1
|
Malmhäll-Bah E, Andersson KM, Erlandsson MC, Silfverswärd ST, Pullerits R, Bokarewa MI. Metabolic signature and proteasome activity controls synovial migration of CDC42hiCD14 + cells in rheumatoid arthritis. Front Immunol 2023; 14:1187093. [PMID: 37662900 PMCID: PMC10469903 DOI: 10.3389/fimmu.2023.1187093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Activation of Rho-GTPases in macrophages causes inflammation and severe arthritis in mice. In this study, we explore if Rho-GTPases define the joint destination of pathogenic leukocytes, the mechanism by which they perpetuate rheumatoid arthritis (RA), and how JAK inhibition mitigates these effects. Methods CD14+ cells of 136 RA patients were characterized by RNA sequencing and cytokine measurement to identify biological processes and transcriptional regulators specific for CDC42 hiCD14+ cells, which were summarized in a metabolic signature (MetSig). The effect of hypoxia and IFN-γ signaling on the metabolic signature of CD14+ cells was assessed experimentally. To investigate its connection with joint inflammation, the signature was translated into the single-cell characteristics of CDC42 hi synovial tissue macrophages. The sensitivity of MetSig to the RA disease activity and the treatment effect were assessed experimentally and clinically. Results CDC42 hiCD14+ cells carried MetSig of genes functional in the oxidative phosphorylation and proteasome-dependent cell remodeling, which correlated with the cytokine-rich migratory phenotype and antigen-presenting capacity of these cells. Integration of CDC42 hiCD14+ and synovial macrophages marked with MetSig revealed the important role of the interferon-rich environment and immunoproteasome expression in the homeostasis of these pathogenic macrophages. The CDC42 hiCD14+ cells were targeted by JAK inhibitors and responded with the downregulation of immunoproteasome and MHC-II molecules, which disintegrated the immunological synapse, reduced cytokine production, and alleviated arthritis. Conclusion This study shows that the CDC42-related MetSig identifies the antigen-presenting CD14+ cells that migrate to joints to coordinate autoimmunity. The accumulation of CDC42 hiCD14+ cells discloses patients perceptive to the JAKi treatment.
Collapse
Affiliation(s)
- Eric Malmhäll-Bah
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin M.E. Andersson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Malin C. Erlandsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sofia T. Silfverswärd
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rille Pullerits
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maria I. Bokarewa
- Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Rheumatology Clinic, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Xu J, Shao R, Zhang X, Yao D, Han S. Serum cell division cycle 42 in advanced hepatocellular carcinoma patients: Linkage with clinical characteristics and immune checkpoint inhibitor-related treatment outcomes. Clin Res Hepatol Gastroenterol 2023; 47:102149. [PMID: 37247692 DOI: 10.1016/j.clinre.2023.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/27/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE Cell division cycle 42 (CDC42) facilitates immune escape and drug resistance towards immunotherapy in several malignancies. This prospective study aimed to explore the predictive value of serum CDC42 for immune checkpoint inhibitor (ICI)-treatment response and survival in advanced hepatocellular carcinoma (HCC) patients. METHODS Thirty advanced HCC patients scheduled for ICI or ICI-based treatment were enrolled in this prospective study, whose serum CDC42 was determined via enzyme-linked immunosorbent assay before therapy initiation. RESULTS The median (interquartile range) of serum CDC42 level was 766.5 (605.0-1329.5) pg/mL. Serum CDC42 was related to increased tumor size but decreased programmed death-ligand 1 combined positive score (PD-L1 CPS). With respect to ICI or ICI-based treatment outcomes, elevated serum CDC42 was associated with decreased disease control rate, but did not link with objective response rate. Patients with high serum CDC42 (vs. low, cut by its median level) had shortened progression-free survival (PFS), while overall survival (OS) only disclosed a reduced trend (lacked statistical significance) in patients with high serum CDC42 (vs. low). In detail, the median (95%CI) PFS and OS were 3.0 (0.0-6.0) months and 11.7 (2.7-20.7) months in patients with high serum CDC42, while they were 11.1 (6.6-15.6) months and 19.3 (14.5-24.1) months in patients with low CDC42. After adjusted by multivariate cox regression analysis, high serum CDC42 (vs. low) was independently associated with shortened PFS, but not OS. CONCLUSIONS Elevated serum CDC42 possesses a potential value in predicting worse ICI or ICI-based treatment outcomes in advanced HCC.
Collapse
Affiliation(s)
- Jinxia Xu
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China
| | - Ruiyu Shao
- Sixth Department of Oncology, Tangshan People's Hospital, Tangshan, China
| | - Xiaoru Zhang
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China
| | - Deshun Yao
- Second Department of Breast Surgery, Tangshan People's Hospital, Tangshan, China
| | - Sugui Han
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, China.
| |
Collapse
|
3
|
Yang L, Weng S, Qian X, Wang M, Ying W. Strategy for Microscale Extraction and Proteome Profiling of Peripheral Blood Mononuclear Cells. Anal Chem 2022; 94:8827-8832. [PMID: 35699231 DOI: 10.1021/acs.analchem.1c05365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) play vital roles in physiological and pathological processes and represent a rich source for disease monitoring. Typical molecular profiling on PBMCs involves the sorting of cell subsets and thus requires a large volume of peripheral blood (PB), which impedes the clinical practicability of omics tools in PBMC measurements. It would be clinically invaluable to develop a convenient approach for preparing PBMCs from small volumes of PB and for deep proteome profiling of PBMCs. To this end, here, we designed an apparatus (PBMC-mCap) for microscale enrichment and proteome analysis of PBMCs, which pushed the needed PB volume from the normal 2 mL or higher to 100 μL or lower, comparable to the volume of a drop of finger blood. A PBMC-specific mass spectra library containing 8869 proteins and 121,956 peptides was further built, which, in combination with the optimized data-independent acquisition strategy, helped to identify 6000 and 6500 proteins from PBMCs with 100 μL and 1 mL of PB as initial materials, respectively. Further application of the strategy for PBMC proteomes revealed a steady difference between gender (male vs female) and upon stimulus (COVID-19 vaccination). For the latter, we observed differentially expressed genes and pathways involving the activation of immune cells, including the NF-κB pathway, inflammation response, and antiviral response. Our strategy for the proteome analysis of microscale PBMCs may provide a convenient clinical toolkit for disease diagnosis and healthy state monitoring.
Collapse
Affiliation(s)
- Li Yang
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Shuang Weng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Mingchao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| | - Wantao Ying
- School of Basic Medical Science, Anhui Medical University, Hefei 230032, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing 102206, China
| |
Collapse
|
4
|
Amo L, Díez-García J, Tamayo-Orbegozo E, Maruri N, Larrucea S. Podocalyxin Expressed in Antigen Presenting Cells Promotes Interaction With T Cells and Alters Centrosome Translocation to the Contact Site. Front Immunol 2022; 13:835527. [PMID: 35711462 PMCID: PMC9197222 DOI: 10.3389/fimmu.2022.835527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Podocalyxin (PODXL), a cell surface sialomucin expressed in diverse types of normal and malignant cells, mediates cellular adhesion to extracellular matrix and cell-to-cell interaction. A previous study reported the expression of PODXL protein on monocytes undergoing macrophage differentiation, yet the expression of this molecule in other antigen presenting cells (APCs) and its function in the immune system still remain undetermined. In this study, we report that PODXL is expressed in human monocyte-derived immature dendritic cells at both the mRNA and protein levels. Following dendritric cells maturation using pro-inflammatory stimuli, PODXL expression level decreased substantially. Furthermore, we found that PODXL expression is positively regulated by IL-4 through MEK/ERK and JAK3/STAT6 signaling pathways. Our results revealed a polarized distribution of PODXL during the interaction of APCs with CD4+ T cells, partially colocalizing with F-actin. Notably, PODXL overexpression in APCs promoted their interaction with CD4+ T cells and CD8+ T cells and decreased the expression of MHC-I, MHC-II, and the costimulatory molecule CD86. In addition, PODXL reduced the translocation of CD4+ T-cell centrosome toward the APC-contact site. These findings suggest a regulatory role for PODXL expressed by APCs in immune responses, thus representing a potential target for therapeutic blockade in infection and cancer.
Collapse
Affiliation(s)
- Laura Amo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Javier Díez-García
- Microscopy Facility, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Estíbaliz Tamayo-Orbegozo
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Natalia Maruri
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Susana Larrucea
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- *Correspondence: Susana Larrucea,
| |
Collapse
|
5
|
Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis using nanoparticles. Mol Aspects Med 2022; 83:100993. [PMID: 34281720 PMCID: PMC8761201 DOI: 10.1016/j.mam.2021.100993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
Endocytosis mechanisms are one of the methods that cells use to interact with their environments. Endocytosis mechanisms vary from the clathrin-mediated endocytosis to the receptor independent macropinocytosis. Macropinocytosis is a niche of endocytosis that is quickly becoming more relevant in various fields of research since its discovery in the 1930s. Macropinocytosis has several distinguishing factors from other receptor-mediated forms of endocytosis, including: types of extracellular material for uptake, signaling cascade, and niche uses between cell types. Nanoparticles (NPs) are an important tool for various applications, including drug delivery and disease treatment. However, surface engineering of NPs could be tailored to target them inside the cells exploiting different endocytosis pathways, such as endocytosis versus macropinocytosis. Such surface engineering of NPs mainly, size, charge, shape and the core material will allow identification of new adapter molecules regulating different endocytosis process and provide further insight into how cells tweak these pathways to meet their physiological need. In this review, we focus on the description of macropinocytosis, a lesser studied endocytosis mechanism than the conventional receptor mediated endocytosis. Additionally, we will discuss nanoparticle endocytosis (including macropinocytosis), and how the physio-chemical properties of the NP (size, charge, and surface coating) affect their intracellular uptake and exploiting them as tools to identify new adapter molecules regulating these processes.
Collapse
Affiliation(s)
- Nicolas Means
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Wei R Chen
- Stephenson School of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Lin W, Zhou S, Feng M, Yu Y, Su Q, Li X. Soluble CD83 Regulates Dendritic Cell-T Cell Immunological Synapse Formation by Disrupting Rab1a-Mediated F-Actin Rearrangement. Front Cell Dev Biol 2021; 8:605713. [PMID: 33585445 PMCID: PMC7874230 DOI: 10.3389/fcell.2020.605713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Dendritic cell-T cell (DC-T) contacts play an important role in T cell activation, clone generation, and development. Regulating the cytoskeletal protein rearrangement of DCs can modulate DC-T contact and affect T cell activation. However, inhibitory factors on cytoskeletal regulation in DCs remain poorly known. We showed that a soluble form of CD83 (sCD83) inhibited T cell activation by decreasing DC-T contact and synapse formation between DC and T cells. This negative effect of sCD83 on DCs was mediated by disruption of F-actin rearrangements, leading to alter expression and localization of major histocompatibility complex class II (MHC-II) and immunological synapse formation between DC and T cells. Furthermore, sCD83 was found to decrease GTP-binding activity of Rab1a, which further decreased colocalization and expression of LRRK2 and F-actin rearrangements in DCs, leading to the loss of MHC-II at DC-T synapses and reduced DC-T synapse formation. Further, sCD83-treated DCs alleviated symptoms of experimental autoimmune uveitis in mice and decreased the number of T cells in the eyes and lymph nodes of these animals. Our findings demonstrate a novel signaling pathway of sCD83 on regulating DC-T contact, which may be harnessed to develop new immunosuppressive therapeutics for autoimmune disease.
Collapse
Affiliation(s)
- Wei Lin
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Shuping Zhou
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Meng Feng
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Yong Yu
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Qinghong Su
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| | - Xiaofan Li
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Science, Jinan, China
| |
Collapse
|
7
|
Liu X, Xia X, Wang X, Zhou J, Sung LA, Long J, Geng X, Zeng Z, Yao W. Tropomodulin1 Expression Increases Upon Maturation in Dendritic Cells and Promotes Their Maturation and Immune Functions. Front Immunol 2021; 11:587441. [PMID: 33552047 PMCID: PMC7856346 DOI: 10.3389/fimmu.2020.587441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. Upon maturation, DCs express costimulatory molecules and migrate to the lymph nodes to present antigens to T cells. The actin cytoskeleton plays key roles in multiple aspects of DC functions. However, little is known about the mechanisms and identities of actin-binding proteins that control DC maturation and maturation-associated functional changes. Tropomodulin1 (Tmod1), an actin-capping protein, controls actin depolymerization and nucleation. We found that Tmod1 was expressed in bone marrow-derived immature DCs and was significantly upregulated upon lipopolysaccharide (LPS)-induced DC maturation. By characterizing LPS-induced mature DCs (mDCs) from Tmod1 knockout mice, we found that compared with Tmod1+/+ mDCs, Tmod1-deficient mDCs exhibited lower surface expression of costimulatory molecules and chemokine receptors and reduced secretion of inflammatory cytokines, suggesting that Tmod1 deficiency retarded DC maturation. Tmod1-deficient mDCs also showed impaired random and chemotactic migration, deteriorated T-cell stimulatory ability, and reduced F-actin content and cell stiffness. Furthermore, Tmod1-deficient mDCs secreted high levels of IFN-β and IL-10 and induced immune tolerance in an experimental autoimmune encephalomyelitis (EAE) mouse model. Mechanistically, Tmod1 deficiency affected TLR4 signaling transduction, resulting in the decreased activity of MyD88-dependent NFκB and MAPK pathways but the increased activity of the TRIF/IRF3 pathway. Rescue with exogenous Tmod1 reversed the effect of Tmod1 deficiency on TLR4 signaling. Therefore, Tmod1 is critical in regulating DC maturation and immune functions by regulating TLR4 signaling and the actin cytoskeleton. Tmod1 may be a potential target for modulating DC functions, a strategy that would be beneficial for immunotherapy for several diseases.
Collapse
Affiliation(s)
- Xianmei Liu
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xue Xia
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xifu Wang
- Department of Emergency, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Zhou
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lanping Amy Sung
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Jinhua Long
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xueyu Geng
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhu Zeng
- School of Basic Medical Sciences, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Weijuan Yao
- Hemorheology Center, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University Health Center, Beijing, China
| |
Collapse
|
8
|
Oliveira MMS, Westerberg LS. Cytoskeletal regulation of dendritic cells: An intricate balance between migration and presentation for tumor therapy. J Leukoc Biol 2020; 108:1051-1065. [PMID: 32557835 DOI: 10.1002/jlb.1mr0520-014rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/28/2022] Open
Abstract
Dendritic cells (DCs) are the main players in many approaches for cancer therapy. The idea with DC tumor therapy is to promote activation of tumor infiltrating cytotoxic T cells that kill tumor cells. This requires that DCs take up tumor Ag and present peptides on MHC class I molecules in a process called cross-presentation. For this process to be efficient, DCs have to migrate to the tumor draining lymph node and there activate the machinery for cross-presentation. In this review, we will discuss recent progress in understanding the role of actin regulators for control of DC migration and Ag presentation. The potential to target actin regulators for better DC-based tumor therapy will also be discussed.
Collapse
Affiliation(s)
- Mariana M S Oliveira
- Department of Microbiology Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Mao F, Wong NK, Lin Y, Zhang X, Liu K, Huang M, Xu D, Xiang Z, Li J, Zhang Y, Yu Z. Transcriptomic Evidence Reveals the Molecular Basis for Functional Differentiation of Hemocytes in a Marine Invertebrate, Crassostrea gigas. Front Immunol 2020; 11:911. [PMID: 32536915 PMCID: PMC7269103 DOI: 10.3389/fimmu.2020.00911] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Hemocytes play unequivocally central roles in host immune defense of bivalve mollusks, though the exact mechanisms underlying their functional differentiation are only partially understood. To this end, granulocytes and hyalinocytes were sorted via flow cytometry from hemocytes of the Pacific oyster Crassostrea gigas, and consequently quantitative transcriptomic analysis revealed a striking array of differentially expressed genes (DEGs), which were globally upregulated in granulocytes, dedicating to functional differentiation among oyster hemocytes. Our network of DEGs illustrated actively engaged signaling pathways, with Cdc42/Cdc42l being a core regulator of pathway network, which was validated by a dramatically reduced capacity for hemocyte phagocytosis in the presence of Cdc42 inhibitors. Additionally, a number of transcription factors were identified among DEGs, including ELK, HELT, and Fos, which were predominantly expressed in granulocytes. The AP-1 transcription factor Fos was confirmed to facilitate functional differentiation of hemocytes in an assay on binding to target genes by the AP-1 binding site, consistent with downstream phagocytosis and ROS production. Importantly, Cdc42/Cdc42l were also regulated by the expression of Fos, providing a possible regulatory mechanism-guided hemocyte functional differentiation. Findings in this study have bridged a knowledge gap on the mechanistic underpinnings of functional differentiation of hemocytes in a marine invertebrate C. gigas, which promise to facilitate research on the evolution of immune defense and functional differentiation of phagocyte in higher-order and more recent phyla.
Collapse
Affiliation(s)
- Fan Mao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Nai-Kei Wong
- Department of Infectious Diseases, Shenzhen Third People's Hospital, The Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yue Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Xiangyu Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Kunna Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Minwei Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Duo Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Zhiming Xiang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Ziniu Yu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Čolić M, Tomić S, Bekić M. Immunological aspects of nanocellulose. Immunol Lett 2020; 222:80-89. [PMID: 32278785 DOI: 10.1016/j.imlet.2020.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/21/2020] [Accepted: 04/04/2020] [Indexed: 12/31/2022]
Abstract
Cellulose is the most abundant natural polymer in the world. Nanoscale forms of cellulose, including cellulose nanofibers (CNF), cellulose nanocrystals (CNC) and bacterial nanocellulose (BC), are very attractive in industry, medicine and pharmacy. Biomedical applications of nanocellulose in tissue engineering, regenerative medicine, and controlled drug delivery are the most promising. Nanocellulose is considered a biocompatible nanomaterial and relatively safe for biomedical applications. However, more studies are needed to prove this hypothesis, especially those related to chronic exposure to nanocellulose. Besides toxicity, the response of the immune system is of particular importance in this sense. This paper provides a comprehensive and critical review of the current-state knowledge of the impact of nanocellulose on the immune system, especially on macrophages and dendritic cells (DC), as the central immunoregulatory cells, which has not been addressed in the literature sufficiently. Nanocellulose, especially CNC, can induce the inflammatory response upon the internalization by macrophages, but this reaction may be significantly modulated by introducing different functional groups on their surface. Our original results showed that nanocellulose has a potent immunotolerogenic potential. Native CNF potentiated the capacity of DC to induce conventional Tregs. When carboxyl groups were introduced on the CNF surface, the tolerogenic potential of DC was shifted towards the induction of regulatory CD8+ T cells, whereas the introduction of phosphonates on CNF surface potentiated DCs' capacity to induce both regulatory CD8+ T cells and Type 1 regulatory (Tr-1) cells. These results are extremely important when considering the application of nanocellulose in vivo, especially for tissue regeneration and wound healing.
Collapse
Affiliation(s)
- Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia; University of East Sarajevo, Medical Faculty Foča, R.Srpska, BiH; Serbian Academy of Sciences and Arts, Belgrade, Serbia.
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, Serbia
| |
Collapse
|
11
|
Gao Q, Li F, Wang S, Shen Z, Cheng S, Ping Y, Qin G, Chen X, Yang L, Cao L, Liu S, Zhang B, Wang L, Sun Y, Zhang Y. A cycle involving HMGB1, IFN-γ and dendritic cells plays a putative role in anti-tumor immunity. Cell Immunol 2019; 343:103850. [PMID: 30153900 DOI: 10.1016/j.cellimm.2018.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/23/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022]
|
12
|
Spatial distribution of IL4 controls iNKT cell-DC crosstalk in tumors. Cell Mol Immunol 2019; 17:496-506. [PMID: 31160756 PMCID: PMC7192838 DOI: 10.1038/s41423-019-0243-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The spatiotemporal distribution of cytokines orchestrates immune responses in vivo, yet the underlying mechanisms remain to be explored. We showed here that the spatial distribution of interleukin-4 (IL4) in invariant natural killer T (iNKT) cells regulated crosstalk between iNKT cells and dendritic cells (DCs) and controlled iNKT cell-mediated T-helper type 1 (Th1) responses. The persistent polarization of IL4 induced by strong lipid antigens, that is, α-galactosylceramide (αGC), caused IL4 accumulation at the immunological synapse (IS), which promoted the activation of the IL4R-STAT6 (signal transducer and activator of transcription 6) pathway and production of IL12 in DCs, which enhanced interferon-γ (IFNγ) production in iNKT cells. Conversely, the nonpolarized secretion of IL4 induced by Th2 lipid antigens with a short or unsaturated chain was incapable of enhancing this iNKT cell-DC crosstalk and thus shifted the immune response to a Th2-type response. The nonpolarized secretion of IL4 in response to Th2 lipid antigens was caused by the degradation of Cdc42 in iNKT cells. Moreover, reduced Cdc42 expression was observed in tumor-infiltrating iNKT cells, which impaired IL4 polarization and disturbed iNKT cell-DC crosstalk in tumors.
Collapse
|
13
|
DeLay BD, Baldwin TA, Miller RK. Dynamin Binding Protein Is Required for Xenopus laevis Kidney Development. Front Physiol 2019; 10:143. [PMID: 30863317 PMCID: PMC6399408 DOI: 10.3389/fphys.2019.00143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
The adult human kidney contains over one million nephrons, with each nephron consisting of a tube containing segments that have specialized functions in nutrient and water absorption and waste excretion. The embryonic kidney of Xenopus laevis consists of a single functional nephron composed of regions that are analogous to those found in the human nephron, making it a simple model for the study of nephrogenesis. The exocyst complex, which traffics proteins to the cell membrane in vesicles via CDC42, is essential for normal kidney development. Here, we show that the CDC42-GEF, dynamin binding protein (Dnmbp/Tuba), is essential for nephrogenesis in Xenopus. dnmbp is expressed in Xenopus embryo kidneys during development, and knockdown of Dnmbp using two separate morpholino antisense oligonucleotides results in reduced expression of late pronephric markers, whereas the expression of early markers of nephrogenesis remains unchanged. A greater reduction in expression of markers of differentiated distal and connecting tubules was seen in comparison to proximal tubule markers, indicating that Dnmbp reduction may have a greater impact on distal and connecting tubule differentiation. Additionally, Dnmbp reduction results in glomus and ciliary defects. dnmbp knockout using CRISPR results in a similar reduction of late markers of pronephric tubulogenesis and also results in edema formation in later stage embryos. Overexpression of dnmbp in the kidney also resulted in disrupted pronephric tubules, suggesting that dnmbp levels in the developing kidney are tightly regulated, with either increased or decreased levels leading to developmental defects. Together, these data suggest that Dnmbp is required for nephrogenesis.
Collapse
Affiliation(s)
- Bridget D. DeLay
- Department of Pediatrics, McGovern Medical School, Pediatric Research Center, University of Texas Health Science Center, Houston, TX, United States
| | - Tanya A. Baldwin
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
- Program in Biochemistry and Cell Biology, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, TX, United States
| | - Rachel K. Miller
- Department of Pediatrics, McGovern Medical School, Pediatric Research Center, University of Texas Health Science Center, Houston, TX, United States
- Program in Biochemistry and Cell Biology, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, University of Texas Health Science Center, Houston, TX, United States
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Tomić S, Ilić N, Kokol V, Gruden-Movsesijan A, Mihajlović D, Bekić M, Sofronić-Milosavljević L, Čolić M, Vučević D. Functionalization-dependent effects of cellulose nanofibrils on tolerogenic mechanisms of human dendritic cells. Int J Nanomedicine 2018; 13:6941-6960. [PMID: 30464452 PMCID: PMC6217907 DOI: 10.2147/ijn.s183510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Cellulose nanofibrils (CNF) are attractive nanomaterials for various biomedical applications due to their excellent biocompatibility and biomimetic properties. However, their immunoregulatory properties are insufficiently investigated, especially in relation to their functionalization, which could cause problems during their clinical application. Methods Using a model of human dendritic cells (DC), which have a central role in the regulation of immune response, we investigated how differentially functionalized CNF, ie, native (n) CNF, 2,2,6,6-tetramethylpiperidine 1-oxyl radical-oxidized (c) CNF, and 3-aminopropylphosphoric acid-functionalized (APAc) CNF, affect DC properties, their viability, morphology, differentiation and maturation potential, and the capacity to regulate T cell-mediated immune response. Results Nontoxic doses of APAcCNF displayed the strongest inhibitory effects on DC differentiation, maturation, and T helper (Th) 1 and Th17 polarization capacity, followed by cCNF and nCNF, respectively. These results correlated with a specific pattern of regulatory cytokines production by APAcCNF-DC and their increased capacity to induce suppressive CD8+CD25+IL-10+ regulatory T cells in immunoglobulin-like transcript (ILT)-3- and ILT-4- dependent manner. In contrast, nCNF-DC induced predominantly suppressive CD4+CD25hiFoxP3hi regulatory T cells in indolamine 2,3-dioxygenase-1-dependent manner. Different tolerogenic properties of CNF correlated with their size and APA functionalization, as well as with different expression of CD209 and actin bundles at the place of contact with CNF. Conclusion The capacity to induce different types of DC-mediated tolerogenic immune responses by functionalized CNF opens new perspectives for their application as well-tolerated nanomaterials in tissue engineering and novel platforms for the therapy of inflammatory T cell-mediated pathologies.
Collapse
Affiliation(s)
- Sergej Tomić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia, .,Institute for Medical Research, Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia,
| | - Nataša Ilić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia,
| | - Vanja Kokol
- Institute of Engineering Materials and Design, University of Maribor, Maribor, Slovenia
| | | | - Dušan Mihajlović
- Institute for Medical Research, Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia,
| | - Marina Bekić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia,
| | | | - Miodrag Čolić
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia, .,Institute for Medical Research, Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia, .,Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dragana Vučević
- Institute for Medical Research, Medical Faculty of the Military Medical Academy, University of Defense, Belgrade, Serbia,
| |
Collapse
|
15
|
Lu M, Xu C, Zhang Q, Wu X, Tang L, Wang X, Wu J, Wu X. Inhibition of p21-activated kinase 1 attenuates the cardinal features of asthma through suppressing the lymph node homing of dendritic cells. Biochem Pharmacol 2018; 154:464-473. [PMID: 29906467 DOI: 10.1016/j.bcp.2018.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC) trafficking from lung to the draining mediastinal lymph nodes (MLNs) is a key step for initiation of T cell responses in allergic asthma. In the present study, we investigate the role of DC-mediated airway inflammation after inhibition of p21-activated kinase-1 (PAK1), an effector of Rac and Cdc42 small GTPases, in the allergen-induced mouse models of asthma. Systemic administration of PAK1 specific inhibitor IPA-3 significantly attenuates not only the airway inflammation but also the airway hyperresponsiveness in a mouse model of ovalbumin-induced asthma. Specifically, intratracheal administration of low dosage of IPA-3 consistently decreases not only the airway inflammation but also the DC trafficking from lung to the MLNs. Importantly, intratracheal instillation of IPA-3-treated and ovalbumin-pulsed DCs behaves largely the same as that of either Rac inhibitor-treated and ovalbumin-pulsed DCs or Cdc42 inhibitor-treated and ovalbumin-pulsed DCs in attenuation of the airway inflammation in ovalbumin-challenged mice. Mechanistically, PAK1 is not involved in the maturation, apoptosis, antigen uptake, and T cell activation of cultured DCs, but PAK1 dose lie on the downstream of Rac and Cdc42 to regulate the DC migration toward the chemokine C-C motif chemokine ligand 19. Taken together, this study demonstrates that inhibition of PAK1 attenuates the cardinal features of asthma through suppressing the DC trafficking from lung to the MLN, and that interfere with DC trafficking by a PAK1 inhibitor thus holds great promise for the therapeutic intervention of allergic diseases.
Collapse
Affiliation(s)
- Meiping Lu
- Department of Allergy immunology and rheumatology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Chengyun Xu
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qin Zhang
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiling Wu
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Lanfang Tang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiangzhi Wang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Junsong Wu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ximei Wu
- Department of Pharmacology and Key Laboratory of CFDA for Respiratory Drug Research, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
16
|
To be or not to be... secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem 2018; 62:177-191. [PMID: 29717057 DOI: 10.1042/ebc20170076] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
The release of extracellular vesicles such as exosomes provides an attractive intercellular communication pathway. Exosomes are 30- to 150-nm membrane vesicles that are generated in endosomal compartment and act as intercellular mediators in both physiological and pathological context. Despite the growing interest in exosome functions, the mechanisms responsible for their biogenesis and secretion are still not completely understood. Knowledge about these mechanisms is important because they control the composition, and hence the function and secretion, of exosomes. Exosomes are produced as intraluminal vesicles in extremely dynamic endosomal organelles, which undergo various maturation processes in order to form multivesicular endosomes. Notably, the function of multivesicular endosomes is balanced between exosome secretion and lysosomal degradation. In the present review, we present and discuss each intracellular trafficking pathway that has been reported or proposed as regulating exosome biogenesis, with a particular focus on the importance of endosomal dynamics in sorting out cargo proteins to exosomes and to the secretion of multivesicular endosomes. An overall picture reveals several key mechanisms, which mainly act at the crossroads of endosomal pathways as regulatory checkpoints of exosome biogenesis.
Collapse
|
17
|
Li C, Wu Y, Riehle A, Orian-Rousseau V, Zhang Y, Gulbins E, Grassmé H. Regulation of Staphylococcus aureus Infection of Macrophages by CD44, Reactive Oxygen Species, and Acid Sphingomyelinase. Antioxid Redox Signal 2018; 28:916-934. [PMID: 28747072 DOI: 10.1089/ars.2017.6994] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aims: Staphylococcus aureus plays an important role in sepsis, pneumonia, and wound infections. Acid sphingomyelinase (Asm)-deficient mice are highly susceptible to pulmonary S. aureus infections. Here, we investigated the role of CD44 as a molecule that mediates important aspects of the infection of macrophages with S. aureus. Results: We showed that CD44 activation by S. aureus stimulated Asm via the formation of reactive oxygen species, resulting in ceramide release, clustering of CD44 in ceramide-enriched membrane platforms, CD44/Asm-dependent activation of Rho family GTPases, translocation of phospho-ezrin/radixin/moesin to the plasma-membrane, and a rapid rearrangement of the actin cytoskeleton with cortical actin polymerization. Genetic deficiency of CD44 or Asm abrogated these signaling events and thereby reduced internalization of S. aureus into macrophages by 60-80%. Asm-deficient macrophages also exhibited reduced fusion of phagosomes with lysosomes, which prevented intracellular killing of S. aureus in macrophages and thereby allowed internalized S. aureus to replicate and cause severe pneumonia. Innovation and Conclusion: The CD44-Asm-ceramide system plays an important role in the infection of macrophages with S. aureus. Antioxid. Redox Signal. 28, 916-934.
Collapse
Affiliation(s)
- Cao Li
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Yuqing Wu
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Andrea Riehle
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | | | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany.,Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
18
|
Tomić S, Janjetović K, Mihajlović D, Milenković M, Kravić-Stevović T, Marković Z, Todorović-Marković B, Spitalsky Z, Micusik M, Vučević D, Čolić M, Trajković V. Graphene quantum dots suppress proinflammatory T cell responses via autophagy-dependent induction of tolerogenic dendritic cells. Biomaterials 2017; 146:13-28. [DOI: 10.1016/j.biomaterials.2017.08.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022]
|
19
|
HuR Enhances Early Restitution of the Intestinal Epithelium by Increasing Cdc42 Translation. Mol Cell Biol 2017; 37:MCB.00574-16. [PMID: 28031329 DOI: 10.1128/mcb.00574-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/21/2016] [Indexed: 12/27/2022] Open
Abstract
The mammalian intestinal mucosa exhibits a spectrum of responses after acute injury and repairs itself rapidly to restore the epithelial integrity. The RNA-binding protein HuR regulates the stability and translation of target mRNAs and is involved in many aspects of gut epithelium homeostasis, but its exact role in the regulation of mucosal repair after injury remains unknown. We show here that HuR is essential for early intestinal epithelial restitution by increasing the expression of cell division control protein 42 (Cdc42) at the posttranscriptional level. HuR bound to the Cdc42 mRNA via its 3' untranslated region, and this association specifically enhanced Cdc42 translation without an effect on the Cdc42 mRNA level. Intestinal epithelium-specific HuR knockout not only decreased Cdc42 levels in mucosal tissues, but it also inhibited repair of damaged mucosa induced by mesenteric ischemia/reperfusion in the small intestine and by dextran sulfate sodium in the colon. Furthermore, Cdc42 silencing prevented HuR-mediated stimulation of cell migration over the wounded area by altering the subcellular distribution of F-actin. These results indicate that HuR promotes early intestinal mucosal repair after injury by increasing Cdc42 translation and demonstrate the importance of HuR deficiency in the pathogenesis of delayed mucosal healing in certain pathological conditions.
Collapse
|
20
|
The HPV16 E7 Oncoprotein Disrupts Dendritic Cell Function and Induces the Systemic Expansion of CD11b(+)Gr1(+) Cells in a Transgenic Mouse Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8091353. [PMID: 27478837 PMCID: PMC4958469 DOI: 10.1155/2016/8091353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022]
Abstract
Objective. The aim of this study was to analyze the effects of the HPV16 E7 oncoprotein on dendritic cells (DCs) and CD11b(+)Gr1(+) cells using the K14E7 transgenic mouse model. Materials and Methods. The morphology of DCs was analyzed in male mouse skin on epidermal sheets using immunofluorescence and confocal microscopy. Flow cytometry was used to determine the percentages of DCs and CD11b(+)Gr1(+) cells in different tissues and to evaluate the migration of DCs. Results. In the K14E7 mouse model, the morphology of Langerhans cells and the migratory activity of dendritic cells were abnormal. An increase in CD11b(+)Gr1(+) cells was observed in the blood and skin of K14E7 mice, and molecules related to CD11b(+)Gr1(+) chemoattraction (MCP1 and S100A9) were upregulated. Conclusions. These data suggest that the HPV16 E7 oncoprotein impairs the function and morphology of DCs and induces the systemic accumulation of CD11b(+)Gr1(+) cells.
Collapse
|
21
|
Bretou M, Kumari A, Malbec O, Moreau HD, Obino D, Pierobon P, Randrian V, Sáez PJ, Lennon-Duménil AM. Dynamics of the membrane-cytoskeleton interface in MHC class II-restricted antigen presentation. Immunol Rev 2016; 272:39-51. [DOI: 10.1111/imr.12429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marine Bretou
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Anita Kumari
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Odile Malbec
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Hélène D. Moreau
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Dorian Obino
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Paolo Pierobon
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Violaine Randrian
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | - Pablo J. Sáez
- Inserm U932, Institut Curie; ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043; Paris France
| | | |
Collapse
|
22
|
Schulz AM, Stutte S, Hogl S, Luckashenak N, Dudziak D, Leroy C, Forné I, Imhof A, Müller SA, Brakebusch CH, Lichtenthaler SF, Brocker T. Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells. J Exp Med 2015. [DOI: 10.1084/jem.21212oia102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|