1
|
Cai J, Quan Y, Zhang CY, Wang Z, Hinshaw SM, Zhou H, Suhandynata RT. Concatemer-assisted stoichiometry analysis: targeted mass spectrometry for protein quantification. Life Sci Alliance 2025; 8:e202403007. [PMID: 39741008 PMCID: PMC11707388 DOI: 10.26508/lsa.202403007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025] Open
Abstract
Large multiprotein machines are central to many biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA). CASA leverages stable isotope-labeled concatemers and liquid chromatography-parallel reaction monitoring-mass spectrometry (LC-PRM-MS) to achieve robust quantification of proteins with sub-femtomole sensitivity. As a proof of concept, CASA was applied to study budding yeast kinetochores. Stoichiometries were determined for ex vivo reconstituted kinetochore components, including the canonical H3 nucleosomes, centromeric (Cse4CENP-A) nucleosomes, centromere proximal factors (Cbf1 and CBF3 complex), inner kinetochore proteins (Mif2CENP-C, Ctf19CCAN complex), and outer kinetochore proteins (KMN network). Absolute quantification by CASA revealed Cse4CENP-A as a cell cycle-controlled limiting factor for kinetochore assembly. These findings demonstrate that CASA is applicable for stoichiometry analysis of multiprotein assemblies.
Collapse
Affiliation(s)
- Jiaxi Cai
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
- https://ror.org/0168r3w48 Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Yun Quan
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Cindy Yuxuan Zhang
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Ziyi Wang
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
| | - Stephen M Hinshaw
- https://ror.org/00f54p054 Department of Chemical and Systems Biology, Stanford University, Palo Alto, CA, USA
| | - Huilin Zhou
- https://ror.org/0168r3w48 Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, USA
- https://ror.org/0168r3w48 Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- https://ror.org/0168r3w48 Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Raymond T Suhandynata
- https://ror.org/0168r3w48 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, San Diego, CA, USA
- https://ror.org/0168r3w48 Department of Pathology, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
2
|
Kong W, Hara M, Tokunaga Y, Okumura K, Hirano Y, Miao J, Takenoshita Y, Hashimoto M, Sasaki H, Fujimori T, Wakabayashi Y, Fukagawa T. CENP-C-Mis12 complex establishes a regulatory loop through Aurora B for chromosome segregation. Life Sci Alliance 2025; 8:e202402927. [PMID: 39433344 PMCID: PMC11494776 DOI: 10.26508/lsa.202402927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
Establishing the correct kinetochore-microtubule attachment is crucial for faithful chromosome segregation. The kinetochore has various regulatory mechanisms for establishing correct bipolar attachment. However, how the regulations are coupled is not fully understood. Here, we demonstrate a regulatory loop between the kinetochore protein CENP-C and Aurora B kinase, which is critical for the error correction of kinetochore-microtubule attachment. This regulatory loop is mediated through the binding of CENP-C to the outer kinetochore Mis12 complex (Mis12C). Although the Mis12C-binding region of CENP-C is dispensable for mouse development and proliferation in human RPE-1 cells, those cells lacking this region display increased mitotic defects. The CENP-C-Mis12C interaction facilitates the centromeric recruitment of Aurora B and the mitotic error correction in human cells. Given that Aurora B reinforces the CENP-C-Mis12C interaction, our findings reveal a positive regulatory loop between Aurora B recruitment and the CENP-C-Mis12C interaction, which ensures chromosome biorientation for accurate chromosome segregation.
Collapse
Affiliation(s)
- Weixia Kong
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yurika Tokunaga
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kazuhiro Okumura
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Jiahang Miao
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | | | - Masakazu Hashimoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
- Department of Cell Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Sasaki
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Yuichi Wakabayashi
- Division of Experimental Animal Research, Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Chen YC, Kilic E, Wang E, Rossman W, Suzuki A. CENcyclopedia: Dynamic Landscape of Kinetochore Architecture Throughout the Cell Cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627000. [PMID: 39677682 PMCID: PMC11643120 DOI: 10.1101/2024.12.05.627000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The kinetochore, an intricate macromolecular protein complex located on chromosomes, plays a pivotal role in orchestrating chromosome segregation. It functions as a versatile platform for microtubule assembly, diligently monitors microtubule binding fidelity, and acts as a force coupler. Comprising over 100 distinct proteins, many of which exist in multiple copies, the kinetochore's composition dynamically changes throughout the cell cycle, responding to specific timing and conditions. This dynamicity is important for establishing functional kinetochores, yet the regulatory mechanisms of these dynamics have largely remained elusive. In this study, we employed advanced quantitative immunofluorescence techniques to meticulously chart the dynamics of kinetochore protein levels across the cell cycle. These findings offer a comprehensive view of the dynamic landscape of kinetochore architecture, shedding light on the detailed mechanisms of microtubule interaction and the nuanced characteristics of kinetochore proteins. This study significantly advances our understanding of the molecular coordination underlying chromosome segregation.
Collapse
Affiliation(s)
- Yu-Chia Chen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ece Kilic
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Evelyn Wang
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Will Rossman
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Chotiner JY, Leu NA, Yang F, Cossu IG, Guan Y, Lin H, Wang PJ. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. eLife 2024; 12:RP92195. [PMID: 39207914 PMCID: PMC11361706 DOI: 10.7554/elife.92195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. Mouse TRIP13 and its ortholog Pch2 are instrumental in remodeling HORMA domain proteins. HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed homologs. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These major phenotypes are consistent with reported phenotypes of Trip13 hypomorph alleles. Trip13 heterozygous mice exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. Terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon synapsis in diverse organisms.
Collapse
Affiliation(s)
- Jessica Y Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Isabella G Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
- College of Life Sciences, Capital Normal UniversityBeijingChina
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| |
Collapse
|
6
|
Cai J, Yun Q, Zhang CY, Wang Z, Hinshaw SM, Zhou H, Suhandynata RT. Concatemer Assisted Stoichiometry Analysis (CASA): targeted mass spectrometry for protein quantification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605382. [PMID: 39091769 PMCID: PMC11291133 DOI: 10.1101/2024.07.26.605382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Large multi-protein machines are central to multiple biological processes. However, stoichiometric determination of protein complex subunits in their native states presents a significant challenge. This study addresses the limitations of current tools in accuracy and precision by introducing concatemer-assisted stoichiometry analysis (CASA). CASA leverages stable isotope-labeled concatemers and liquid chromatography parallel reaction monitoring mass spectrometry (LC-PRM-MS) to achieve robust quantification of proteins with sub-femtomole sensitivity. As a proof-of-concept, CASA was applied to study budding yeast kinetochores. Stoichiometries were determined for ex vivo reconstituted kinetochore components, including the canonical H3 nucleosomes, centromeric (Cse4CENP-A) nucleosomes, centromere proximal factors (Cbf1 and CBF3 complex), inner kinetochore proteins (Mif2CENP-C, Ctf19CCAN complex), and outer kinetochore proteins (KMN network). Absolute quantification by CASA revealed Cse4CENP-A as a cell-cycle controlled limiting factor for kinetochore assembly. These findings demonstrate that CASA is applicable for stoichiometry analysis of multi-protein assemblies.
Collapse
Affiliation(s)
- Jiaxi Cai
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
- Department of Bioengineering, University of California, San Diego, California
| | - Quan Yun
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
| | - Cindy Yuxuan Zhang
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
| | - Ziyi Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
| | - Stephen M. Hinshaw
- Department of Chemical and Systems Biology, Stanford University, Palo Alto, California
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, California
- Department of Bioengineering, University of California, San Diego, California
- Moores Cancer Center, University of California, San Diego, California
| | - Raymond T. Suhandynata
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California
- Department of Pathology, University of California, San Diego, California
| |
Collapse
|
7
|
Chen YL, Jones AN, Crawford A, Sattler M, Ettinger A, Torres-Padilla ME. Determinants of minor satellite RNA function in chromosome segregation in mouse embryonic stem cells. J Cell Biol 2024; 223:e202309027. [PMID: 38625077 PMCID: PMC11022885 DOI: 10.1083/jcb.202309027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The centromere is a fundamental higher-order structure in chromosomes ensuring their faithful segregation upon cell division. Centromeric transcripts have been described in several species and suggested to participate in centromere function. However, low sequence conservation of centromeric repeats appears inconsistent with a role in recruiting highly conserved centromeric proteins. Here, we hypothesized that centromeric transcripts may function through a secondary structure rather than sequence conservation. Using mouse embryonic stem cells (ESCs), we show that an imbalance in the levels of forward or reverse minor satellite (MinSat) transcripts leads to severe chromosome segregation defects. We further show that MinSat RNA adopts a stem-loop secondary structure, which is conserved in human α-satellite transcripts. We identify an RNA binding region in CENPC and demonstrate that MinSat transcripts function through the structured region of the RNA. Importantly, mutants that disrupt MinSat secondary structure do not cause segregation defects. We propose that the conserved role of centromeric transcripts relies on their secondary RNA structure.
Collapse
Affiliation(s)
- Yung-Li Chen
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Alisha N. Jones
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Amy Crawford
- Department of Chemistry, New York University, New York, NY, USA
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
- Department of Bioscience, Bavarian NMR Center, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Andreas Ettinger
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
| | - Maria-Elena Torres-Padilla
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Munich, München, Germany
- Faculty of Biology, Ludwig-Maximilians Universität, München, Germany
| |
Collapse
|
8
|
Andrade Ruiz L, Kops GJPL, Sacristan C. Vertebrate centromere architecture: from chromatin threads to functional structures. Chromosoma 2024; 133:169-181. [PMID: 38856923 PMCID: PMC11266386 DOI: 10.1007/s00412-024-00823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Centromeres are chromatin structures specialized in sister chromatid cohesion, kinetochore assembly, and microtubule attachment during chromosome segregation. The regional centromere of vertebrates consists of long regions of highly repetitive sequences occupied by the Histone H3 variant CENP-A, and which are flanked by pericentromeres. The three-dimensional organization of centromeric chromatin is paramount for its functionality and its ability to withstand spindle forces. Alongside CENP-A, key contributors to the folding of this structure include components of the Constitutive Centromere-Associated Network (CCAN), the protein CENP-B, and condensin and cohesin complexes. Despite its importance, the intricate architecture of the regional centromere of vertebrates remains largely unknown. Recent advancements in long-read sequencing, super-resolution and cryo-electron microscopy, and chromosome conformation capture techniques have significantly improved our understanding of this structure at various levels, from the linear arrangement of centromeric sequences and their epigenetic landscape to their higher-order compaction. In this review, we discuss the latest insights on centromere organization and place them in the context of recent findings describing a bipartite higher-order organization of the centromere.
Collapse
Affiliation(s)
- Lorena Andrade Ruiz
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Geert J P L Kops
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands
- University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Carlos Sacristan
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, Netherlands.
- University Medical Center Utrecht, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| |
Collapse
|
9
|
Kixmoeller K, Chang YW, Black BE. Centromeric chromatin clearings demarcate the site of kinetochore formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591177. [PMID: 38712116 PMCID: PMC11071481 DOI: 10.1101/2024.04.26.591177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. The kinetochore has been interrogated by electron microscopy since the middle of the last century, but with methodologies that compromised fine structure. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20-25 nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing. We further visualize the scaffold of the fibrous corona, a structure amplified at unattached kinetochores, revealing crescent-shaped parallel arrays of fibrils that extend >1 μm. Thus, we reveal how the organization of centromeric chromatin creates a clearing at the site of kinetochore formation as well as the nature of kinetochore amplification mediated by corona fibrils.
Collapse
Affiliation(s)
- Kathryn Kixmoeller
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Ben E. Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Biochemistry Biophysics Chemical Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Institute of Structural Biology, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Penn Center for Genome Integrity, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, PA, USA
| |
Collapse
|
10
|
Cao J, Hori T, Ariyoshi M, Fukagawa T. Artificial tethering of constitutive centromere-associated network proteins induces CENP-A deposition without Knl2 in DT40 cells. J Cell Sci 2024; 137:jcs261639. [PMID: 38319136 DOI: 10.1242/jcs.261639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
The kinetochore is an essential structure for chromosome segregation. Although the kinetochore is usually formed on a centromere locus, it can be artificially formed at a non-centromere locus by protein tethering. An artificial kinetochore can be formed by tethering of CENP-C or CENP-I, members of the constitutive centromere-associated network (CCAN). However, how CENP-C or CENP-I recruit the centromere-specific histone CENP-A to form an artificial kinetochore remains unclear. In this study, we analyzed this issue using the tethering assay combined with an auxin-inducible degron (AID)-based knockout method in chicken DT40 cells. We found that tethering of CENP-C or CENP-I induced CENP-A incorporation at the non-centromeric locus in the absence of Knl2 (or MIS18BP1), a component of the Mis18 complex, and that Knl2 tethering recruited CENP-A in the absence of CENP-C. We also showed that CENP-C coimmunoprecipitated with HJURP, independently of Knl2. Considering these results, we propose that CENP-C recruits CENP-A by HJURP binding to form an artificial kinetochore. Our results suggest that CENP-C or CENP-I exert CENP-A recruitment activity, independently of Knl2, for artificial kinetochore formation in chicken DT40 cells. This gives us a new insight into mechanisms for CENP-A incorporation.
Collapse
Affiliation(s)
- JingHui Cao
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tetsuya Hori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Chotiner JY, Leu NA, Yang F, Cossu IG, Guan Y, Lin H, Wang PJ. TRIP13 localizes to synapsed chromosomes and functions as a dosage-sensitive regulator of meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559355. [PMID: 37808842 PMCID: PMC10557606 DOI: 10.1101/2023.09.25.559355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Meiotic progression requires coordinated assembly and disassembly of protein complexes involved in chromosome synapsis and meiotic recombination. The AAA+ ATPase TRIP13 and its orthologue Pch2 are instrumental in remodeling HORMA domain proteins. Meiosis-specific HORMAD proteins are associated with unsynapsed chromosome axes but depleted from the synaptonemal complex (SC) of synapsed chromosome homologues. Here we report that TRIP13 localizes to the synapsed SC in early pachytene spermatocytes and to telomeres throughout meiotic prophase I. Loss of TRIP13 leads to meiotic arrest and thus sterility in both sexes. Trip13-null meiocytes exhibit abnormal persistence of HORMAD1 and HOMRAD2 on synapsed SC and chromosome asynapsis that preferentially affects XY and centromeric ends. These findings confirm the previously reported phenotypes of the Trip13 hypomorph alleles. Trip13 heterozygous (Trip13+/-) mice also exhibit meiotic defects that are less severe than the Trip13-null mice, showing that TRIP13 is a dosage-sensitive regulator of meiosis. Localization of TRIP13 to the synapsed SC is independent of SC axial element proteins such as REC8 and SYCP2/SYCP3. The N- or C-terminal FLAG-tagged TRIP13 proteins are functional and recapitulate the localization of native TRIP13 to SC and telomeres in knockin mice. Therefore, the evolutionarily conserved localization of TRIP13/Pch2 to the synapsed chromosomes provides an explanation for dissociation of HORMA domain proteins upon chromosome synapsis in diverse organisms.
Collapse
Affiliation(s)
- Jessica Y. Chotiner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Isabella G. Cossu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Yongjuan Guan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Huijuan Lin
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - P. Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Ariyoshi M, Fukagawa T. An updated view of the kinetochore architecture. Trends Genet 2023; 39:941-953. [PMID: 37775394 DOI: 10.1016/j.tig.2023.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
The kinetochore is a supramolecular complex that facilitates faithful chromosome segregation by bridging the centromere and spindle microtubules. Recent functional and structural studies on the inner kinetochore subcomplex, constitutive centromere-associated network (CCAN) have updated our understanding of kinetochore architecture. While the CCAN core establishes a stable interface with centromeric chromatin, CCAN organization is dynamically altered and coupled with cell cycle progression. Furthermore, the CCAN components, centromere protein (CENP)-C and CENP-T, mediate higher-order assembly of multiple kinetochore units on the regional centromeres of vertebrates. This review highlights new insights into kinetochore rigidity, plasticity, and clustering, which are key to understanding temporal and spatial regulatory mechanisms of chromosome segregation.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Melters DP, Neuman KC, Bentahar RS, Rakshit T, Dalal Y. Single molecule analysis of CENP-A chromatin by high-speed atomic force microscopy. eLife 2023; 12:e86709. [PMID: 37728600 PMCID: PMC10511241 DOI: 10.7554/elife.86709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated of the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about transcriptional potential in vivo. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the mean square displacement and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, we found that an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. From these data, we speculate that factors altering nucleosome mobility in vitro, also correspondingly alter transcription in vivo. Subsequently, we propose a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance nucleosome mobility.
Collapse
Affiliation(s)
- Daniël P Melters
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Keir C Neuman
- National Heart, Lung, and Blood Institute, Laboratory of Single Molecule BiophysicsBethesdaUnited States
| | - Reda S Bentahar
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Tatini Rakshit
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
- Department of Chemistry, Shiv Nadar UniversityDadriIndia
| | - Yamini Dalal
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| |
Collapse
|
14
|
Yatskevich S, Barford D, Muir KW. Conserved and divergent mechanisms of inner kinetochore assembly onto centromeric chromatin. Curr Opin Struct Biol 2023; 81:102638. [PMID: 37343495 DOI: 10.1016/j.sbi.2023.102638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/03/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Kinetochores are large protein complexes built on centromeric chromatin that mediate chromosome segregation. The inner kinetochore, or constitutive centromere-associated network (CCAN), assembles onto centromeres defined by centromere protein A (CENP-A) nucleosomes (CENP-ANuc), and acts as a platform for the regulated assembly of the microtubule-binding outer kinetochore. Recent cryo-EM work revealed structural conservation of CCAN, from the repeating human regional centromeres to the point centromere of budding yeast. Centromere recognition is determined mainly through engagement of duplex DNA proximal to the CENP-A nucleosome by a DNA-binding CENP-LN channel located at the core of CCAN. Additional DNA interactions formed by other CCAN modules create an enclosed DNA-binding chamber. This configuration explains how kinetochores maintain their tight grip on centromeric DNA to withstand the forces of chromosome segregation. Defining the higher-order architecture of complete kinetochore assemblies with implications for understanding the 3D organisation of regional centromeres and mechanisms of kinetochore dynamics, including how kinetochores sense and respond to tension, are important future directions.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/StanislauY
| | - David Barford
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom.
| | - Kyle W Muir
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom. https://twitter.com/centromuir
| |
Collapse
|
15
|
Dendooven T, Zhang Z, Yang J, McLaughlin SH, Schwab J, Scheres SHW, Yatskevich S, Barford D. Cryo-EM structure of the complete inner kinetochore of the budding yeast point centromere. SCIENCE ADVANCES 2023; 9:eadg7480. [PMID: 37506202 PMCID: PMC10381965 DOI: 10.1126/sciadv.adg7480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
The point centromere of budding yeast specifies assembly of the large kinetochore complex to mediate chromatid segregation. Kinetochores comprise the centromere-associated inner kinetochore (CCAN) complex and the microtubule-binding outer kinetochore KNL1-MIS12-NDC80 (KMN) network. The budding yeast inner kinetochore also contains the DNA binding centromere-binding factor 1 (CBF1) and CBF3 complexes. We determined the cryo-electron microscopy structure of the yeast inner kinetochore assembled onto the centromere-specific centromere protein A nucleosomes (CENP-ANuc). This revealed a central CENP-ANuc with extensively unwrapped DNA ends. These free DNA duplexes bind two CCAN protomers, one of which entraps DNA topologically, positioned on the centromere DNA element I (CDEI) motif by CBF1. The two CCAN protomers are linked through CBF3 forming an arch-like configuration. With a structural mechanism for how CENP-ANuc can also be linked to KMN involving only CENP-QU, we present a model for inner kinetochore assembly onto a point centromere and how it organizes the outer kinetochore for chromosome attachment to the mitotic spindle.
Collapse
Affiliation(s)
| | | | - Jing Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | | | | | | |
Collapse
|
16
|
Hara M, Ariyoshi M, Sano T, Nozawa RS, Shinkai S, Onami S, Jansen I, Hirota T, Fukagawa T. Centromere/kinetochore is assembled through CENP-C oligomerization. Mol Cell 2023:S1097-2765(23)00379-9. [PMID: 37295434 DOI: 10.1016/j.molcel.2023.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Kinetochore is an essential protein complex required for accurate chromosome segregation. The constitutive centromere-associated network (CCAN), a subcomplex of the kinetochore, associates with centromeric chromatin and provides a platform for the kinetochore assembly. The CCAN protein CENP-C is thought to be a central hub for the centromere/kinetochore organization. However, the role of CENP-C in CCAN assembly needs to be elucidated. Here, we demonstrate that both the CCAN-binding domain and the C-terminal region that includes the Cupin domain of CENP-C are necessary and sufficient for chicken CENP-C function. Structural and biochemical analyses reveal self-oligomerization of the Cupin domains of chicken and human CENP-C. We find that the CENP-C Cupin domain oligomerization is vital for CENP-C function, centromeric localization of CCAN, and centromeric chromatin organization. These results suggest that CENP-C facilitates the centromere/kinetochore assembly through its oligomerization.
Collapse
Affiliation(s)
- Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Sano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Soya Shinkai
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shuichi Onami
- Laboratory for Developmental Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | | | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Malik KK, Sridhara SC, Lone KA, Katariya PD, Pulimamidi D, Tyagi S. MLL methyltransferases regulate H3K4 methylation to ensure CENP-A assembly at human centromeres. PLoS Biol 2023; 21:e3002161. [PMID: 37379335 PMCID: PMC10335677 DOI: 10.1371/journal.pbio.3002161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 07/11/2023] [Accepted: 05/12/2023] [Indexed: 06/30/2023] Open
Abstract
The active state of centromeres is epigenetically defined by the presence of CENP-A interspersed with histone H3 nucleosomes. While the importance of dimethylation of H3K4 for centromeric transcription has been highlighted in various studies, the identity of the enzyme(s) depositing these marks on the centromere is still unknown. The MLL (KMT2) family plays a crucial role in RNA polymerase II (Pol II)-mediated gene regulation by methylating H3K4. Here, we report that MLL methyltransferases regulate transcription of human centromeres. CRISPR-mediated down-regulation of MLL causes loss of H3K4me2, resulting in an altered epigenetic chromatin state of the centromeres. Intriguingly, our results reveal that loss of MLL, but not SETD1A, increases co-transcriptional R-loop formation, and Pol II accumulation at the centromeres. Finally, we report that the presence of MLL and SETD1A is crucial for kinetochore maintenance. Altogether, our data reveal a novel molecular framework where both the H3K4 methylation mark and the methyltransferases regulate stability and identity of the centromere.
Collapse
Affiliation(s)
- Kausika Kumar Malik
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Sreerama Chaitanya Sridhara
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Kaisar Ahmad Lone
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, India
| | - Payal Deepakbhai Katariya
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Deepshika Pulimamidi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| | - Shweta Tyagi
- Laboratory of Cell Cycle Regulation, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, India
| |
Collapse
|
18
|
Jiang H, Ariyoshi M, Hori T, Watanabe R, Makino F, Namba K, Fukagawa T. The cryo-EM structure of the CENP-A nucleosome in complex with ggKNL2. EMBO J 2023; 42:e111965. [PMID: 36744604 PMCID: PMC10015371 DOI: 10.15252/embj.2022111965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/07/2023] Open
Abstract
Centromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere. However, the molecular basis for CENP-A nucleosome recognition by ggKNL2 has remained unclear. Here, we present the cryo-EM structure of the chicken CENP-A nucleosome in complex with a ggKNL2 fragment containing the CENP-C-like motif. Chicken KNL2 distinguishes between CENP-A and histone H3 in the nucleosome using the CENP-C-like motif and its downstream region. Both the C-terminal tail and the RG-loop of CENP-A are simultaneously recognized as CENP-A characteristics. The CENP-A nucleosome-ggKNL2 interaction is thus essential for KNL2 functions. Furthermore, our structural, biochemical, and cell biology data indicate that ggKNL2 changes its binding partner at the centromere during chicken cell cycle progression.
Collapse
Affiliation(s)
- Honghui Jiang
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Mariko Ariyoshi
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Tetsuya Hori
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Reito Watanabe
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| | - Fumiaki Makino
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- JEOL Ltd.AkishimaJapan
| | - Keiichi Namba
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- RIKEN Center for Biosystems Dynamics Research and SPring‐8 CenterSuitaJapan
- JEOL YOKOGUSHI Research Alliance LaboratoriesOsaka UniversitySuitaJapan
| | - Tatsuo Fukagawa
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
| |
Collapse
|
19
|
Hinshaw SM, Quan Y, Cai J, Zhou AL, Zhou H. Multi-site phosphorylation of yeast Mif2/CENP-C promotes inner kinetochore assembly. Curr Biol 2023; 33:688-696.e6. [PMID: 36736323 PMCID: PMC9992315 DOI: 10.1016/j.cub.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023]
Abstract
Kinetochores control eukaryotic chromosome segregation by connecting chromosomal centromeres to spindle microtubules. Duplication of centromeric DNA necessitates kinetochore disassembly and subsequent reassembly on nascent sisters. To search for a regulatory mechanism that controls the earliest steps of this process, we studied Mif2/CENP-C, an essential basal component of the kinetochore. We found that phosphorylation of a central region of Mif2 (Mif2-PEST) enhances inner kinetochore assembly. Eliminating Mif2-PEST phosphorylation sites progressively impairs cellular fitness. The most severe Mif2-PEST mutations are lethal in cells lacking otherwise non-essential inner kinetochore factors. These data show that multi-site phosphorylation of Mif2/CENP-C controls inner kinetochore assembly.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Stanford Cancer Institute, Stanford School of Medicine, 1291 Welch Road, Stanford, CA 94305, USA.
| | - Yun Quan
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Jiaxi Cai
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Ann L Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA.
| |
Collapse
|
20
|
Ujiie R, Kawamura K, Yamashita S, Mitsutake N, Suzuki K. Anti-CENP-C Antibody-Based Immunofluorescence Dicentric Assay: Radiation Dose-Response, Validation Studies, and Radiation Dose-Dependency on Sister Centromere Fluorescence. Radiat Res 2023; 199:74-82. [PMID: 36442049 DOI: 10.1667/rade-22-00050.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022]
Abstract
Dicentric chromosome assay (DCA) is the most accepted cytological technique for the purpose of biological dosimetry in radiological and nuclear accidents, however, it is not always easy to evaluate dicentric chromosomes because of the technical difficulty in identifying dicentric chromosomes on Giemsa-stained metaphase chromosome samples. Here, we applied an antibody recognizing centromere protein (CENP) C, CENP-C, whose antigenicity is resistant to the fixation with Carnoy's solution. Normal human diploid cells were irradiated with various doses of 137Cs γ rays at 1 Gy/ min, treated with hypotonic solution, fixed with Carnoy's fixative, and metaphase chromosome spreads were stained with anti-CENP-C antibody. Dose-dependent induction of dicentric chromosomes was confirmed between 1 and 10 Gy of γ rays, and the results were compatible with those obtained by the conventional Giemsa-stained chromosome samples. The CENP-C assay also uncovered the difference in the fluorescence from the sister centromeres on the same chromosome, which was more pronounced after radiation exposure. Although the underlying mechanism is still to be determined, the result suggests a novel effect of radiation on centromeres. The innovative protocol for CENP-C-based DCA, which enables ideal visualization of centromeres, is simple, effective and reliable. It does not require skilled examiners, so that it may be an alternative method, avoiding uneasiness of the current DCA using Giemsa-stained metaphase chromosome samples.
Collapse
Affiliation(s)
- Risa Ujiie
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kasumi Kawamura
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shunichi Yamashita
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Fukushima Medical University, 1 Hikariga-oka, Fukushima, Fukushima 960-1295, Japan.,National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.,Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
21
|
Dong Q, Li F. Cell cycle control of kinetochore assembly. Nucleus 2022; 13:208-220. [PMID: 36037227 PMCID: PMC9427032 DOI: 10.1080/19491034.2022.2115246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
The kinetochore is a large proteinaceous structure assembled on the centromeres of chromosomes. The complex machinery links chromosomes to the mitotic spindle and is essential for accurate chromosome segregation during cell division. The kinetochore is composed of two submodules: the inner and outer kinetochore. The inner kinetochore is assembled on centromeric chromatin and persists with centromeres throughout the cell cycle. The outer kinetochore attaches microtubules to the inner kinetochore, and assembles only during mitosis. The review focuses on recent advances in our understanding of the mechanisms governing the proper assembly of the outer kinetochore during mitosis and highlights open questions for future investigation.
Collapse
Affiliation(s)
- Qianhua Dong
- Department of Biology, New York University, New York, NY, USA
| | - Fei Li
- Department of Biology, New York University, New York, NY, USA
| |
Collapse
|
22
|
Centromere Chromatin Dynamics at a Glance. EPIGENOMES 2022; 6:epigenomes6040039. [PMID: 36412794 PMCID: PMC9680212 DOI: 10.3390/epigenomes6040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The centromere is a specialized DNA locus that ensures the faithful segregation of chromosomes during cell division. It does so by directing the assembly of an essential proteinaceous structure called the kinetochore. The centromere identity is primarily epigenetically defined by a nucleosome containing an H3 variant called CENP-A as well as by the interplay of several factors such as differential chromatin organization driven by CENP-A and H2A.Z, centromere-associated proteins, and post-translational modifications. At the centromere, CENP-A is not just a driving force for kinetochore assembly but also modifies the structural and dynamic properties of the centromeric chromatin, resulting in a distinctive chromatin organization. An additional level of regulation of the centromeric chromatin conformation is provided by post-translational modifications of the histones in the CENP-A nucleosomes. Further, H2A.Z is present in the regions flanking the centromere for heterochromatinization. In this review, we focus on the above-mentioned factors to describe how they contribute to the organization of the centromeric chromatin: CENP-A at the core centromere, post-translational modifications that decorate CENP-A, and the variant H2A.Z.
Collapse
|
23
|
Zhang C, Wang D, Hao Y, Wu S, Luo J, Xue Y, Wang D, Li G, Liu L, Shao C, Li H, Yuan J, Zhu M, Fu XD, Yang X, Chen R, Teng Y. LncRNA CCTT-mediated RNA-DNA and RNA-protein interactions facilitate the recruitment of CENP-C to centromeric DNA during kinetochore assembly. Mol Cell 2022; 82:4018-4032.e9. [PMID: 36332605 PMCID: PMC9648614 DOI: 10.1016/j.molcel.2022.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/10/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
Kinetochore assembly on centromeres is central for chromosome segregation, and defects in this process cause mitotic errors and aneuploidy. Besides the well-established protein network, emerging evidence suggests the involvement of regulatory RNA in kinetochore assembly; however, it has remained elusive about the identity of such RNA, let alone its mechanism of action in this critical process. Here, we report CCTT, a previously uncharacterized long non-coding RNA (lncRNA) transcribed from the arm of human chromosome 17, which plays a vital role in kinetochore assembly. We show that CCTT highly localizes to all centromeres via the formation of RNA-DNA triplex and specifically interacts with CENP-C to help engage this blueprint protein in centromeres, and consequently, CCTT loss triggers extensive mitotic errors and aneuploidy. These findings uncover a non-centromere-derived lncRNA that recruits CENP-C to centromeres and shed critical lights on the function of centromeric DNA sequences as anchor points for kinetochore assembly.
Collapse
Affiliation(s)
- Chong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Hao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuheng Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanchao Xue
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Di Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Liu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huiyan Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Jinfeng Yuan
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100039, China
| | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
24
|
Structural insights into human CCAN complex assembled onto DNA. Cell Discov 2022; 8:90. [PMID: 36085283 PMCID: PMC9463443 DOI: 10.1038/s41421-022-00439-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022] Open
Abstract
In mitosis, accurate chromosome segregation depends on kinetochores that connect centromeric chromatin to spindle microtubules. The centromeres of budding yeast, which are relatively simple, are connected to individual microtubules via a kinetochore constitutive centromere associated network (CCAN). However, the complex centromeres of human chromosomes comprise millions of DNA base pairs and attach to multiple microtubules. Here, by use of cryo-electron microscopy and functional analyses, we reveal the molecular basis of how human CCAN interacts with duplex DNA and facilitates accurate chromosome segregation. The overall structure relates to the cooperative interactions and interdependency of the constituent sub-complexes of the CCAN. The duplex DNA is topologically entrapped by human CCAN. Further, CENP-N does not bind to the RG-loop of CENP-A but to DNA in the CCAN complex. The DNA binding activity is essential for CENP-LN localization to centromere and chromosome segregation during mitosis. Thus, these analyses provide new insights into mechanisms of action underlying kinetochore assembly and function in mitosis.
Collapse
|
25
|
Uzoeto HO, Cosmas S, Ajima JN, Arazu AV, Didiugwu CM, Ekpo DE, Ibiang GO, Durojaye OA. Computer-aided molecular modeling and structural analysis of the human centromere protein–HIKM complex. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Protein–peptide and protein–protein interactions play an essential role in different functional and structural cellular organizational aspects. While Cryo-EM and X-ray crystallography generate the most complete structural characterization, most biological interactions exist in biomolecular complexes that are neither compliant nor responsive to direct experimental analysis. The development of computational docking approaches is therefore necessary. This starts from component protein structures to the prediction of their complexes, preferentially with precision close to complex structures generated by X-ray crystallography.
Results
To guarantee faithful chromosomal segregation, there must be a proper assembling of the kinetochore (a protein complex with multiple subunits) at the centromere during the process of cell division. As an important member of the inner kinetochore, defects in any of the subunits making up the CENP-HIKM complex lead to kinetochore dysfunction and an eventual chromosomal mis-segregation and cell death. Previous studies in an attempt to understand the assembly and mechanism devised by the CENP-HIKM in promoting the functionality of the kinetochore have reconstituted the protein complex from different organisms including fungi and yeast. Here, we present a detailed computational model of the physical interactions that exist between each component of the human CENP-HIKM, while validating each modeled structure using orthologs with existing crystal structures from the protein data bank.
Conclusions
Results from this study substantiate the existing hypothesis that the human CENP-HIK complex shares a similar architecture with its fungal and yeast orthologs, and likewise validate the binding mode of CENP-M to the C-terminus of the human CENP-I based on existing experimental reports.
Graphical abstract
Collapse
|
26
|
Jamasbi E, Hamelian M, Hossain MA, Varmira K. The cell cycle, cancer development and therapy. Mol Biol Rep 2022; 49:10875-10883. [PMID: 35931874 DOI: 10.1007/s11033-022-07788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Hamelian
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
27
|
Sridhar S, Fukagawa T. Kinetochore Architecture Employs Diverse Linker Strategies Across Evolution. Front Cell Dev Biol 2022; 10:862637. [PMID: 35800888 PMCID: PMC9252888 DOI: 10.3389/fcell.2022.862637] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The assembly of a functional kinetochore on centromeric chromatin is necessary to connect chromosomes to the mitotic spindle, ensuring accurate chromosome segregation. This connecting function of the kinetochore presents multiple internal and external structural challenges. A microtubule interacting outer kinetochore and centromeric chromatin interacting inner kinetochore effectively confront forces from the external spindle and centromere, respectively. While internally, special inner kinetochore proteins, defined as "linkers," simultaneously interact with centromeric chromatin and the outer kinetochore to enable association with the mitotic spindle. With the ability to simultaneously interact with outer kinetochore components and centromeric chromatin, linker proteins such as centromere protein (CENP)-C or CENP-T in vertebrates and, additionally CENP-QOkp1-UAme1 in yeasts, also perform the function of force propagation within the kinetochore. Recent efforts have revealed an array of linker pathways strategies to effectively recruit the largely conserved outer kinetochore. In this review, we examine these linkages used to propagate force and recruit the outer kinetochore across evolution. Further, we look at their known regulatory pathways and implications on kinetochore structural diversity and plasticity.
Collapse
Affiliation(s)
- Shreyas Sridhar
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
28
|
Wang L, Wang H, Yang C, Wu Y, Lei G, Yu Y, Gao Y, Du J, Tong X, Zhou F, Li Y, Wang Y. Investigating CENPW as a Novel Biomarker Correlated With the Development and Poor Prognosis of Breast Carcinoma. Front Genet 2022; 13:900111. [PMID: 35783290 PMCID: PMC9247308 DOI: 10.3389/fgene.2022.900111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/24/2022] [Indexed: 11/22/2022] Open
Abstract
Breast invasive carcinoma (BRCA) is a carcinoma with a fairly high incidence, and the therapeutic schedules are generally surgery and chemotherapy. However, chemotherapeutic drugs tend to produce serious toxic side effects, which lead to the cessation of treatment. Therefore, it is imperative to develop treatment strategies that are more effective and have fewer side effects at the genetic level. Centromeric protein W (CENPW) is an oncogene that plays an important part in nucleosome assembly. To date, no studies have reported the prognostic significance of CENPW in breast carcinoma. In this study, we verified that CENPW expression is up-regulated in breast carcinoma and positively associated with the level of immune cell infiltration. The clinicopathological characteristics further suggest that CENPW expression is correlated with a worse prognosis of breast carcinoma. Interestingly, the CENPW mutation contributes to the poor prognosis. Next, we discovered that the genes interacting with CENPW are mainly concentrated in the cell cycle pathway, and CENPW is co-expressed with CDCA7, which is also highly expressed in breast carcinoma and leads to a worse prognosis. Our subsequent studies verified that knockdown of CENPW significantly inhibits the proliferation and migration of breast carcinoma cells and promotes their apoptosis rate. Notably, inhibition of CEMPW sensitizes breast cancer cells to chemotherapeutic drugs that have been found to induce cell cycle arrest. In summary, these results provide extensive data and experimental evidence that CENPW can serve as a novel predictor of breast cancer and may act as a prospective therapeutic target.
Collapse
Affiliation(s)
- Luyang Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Hairui Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yanhua Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Feifei Zhou
- Traditional Chinese Medicine Department, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Feifei Zhou, ; Yanchun Li, ; Ying Wang,
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Feifei Zhou, ; Yanchun Li, ; Ying Wang,
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Feifei Zhou, ; Yanchun Li, ; Ying Wang,
| |
Collapse
|
29
|
Yatskevich S, Muir KW, Bellini D, Zhang Z, Yang J, Tischer T, Predin M, Dendooven T, McLaughlin SH, Barford D. Structure of the human inner kinetochore bound to a centromeric CENP-A nucleosome. Science 2022; 376:844-852. [PMID: 35420891 PMCID: PMC7612757 DOI: 10.1126/science.abn3810] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Kinetochores assemble onto specialized centromeric CENP-A (centromere protein A) nucleosomes (CENP-ANuc) to mediate attachments between chromosomes and the mitotic spindle. We describe cryo-electron microscopy structures of the human inner kinetochore constitutive centromere associated network (CCAN) complex bound to CENP-ANuc reconstituted onto α-satellite DNA. CCAN forms edge-on contacts with CENP-ANuc, and a linker DNA segment of the α-satellite repeat emerges from the fully wrapped end of the nucleosome to thread through the central CENP-LN channel that tightly grips the DNA. The CENP-TWSX histone-fold module further augments DNA binding and partially wraps the linker DNA in a manner reminiscent of canonical nucleosomes. Our study suggests that the topological entrapment of the linker DNA by CCAN provides a robust mechanism by which kinetochores withstand both pushing and pulling forces exerted by the mitotic spindle.
Collapse
Affiliation(s)
- Stanislau Yatskevich
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Kyle W. Muir
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dom Bellini
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ziguo Zhang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Jing Yang
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Thomas Tischer
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Masa Predin
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Tom Dendooven
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | | | - David Barford
- MRC Laboratory of Molecular Biology; Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
30
|
Pesenti ME, Raisch T, Conti D, Walstein K, Hoffmann I, Vogt D, Prumbaum D, Vetter IR, Raunser S, Musacchio A. Structure of the human inner kinetochore CCAN complex and its significance for human centromere organization. Mol Cell 2022; 82:2113-2131.e8. [PMID: 35525244 PMCID: PMC9235857 DOI: 10.1016/j.molcel.2022.04.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/01/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022]
Abstract
Centromeres are specialized chromosome loci that seed the kinetochore, a large protein complex that effects chromosome segregation. A 16-subunit complex, the constitutive centromere associated network (CCAN), connects between the specialized centromeric chromatin, marked by the histone H3 variant CENP-A, and the spindle-binding moiety of the kinetochore. Here, we report a cryo-electron microscopy structure of human CCAN. We highlight unique features such as the pseudo GTPase CENP-M and report how a crucial CENP-C motif binds the CENP-LN complex. The CCAN structure has implications for the mechanism of specific recognition of the CENP-A nucleosome. A model consistent with our structure depicts the CENP-C-bound nucleosome as connected to the CCAN through extended, flexible regions of CENP-C. An alternative model identifies both CENP-C and CENP-N as specificity determinants but requires CENP-N to bind CENP-A in a mode distinct from the classical nucleosome octamer.
Collapse
Affiliation(s)
- Marion E Pesenti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tobias Raisch
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Duccio Conti
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Kai Walstein
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid Hoffmann
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Stefan Raunser
- Department of Structural Biochemistry, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
31
|
Takenoshita Y, Hara M, Fukagawa T. Recruitment of two Ndc80 complexes via the CENP-T pathway is sufficient for kinetochore functions. Nat Commun 2022; 13:851. [PMID: 35165266 PMCID: PMC8844409 DOI: 10.1038/s41467-022-28403-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022] Open
Abstract
To form functional kinetochores, CENP-C and CENP-T independently recruit the KMN (Knl1C, Mis12C, and Ndc80C) network onto the kinetochores. To clarify the functions of the KMN network on CENP-T, we evaluated its roles in chicken DT40 cell lines lacking the CENP-C-KMN network interaction. By analyzing mutants lacking both CENP-T-Mis12C and CENP-C-Mis12C interactions, we demonstrated that Knl1C and Mis12C (KM) play critical roles in the cohesion of sister chromatids or the recruitment of spindle checkpoint proteins onto kinetochores. Two copies of Ndc80C (N-N) exist on CENP-T via Mis12C or direct binding. Analyses of cells specifically lacking the Mis12C-Ndc80C interaction revealed that N-N is needed for proper kinetochore-microtubule interactions. However, using artificial engineering to directly bind the two copies of Ndc80C to CENP-T, we demonstrated that N-N functions without direct Mis12C binding to Ndc80C in native kinetochores. This study demonstrated the mechanisms by which complicated networks play roles in native kinetochores. The kinetochores contain multiple protein interaction networks. Takenoshita et al. analyzed the complicated networks using the genetic method and revealed that two copies of Ndc80 complexes on CENP-T are sufficient for kinetochore functions.
Collapse
|
32
|
Mobility of kinetochore proteins measured by FRAP analysis in living cells. Chromosome Res 2022; 30:43-57. [PMID: 34997387 PMCID: PMC8942963 DOI: 10.1007/s10577-021-09678-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/01/2022]
Abstract
The kinetochore is essential for faithful chromosome segregation during mitosis and is assembled through dynamic processes involving numerous kinetochore proteins. Various experimental strategies have been used to understand kinetochore assembly processes. Fluorescence recovery after photobleaching (FRAP) analysis is also a useful strategy for revealing the dynamics of kinetochore assembly. In this study, we introduced fluorescence protein-tagged kinetochore protein cDNAs into each endogenous locus and performed FRAP analyses in chicken DT40 cells. Centromeric protein (CENP)-C was highly mobile in interphase, but immobile during mitosis. CENP-C mutants lacking the CENP-A-binding domain became mobile during mitosis. In contrast to CENP-C, CENP-T and CENP-H were immobile during both interphase and mitosis. The mobility of Dsn1, which is a component of the Mis12 complex and directly binds to CENP-C, depended on CENP-C mobility during mitosis. Thus, our FRAP assays provide dynamic aspects of how the kinetochore is assembled.
Collapse
|
33
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
34
|
Abstract
The centromere performs a universally conserved function, to accurately partition genetic information upon cell division. Yet, centromeres are among the most rapidly evolving regions of the genome and are bound by a varying assortment of centromere-binding factors that are themselves highly divergent at the protein-sequence level. A common thread in most species is the dependence on the centromere-specific histone variant CENP-A for the specification of the centromere site. However, CENP-A is not universally required in all species or cell types, making the identification of a general mechanism for centromere specification challenging. In this review, we examine our current understanding of the mechanisms of centromere specification in CENP-A-dependent and independent systems, focusing primarily on recent work.
Collapse
Affiliation(s)
- Barbara G Mellone
- Department of Molecular and Cell Biology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005 Paris, France.
| |
Collapse
|
35
|
Kumon T, Ma J, Akins RB, Stefanik D, Nordgren CE, Kim J, Levine MT, Lampson MA. Parallel pathways for recruiting effector proteins determine centromere drive and suppression. Cell 2021; 184:4904-4918.e11. [PMID: 34433012 PMCID: PMC8448984 DOI: 10.1016/j.cell.2021.07.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022]
Abstract
Selfish centromere DNA sequences bias their transmission to the egg in female meiosis. Evolutionary theory suggests that centromere proteins evolve to suppress costs of this "centromere drive." In hybrid mouse models with genetically different maternal and paternal centromeres, selfish centromere DNA exploits a kinetochore pathway to recruit microtubule-destabilizing proteins that act as drive effectors. We show that such functional differences are suppressed by a parallel pathway for effector recruitment by heterochromatin, which is similar between centromeres in this system. Disrupting the kinetochore pathway with a divergent allele of CENP-C reduces functional differences between centromeres, whereas disrupting heterochromatin by CENP-B deletion amplifies the differences. Molecular evolution analyses using Murinae genomes identify adaptive evolution in proteins in both pathways. We propose that centromere proteins have recurrently evolved to minimize the kinetochore pathway, which is exploited by selfish DNA, relative to the heterochromatin pathway that equalizes centromeres, while maintaining essential functions.
Collapse
Affiliation(s)
- Tomohiro Kumon
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jun Ma
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R Brian Akins
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C Erik Nordgren
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mia T Levine
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
36
|
Maier NK, Ma J, Lampson MA, Cheeseman IM. Separase cleaves the kinetochore protein Meikin at the meiosis I/II transition. Dev Cell 2021; 56:2192-2206.e8. [PMID: 34331869 PMCID: PMC8355204 DOI: 10.1016/j.devcel.2021.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
To generate haploid gametes, germ cells undergo two consecutive meiotic divisions requiring key changes to the cell division machinery. Here, we demonstrate that the protease separase rewires key cell division processes at the meiosis I/II transition by cleaving the meiosis-specific protein Meikin. Separase proteolysis does not inactivate Meikin but instead alters its function to create a distinct activity state. Full-length Meikin and the C-terminal Meikin separase cleavage product both localize to kinetochores, bind to Plk1 kinase, and promote Rec8 cleavage, but our results reveal distinct roles for these proteins in controlling meiosis. Mutations that prevent Meikin cleavage or that conditionally inactivate Meikin at anaphase I result in defective meiosis II chromosome alignment in mouse oocytes. Finally, as oocytes exit meiosis, C-Meikin is eliminated by APC/C-mediated degradation prior to the first mitotic division. Thus, multiple regulatory events irreversibly modulate Meikin activity during successive meiotic divisions to rewire the cell division machinery at two distinct transitions.
Collapse
Affiliation(s)
- Nolan K Maier
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jun Ma
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
37
|
Böhm M, Killinger K, Dudziak A, Pant P, Jänen K, Hohoff S, Mechtler K, Örd M, Loog M, Sanchez-Garcia E, Westermann S. Cdc4 phospho-degrons allow differential regulation of Ame1 CENP-U protein stability across the cell cycle. eLife 2021; 10:67390. [PMID: 34308839 PMCID: PMC8341979 DOI: 10.7554/elife.67390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/24/2021] [Indexed: 02/05/2023] Open
Abstract
Kinetochores are multi-subunit protein assemblies that link chromosomes to microtubules of the mitotic and meiotic spindle. It is still poorly understood how efficient, centromere-dependent kinetochore assembly is accomplished from hundreds of individual protein building blocks in a cell cycle-dependent manner. Here, by combining comprehensive phosphorylation analysis of native Ctf19CCAN subunits with biochemical and functional assays in the model system budding yeast, we demonstrate that Cdk1 phosphorylation activates phospho-degrons on the essential subunit Ame1CENP-U, which are recognized by the E3 ubiquitin ligase complex SCF-Cdc4. Gradual phosphorylation of degron motifs culminates in M-phase and targets the protein for degradation. Binding of the Mtw1Mis12 complex shields the proximal phospho-degron, protecting kinetochore-bound Ame1 from the degradation machinery. Artificially increasing degron strength partially suppresses the temperature sensitivity of a cdc4 mutant, while overexpression of Ame1-Okp1 is toxic in SCF mutants, demonstrating the physiological importance of this mechanism. We propose that phospho-regulated clearance of excess CCAN subunits facilitates efficient centromere-dependent kinetochore assembly. Our results suggest a novel strategy for how phospho-degrons can be used to regulate the assembly of multi-subunit complexes.
Collapse
Affiliation(s)
- Miriam Böhm
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Kerstin Killinger
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Alexander Dudziak
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Pradeep Pant
- Department of Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karolin Jänen
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Karl Mechtler
- IMP - Research Institute of Molecular Pathology, Vienna, Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria.,Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Mihkel Örd
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Elsa Sanchez-Garcia
- Department of Computational Biochemistry, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Westermann
- Department of Molecular Genetics I, Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
38
|
Walstein K, Petrovic A, Pan D, Hagemeier B, Vogt D, Vetter IR, Musacchio A. Assembly principles and stoichiometry of a complete human kinetochore module. SCIENCE ADVANCES 2021; 7:7/27/eabg1037. [PMID: 34193424 PMCID: PMC8245036 DOI: 10.1126/sciadv.abg1037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/14/2021] [Indexed: 05/03/2023]
Abstract
Centromeres are epigenetically determined chromosomal loci that seed kinetochore assembly to promote chromosome segregation during cell division. CENP-A, a centromere-specific histone H3 variant, establishes the foundations for centromere epigenetic memory and kinetochore assembly. It recruits the constitutive centromere-associated network (CCAN), which in turn assembles the microtubule-binding interface. How the specific organization of centromeric chromatin relates to kinetochore assembly and to centromere identity through cell division remains conjectural. Here, we break new ground by reconstituting a functional full-length version of CENP-C, the largest human CCAN subunit and a blueprint of kinetochore assembly. We show that full-length CENP-C, a dimer, binds stably to two nucleosomes and permits further assembly of all other kinetochore subunits in vitro with relative ratios closely matching those of endogenous human kinetochores. Our results imply that human kinetochores emerge from clustering multiple copies of a fundamental module and may have important implications for transgenerational inheritance of centromeric chromatin.
Collapse
Affiliation(s)
- Kai Walstein
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstraße 1, 45141 Essen, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dongqing Pan
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Birte Hagemeier
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Dorothee Vogt
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstraße 1, 45141 Essen, Germany
| |
Collapse
|
39
|
Cavazza T, Takeda Y, Politi AZ, Aushev M, Aldag P, Baker C, Choudhary M, Bucevičius J, Lukinavičius G, Elder K, Blayney M, Lucas-Hahn A, Niemann H, Herbert M, Schuh M. Parental genome unification is highly error-prone in mammalian embryos. Cell 2021; 184:2860-2877.e22. [PMID: 33964210 PMCID: PMC8162515 DOI: 10.1016/j.cell.2021.04.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Most human embryos are aneuploid. Aneuploidy frequently arises during the early mitotic divisions of the embryo, but its origin remains elusive. Human zygotes that cluster their nucleoli at the pronuclear interface are thought to be more likely to develop into healthy euploid embryos. Here, we show that the parental genomes cluster with nucleoli in each pronucleus within human and bovine zygotes, and clustering is required for the reliable unification of the parental genomes after fertilization. During migration of intact pronuclei, the parental genomes polarize toward each other in a process driven by centrosomes, dynein, microtubules, and nuclear pore complexes. The maternal and paternal chromosomes eventually cluster at the pronuclear interface, in direct proximity to each other, yet separated. Parental genome clustering ensures the rapid unification of the parental genomes on nuclear envelope breakdown. However, clustering often fails, leading to chromosome segregation errors and micronuclei, incompatible with healthy embryo development.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Yuko Takeda
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK
| | - Antonio Z Politi
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Magomet Aushev
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK
| | - Patrick Aldag
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | | | - Meenakshi Choudhary
- Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4EP Newcastle upon Tyne, UK
| | - Jonas Bucevičius
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | - Kay Elder
- Bourn Hall Clinic, CB23 2TN Cambridge, UK
| | | | - Andrea Lucas-Hahn
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | - Heiner Niemann
- Institute of Farm Animal Genetics, Biotechnology, Friedrich-Loeffler-Institute, Mariensee, 31535 Neustadt, Germany
| | - Mary Herbert
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, NE1 4EP Newcastle upon Tyne, UK; Newcastle Fertility Centre at Life, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4EP Newcastle upon Tyne, UK
| | - Melina Schuh
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
40
|
Li X, Mao W, Chen J, Goding CR, Cui R, Xu ZX, Miao X. The protective role of MC1R in chromosome stability and centromeric integrity in melanocytes. Cell Death Discov 2021; 7:111. [PMID: 34001865 PMCID: PMC8128912 DOI: 10.1038/s41420-021-00499-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 12/20/2022] Open
Abstract
Variants in the melanocortin-1 receptor (MC1R) gene, encoding a trimeric G-protein-coupled receptor and activated by α-melanocyte-stimulating hormone (α-MSH), are frequently associated with red or blonde hair, fair skin, freckling, and skin sensitivity to ultraviolet (UV) light. Several red hair color variants of MC1R are also associated with increased melanoma risk. MC1R variants affect melanoma risk independent of phenotype. Here, we demonstrated that MC1R is a critical factor in chromosome stability and centromere integrity in melanocytes. α-MSH/MC1R stimulation prevents melanocytes from UV radiation-induced damage of chromosome stability and centromere integrity. Mechanistic studies indicated that α-MSH/MC1R-controlled chromosome stability and centromeric integrity are mediated by microphthalmia-associated transcription factor (Mitf), a transcript factor needed for the α-MSH/MC1R signaling and a regulator in melanocyte development, viability, and pigment production. Mitf directly interacts with centromere proteins A in melanocytes. Given the connection among MC1R variants, red hair/fair skin phenotype, and melanoma development, these studies will help answer a question with clinical relevance “why red-haired individuals are so prone to developing melanoma”, and will lead to the identification of novel preventive and therapeutic strategies for melanomas, especially those with redheads.
Collapse
Affiliation(s)
- Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China.,Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Weiwei Mao
- Department of Dermatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, China
| | - Jie Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China
| | - Colin R Goding
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Rutao Cui
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China.
| | - Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 200437, Shanghai, China. .,Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, 201203, Shanghai, China.
| |
Collapse
|
41
|
Hartley GA, Okhovat M, O'Neill RJ, Carbone L. Comparative analyses of gibbon centromeres reveal dynamic genus specific shifts in repeat composition. Mol Biol Evol 2021; 38:3972-3992. [PMID: 33983366 PMCID: PMC8382927 DOI: 10.1093/molbev/msab148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centromeres are functionally conserved chromosomal loci essential for proper chromosome segregation during cell division, yet they show high sequence diversity across species. Despite their variation, a near universal feature of centromeres is the presence of repetitive sequences, such as DNA satellites and transposable elements (TEs). Because of their rapidly evolving karyotypes, gibbons represent a compelling model to investigate divergence of functional centromere sequences across short evolutionary timescales. In this study, we use ChIP-seq, RNA-seq, and fluorescence in situ hybridization to comprehensively investigate the centromeric repeat content of the four extant gibbon genera (Hoolock, Hylobates, Nomascus, and Siamang). In all gibbon genera, we find that CENP-A nucleosomes and the DNA-proteins that interface with the inner kinetochore preferentially bind retroelements of broad classes rather than satellite DNA. A previously identified gibbon-specific composite retrotransposon, LAVA, known to be expanded within the centromere regions of one gibbon genus (Hoolock), displays centromere- and species-specific sequence differences, potentially as a result of its co-option to a centromeric function. When dissecting centromere satellite composition, we discovered the presence of the retroelement-derived macrosatellite SST1 in multiple centromeres of Hoolock, whereas alpha-satellites represent the predominate satellite in the other genera, further suggesting an independent evolutionary trajectory for Hoolock centromeres. Finally, using de novo assembly of centromere sequences, we determined that transcripts originating from gibbon centromeres recapitulate the species-specific TE composition. Combined, our data reveal dynamic shifts in the repeat content that define gibbon centromeres and coincide with the extensive karyotypic diversity within this lineage.
Collapse
Affiliation(s)
- Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269.,Department of Genomics and Genome Sciences, UConn Health, Farmington, CT, 06030
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239.,Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, 97006.,Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239.,Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, 97239
| |
Collapse
|
42
|
Leclerc S, Kitagawa K. The Role of Human Centromeric RNA in Chromosome Stability. Front Mol Biosci 2021; 8:642732. [PMID: 33869284 PMCID: PMC8044762 DOI: 10.3389/fmolb.2021.642732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chromosome instability is a hallmark of cancer and is caused by inaccurate segregation of chromosomes. One cellular structure used to avoid this fate is the kinetochore, which binds to the centromere on the chromosome. Human centromeres are poorly understood, since sequencing and analyzing repeated alpha-satellite DNA regions, which can span a few megabases at the centromere, are particularly difficult. However, recent analyses revealed that these regions are actively transcribed and that transcription levels are tightly regulated, unveiling a possible role of RNA at the centromere. In this short review, we focus on the recent discovery of the function of human centromeric RNA in the regulation and structure of the centromere, and discuss the consequences of dysregulation of centromeric RNA in cancer.
Collapse
Affiliation(s)
- Simon Leclerc
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Katsumi Kitagawa
- Greehey Children's Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
43
|
Navarro AP, Cheeseman IM. Kinetochore assembly throughout the cell cycle. Semin Cell Dev Biol 2021; 117:62-74. [PMID: 33753005 DOI: 10.1016/j.semcdb.2021.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/29/2022]
Abstract
The kinetochore plays an essential role in facilitating chromosome segregation during cell division. This massive protein complex assembles onto the centromere of chromosomes and enables their attachment to spindle microtubules during mitosis. The kinetochore also functions as a signaling hub to regulate cell cycle progression, and is crucial to ensuring the fidelity of chromosome segregation. Despite the fact that kinetochores are large and robust molecular assemblies, they are also highly dynamic structures that undergo structural and organizational changes throughout the cell cycle. This review will highlight our current understanding of kinetochore structure and function, focusing on the dynamic processes that underlie kinetochore assembly.
Collapse
Affiliation(s)
- Alexandra P Navarro
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
44
|
Nagpal H, Fierz B. The Elusive Structure of Centro-Chromatin: Molecular Order or Dynamic Heterogenetity? J Mol Biol 2021; 433:166676. [PMID: 33065112 DOI: 10.1016/j.jmb.2020.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 01/09/2023]
Abstract
The centromere is an essential chromatin domain required for kinetochore recruitment and chromosome segregation in eukaryotes. To perform this role, centro-chromatin adopts a unique structure that provides access to kinetochore proteins and maintains stability under tension during mitosis. This is achieved by the presence of nucleosomes containing the H3 variant CENP-A, which also acts as the epigenetic mark defining the centromere. In this review, we discuss the role of CENP-A on the structure and dynamics of centromeric chromatin. We further discuss the impact of the CENP-A binding proteins CENP-C, CENP-N, and CENP-B on modulating centro-chromatin structure. Based on these findings we provide an overview of the higher order structure of the centromere.
Collapse
Affiliation(s)
- Harsh Nagpal
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| | - Beat Fierz
- Laboratory of Biophysical Chemistry of Macromolecules, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
CENP-A nucleosome-a chromatin-embedded pedestal for the centromere: lessons learned from structural biology. Essays Biochem 2021; 64:205-221. [PMID: 32720682 PMCID: PMC7475651 DOI: 10.1042/ebc20190074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/17/2022]
Abstract
The centromere is a chromosome locus that directs equal segregation of chromosomes during cell division. A nucleosome containing the histone H3 variant CENP-A epigenetically defines the centromere. Here, we summarize findings from recent structural biology studies, including several CryoEM structures, that contributed to elucidate specific features of the CENP-A nucleosome and molecular determinants of its interactions with CENP-C and CENP-N, the only two centromere proteins that directly bind to it. Based on those findings, we propose a role of the CENP-A nucleosome in the organization of centromeric chromatin beyond binding centromeric proteins.
Collapse
|
46
|
Ariyoshi M, Makino F, Watanabe R, Nakagawa R, Kato T, Namba K, Arimura Y, Fujita R, Kurumizaka H, Okumura EI, Hara M, Fukagawa T. Cryo-EM structure of the CENP-A nucleosome in complex with phosphorylated CENP-C. EMBO J 2021; 40:e105671. [PMID: 33463726 DOI: 10.15252/embj.2020105671] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.
Collapse
Affiliation(s)
- Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,JEOL Ltd., Akishima, Tokyo, Japan
| | - Reito Watanabe
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,Institute of Protein Research, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR) and SPring-8 Center, and JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Yasuhiro Arimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Risa Fujita
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Ei-Ichi Okumura
- Laboratory of Cell and Developmental Biology, Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Masatoshi Hara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
47
|
Singh P, Pesenti ME, Maffini S, Carmignani S, Hedtfeld M, Petrovic A, Srinivasamani A, Bange T, Musacchio A. BUB1 and CENP-U, Primed by CDK1, Are the Main PLK1 Kinetochore Receptors in Mitosis. Mol Cell 2021; 81:67-87.e9. [PMID: 33248027 PMCID: PMC7837267 DOI: 10.1016/j.molcel.2020.10.040] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 02/02/2023]
Abstract
Reflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself. Here, we combine ectopic localization, in vitro reconstitution, and kinetochore localization studies to demonstrate that most and likely all of the PLK1 is recruited through BUB1 in the outer kinetochore and centromeric protein U (CENP-U) in the inner kinetochore. BUB1 and CENP-U share a constellation of sequence motifs consisting of a putative PP2A-docking motif and two neighboring PLK1-docking sites, which, contingent on priming phosphorylation by cyclin-dependent kinase 1 and PLK1 itself, bind PLK1 and promote its dimerization. Our results rationalize previous observations and describe a unifying mechanism for recruitment of PLK1 to human kinetochores.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marion E Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Sara Carmignani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Anupallavi Srinivasamani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
48
|
Singh D, Schmidt N, Müller F, Bange T, Bird AW. Destabilization of Long Astral Microtubules via Cdk1-Dependent Removal of GTSE1 from Their Plus Ends Facilitates Prometaphase Spindle Orientation. Curr Biol 2020; 31:766-781.e8. [PMID: 33333009 DOI: 10.1016/j.cub.2020.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The precise regulation of microtubule dynamics over time and space in dividing cells is critical for several mitotic mechanisms that ultimately enable cell proliferation, tissue organization, and development. Astral microtubules, which extend from the centrosome toward the cell cortex, must be present for the mitotic spindle to properly orient, as well as for the faithful execution of anaphase and cytokinesis. However, little is understood about how the dynamic properties of astral microtubules are regulated spatiotemporally, or the contribution of astral microtubule dynamics to spindle positioning. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells enter mitosis, but how Cdk1 activity modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here, we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules in prometaphase and thereby influences spindle reorientation. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus ends in mitosis. This decreases the catastrophe frequency of astral microtubules and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules thus must not only be present but also dynamic to allow the spindle to reorient, a state assisted by selective destabilization of long astral microtubules via Cdk1.
Collapse
Affiliation(s)
- Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethestrasse 31/ I, 80336 Munich, Germany
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
49
|
Melters DP, Dalal Y. Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin. J Mol Biol 2020; 433:166720. [PMID: 33221335 PMCID: PMC8770095 DOI: 10.1016/j.jmb.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
Chromatin is the epigenomic platform for diverse nuclear processes such as DNA repair, replication, transcription, telomere, and centromere function. In cancer cells, mutations in key processes result in DNA amplification, chromosome translocations, and chromothripsis, severely distorting the natural chromatin state. In normal and diseased states, dozens of chromatin effectors alter the physical integrity and dynamics of chromatin at the level of both single nucleosomes and arrays of nucleosomes folded into 3-dimensional shapes. Integrating these length scales, from the 10 nm sized nucleosome to mitotic chromosomes, whilst jostling within the crowded environment of the cell, cannot yet be achieved by a single technology. In this review, we discuss tools that have proven powerful in the investigation of nucleosome and chromatin fiber dynamics. We also provide a deeper focus into atomic force microscopy (AFM) applications that can bridge diverse length and time scales. Using time course AFM, we observe that chromatin condensation by H1.5 is dynamic, whereas using nano-indentation force spectroscopy we observe that both histone variants and nucleosome binding partners alter material properties of individual nucleosomes. Finally, we demonstrate how high-speed AFM can visualize plasmid DNA dynamics, intermittent nucleosome-nucleosome contacts, and changes in nucleosome phasing along a contiguous chromatin fiber. Altogether, the development of innovative technologies holds the promise of revealing the secret lives of nucleosomes, potentially bridging the gaps in our understanding of how chromatin works within living cells and tissues.
Collapse
Affiliation(s)
- Daniël P Melters
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, United States.
| | - Yamini Dalal
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, United States.
| |
Collapse
|
50
|
Kukreja AA, Kavuri S, Joglekar AP. Microtubule Attachment and Centromeric Tension Shape the Protein Architecture of the Human Kinetochore. Curr Biol 2020; 30:4869-4881.e5. [PMID: 33035484 DOI: 10.1016/j.cub.2020.09.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022]
Abstract
The nanoscale protein architecture of the kinetochore plays an integral role in specifying the mechanisms underlying its functions in chromosome segregation. However, defining this architecture in human cells remains challenging because of the large size and compositional complexity of the kinetochore. Here, we use Förster resonance energy transfer to reveal the architecture of individual kinetochore-microtubule attachments in human cells. We find that the microtubule-binding domains of the Ndc80 complex cluster at the microtubule plus end. This clustering occurs only after microtubule attachment, and it increases proportionally with centromeric tension. Surprisingly, Ndc80 complex clustering is independent of the organization and number of its centromeric receptors. Moreover, this clustering is similar in yeast and human kinetochores despite significant differences in their centromeric organizations. These and other data suggest that the microtubule-binding interface of the human kinetochore behaves like a flexible "lawn" despite being nucleated by repeating biochemical subunits.
Collapse
Affiliation(s)
- Alexander A Kukreja
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA
| | - Sisira Kavuri
- Department of Cellular & Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Ajit P Joglekar
- Department of Biophysics, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109, USA; Department of Cellular & Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA.
| |
Collapse
|