites, whereas phosphorylation at these sites facilitated cingulin–tubulin binding. In addition, although wild-type colonies formed spheres in 3D culture, the cingulin KD cells had anisotropic shapes. These findings collectively suggest that the regulated cingulin–MT association has a specific role in TJ-related epithelial morphogenesis that is sensitive to metabolic homeostasis-related AMPK activity.
Collapse
Affiliation(s)
- Tomoki Yano
- Laboratory of Biological Science, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
24
|
Metformin: a metabolic disruptor and anti-diabetic drug to target human leukemia. Cancer Lett 2014; 346:188-96. [PMID: 24462823 DOI: 10.1016/j.canlet.2014.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 12/15/2022]
Abstract
There is a global and urgent need for expanding our current therapeutical arsenal against leukemia in order to improve their actual cure rates and fight relapse. Targeting the reprogrammed, altered cancer metabolism is an emerging strategy which should profoundly affect cancer cells in their intimate and irrepressible needs and addictions for nutrients uptake and incorporation into the biomass during malignant proliferation. We present here how metformin, an anti-diabetic drug that has attracted a strong interest for its recently discovered anti-cancer properties, can be envisioned as a new adjuvant approach to treat leukemia. Metformin may have a double-edged sword effect (i) by acting on the organism to decrease hyperglycaemia and hyperinsulinemia in diabetic patients and (ii) at the cellular level, by inhibiting the mTORC1-cancer supporting pathway through AMPK-dependent and independent mechanisms.
Collapse
|
25
|
Liou GY, Döppler H, Necela B, Krishna M, Crawford HC, Raimondo M, Storz P. Macrophage-secreted cytokines drive pancreatic acinar-to-ductal metaplasia through NF-κB and MMPs. ACTA ACUST UNITED AC 2013; 202:563-77. [PMID: 23918941 PMCID: PMC3734091 DOI: 10.1083/jcb.201301001] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In response to inflammation, pancreatic acinar cells can undergo acinar-to-ductal metaplasia (ADM), a reprogramming event that induces transdifferentiation to a ductlike phenotype and, in the context of additional oncogenic stimulation, contributes to development of pancreatic cancer. The signaling mechanisms underlying pancreatitis-inducing ADM are largely undefined. Our results provide evidence that macrophages infiltrating the pancreas drive this transdifferentiation process. We identify the macrophage-secreted inflammatory cytokines RANTES and tumor necrosis factor α (TNF) as mediators of such signaling. Both RANTES and TNF induce ADM through activation of nuclear factor κB and its target genes involved in regulating survival, proliferation, and degradation of extracellular matrix. In particular, we identify matrix metalloproteinases (MMPs) as targets that drive ADM and provide in vivo data suggesting that MMP inhibitors may be efficiently applied to block pancreatitis-induced ADM in therapy.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Macara IG, McCaffrey L. Cell polarity in morphogenesis and metastasis. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130012. [PMID: 24062582 DOI: 10.1098/rstb.2013.0012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most human cancers arise either from epithelial cells or their progenitors. Epithelial cells possess a distinctive apical-basal polarity and loss of polarity is frequently assumed to be a common feature of cancer progression. In particular, cancer cell dissemination to ectopic sites, and metastatic growth at those sites, is often considered to require a mesenchymal transition in which the transformed epithelial cells lose their apical-basal polarity. However, many cancers retain epithelial characteristics, and until recently there has been little conclusive evidence for an involvement of the cell polarity machinery in tumour growth and metastasis. In this article, we discuss evidence that polarity proteins can be potent invasion suppressors but that loss of epithelial character is not essential either for tumour growth and invasion, or metastatic colonization.
Collapse
Affiliation(s)
- Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University, , Nashville, TN 37215, USA
| | | |
Collapse
|
27
|
Partanen JI, Tervonen TA, Klefström J. Breaking the epithelial polarity barrier in cancer: the strange case of LKB1/PAR-4. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130111. [PMID: 24062587 DOI: 10.1098/rstb.2013.0111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The PAR clan of polarity regulating genes was initially discovered in a genetic screen searching for genes involved in asymmetric cell divisions in the Caenorhabditis elegans embryo. Today, investigations in worms, flies and mammals have established PAR proteins as conserved and fundamental regulators of animal cell polarization in a broad range of biological phenomena requiring cellular asymmetries. The human homologue of invertebrate PAR-4, a serine-threonine kinase LKB1/STK11, has caught attention as a gene behind Peutz-Jeghers polyposis syndrome and as a bona fide tumour suppressor gene commonly mutated in sporadic cancer. LKB1 functions as a master regulator of AMP-activated protein kinase (AMPK) and 12 other kinases referred to as the AMPK-related kinases, including four human homologues of PAR-1. The role of LKB1 as part of the energy sensing LKB1-AMPK module has been intensively studied, whereas the polarity function of LKB1, in the context of homoeostasis or cancer, has gained less attention. Here, we focus on the PAR-4 identity of LKB1, discussing the weight of evidence indicating a role for LKB1 in regulation of cell polarity and epithelial integrity across species and highlight recent investigations providing new insight into the old question: does the PAR-4 identity of LKB1 matter in cancer?
Collapse
Affiliation(s)
- Johanna I Partanen
- Cancer Cell Circuitry Laboratory, Translational Cancer Biology Research Program and Institute of Biomedicine, University of Helsinki, , Biomedicum Helsinki, Rm B507b, PO Box 63, Haartmaninkatu 8, 00014 Helsinki, Finland
| | | | | |
Collapse
|
28
|
Shackelford DB. Unravelling the connection between metabolism and tumorigenesis through studies of the liver kinase B1 tumour suppressor. J Carcinog 2013; 12:16. [PMID: 24082825 PMCID: PMC3779404 DOI: 10.4103/1477-3163.116323] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/12/2013] [Indexed: 12/15/2022] Open
Abstract
The liver kinase B1 (LKB1) tumour suppressor functions as a master regulator of growth, metabolism and survival in cells, which is frequently mutated in sporadic human non-small cell lung and cervical cancers. LKB1 functions as a key upstream activator of the AMP-activated protein kinase (AMPK), a central metabolic switch found in all eukaryotes that govern glucose and lipid metabolism and autophagy in response to alterations in nutrients and intracellular energy levels. The LKB1/AMPK signalling pathway suppresses mammalian target of rapamycin complex 1 (mTORC1), an essential regulator of cell growth in all eukaryotes that is deregulated in a majority of human cancers. LKB1 inactivation in cancer leads to both tumorigenesis and metabolic deregulation through the AMPK and mTORC1-signalling axis and there remain critical challenges to elucidate the direct role LKB1 inactivation plays in driving aberrant metabolism and tumour growth. This review addresses past and current efforts to delineate the molecular mechanisms fueling metabolic deregulation and tumorigenesis following LKB1 inactivation as well as translational promise of therapeutic strategies aimed at targeting LKB1-deficient tumors.
Collapse
Affiliation(s)
- David B Shackelford
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| |
Collapse
|
29
|
LKB1 controls human bronchial epithelial morphogenesis through p114RhoGEF-dependent RhoA activation. Mol Cell Biol 2013; 33:2671-82. [PMID: 23648482 DOI: 10.1128/mcb.00154-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
LKB1 is a Ser/Thr kinase that plays an important role in controlling both energy metabolism and cell polarity in metazoan organisms. LKB1 is also a tumor suppressor, and homozygous, inactivating mutations are found in a wide range of human cancers. In lung cancer, inactivating mutations are found in 10 to 50% of cases, but the consequences of functional loss in this context are poorly understood. We report here that LKB1 is required for the maturation of apical junctions in the human bronchial epithelial cell line 16HBE14o- (16HBE). This activity is dependent on an interaction with the Rho guanine nucleotide exchange factor p114RhoGEF but is independent of LKB1 kinase activity. Together, LKB1 and p114RhoGEF control RhoA activity in these cells to promote apical junction assembly.
Collapse
|
30
|
Chenette EJ. Interrogating Lkb1 function. Nat Cell Biol 2013. [DOI: 10.1038/ncb2692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Short B. Lkb1 takes different paths to morphogenesis. J Biophys Biochem Cytol 2012. [PMCID: PMC3529526 DOI: 10.1083/jcb.1997if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Study uses chemical genetics and embryonic explants to reveal kinase’s tissue-specific functions.
Collapse
|