1
|
Marni R, Malla M, Chakraborty A, Voonna MK, Bhattacharyya PS, Kgk D, Malla RR. Combination of ionizing radiation and 2-thio-6-azauridine induces cell death in radioresistant triple negative breast cancer cells by downregulating CD151 expression. Cancer Chemother Pharmacol 2024; 94:685-706. [PMID: 39167147 DOI: 10.1007/s00280-024-04709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer and is frequently resistant to therapy, ultimately resulting in treatment failure. Clinical trials have demonstrated the potential of sensitizing radiation therapy (RT)-resistant TNBC through the combination of chemotherapy and RT. This study sought to explore the potential of CD151 as a therapy response marker in the co-treatment strategy involving ionizing radiation (IR) and the repurposed antiviral drug 2-Thio-6-azauridine (TAU) for sensitizing RT-resistant TNBC (TNBC/RR). METHODS The investigation encompassed a variety of assessments, including viability using MTT and LDH assays, cell proliferation through BrdU incorporation and clonogenic assays, cell cycle analysis via flow cytometry, cell migration using wound scratch and Boyden chamber invasion assays, DNA damage assessment through γH2AX analysis, apoptosis evaluation through acridine-orange and ethidium bromide double staining assays, as well as caspase 3 activity measurement using a colorimetric assay. CD151 expression was examined through ELISA, flow cytometry and RT-qPCR. RESULTS The results showed a significant reduction in TNBC/RR cell viability following co-treatment. Moreover, the co-treatment reduced cell migration, induced apoptosis, downregulated CD151 expression, and increased caspase 3 activity in TNBC/RR cells. Additionally, CD151 was predicted to serve as a therapy response marker for co-treatment with TAU and IR. CONCLUSION These findings suggest the potential of combination treatment with IR and TAU as a promising strategy to overcome RT resistance in TNBC. Furthermore, CD151 emerges as a valuable therapy response marker for chemoradiotherapy.
Collapse
Affiliation(s)
- Rakshmitha Marni
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India
| | - Manas Malla
- Department of Computer Science and Engineering, GITAM (Deemed to Be University), GITAM School of Technology, Visakhapatnam, 530045, A.P, India
| | | | - Murali Krishna Voonna
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | | | - Deepak Kgk
- Mahatma Gandhi Cancer Hospital & Research Institute, Visakhapatnam-, 530017, A.P, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Life Sciences, GITAM (Deemed to Be University), GITAM School of Science, Visakhapatnam, 530045, A.P, India.
| |
Collapse
|
2
|
Zhang C, Liu J, Wu J, Ranjan K, Cui X, Wang X, Zhang D, Zhu S. Key molecular DNA damage responses of human cells to radiation. Front Cell Dev Biol 2024; 12:1422520. [PMID: 39050891 PMCID: PMC11266142 DOI: 10.3389/fcell.2024.1422520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
Collapse
Affiliation(s)
- Chencheng Zhang
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jibin Liu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jun Wu
- Nantong Tumor Hospital, Nantong, China
| | - Kamakshi Ranjan
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Xiaopeng Cui
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xingdan Wang
- Department of Radiotherapy, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Shudong Zhu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
- Argus Pharmaceuticals, Changsha, China
| |
Collapse
|
3
|
Dorweiler TF, Singh A, Ganju A, Lydic TA, Glazer LC, Kolesnick RN, Busik JV. Diabetic retinopathy is a ceramidopathy reversible by anti-ceramide immunotherapy. Cell Metab 2024; 36:1521-1533.e5. [PMID: 38718792 PMCID: PMC11222062 DOI: 10.1016/j.cmet.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Diabetic retinopathy is a microvascular disease that causes blindness. Using acid sphingomyelinase knockout mice, we reported that ceramide generation is critical for diabetic retinopathy development. Here, in patients with proliferative diabetic retinopathy, we identify vitreous ceramide imbalance with pathologic long-chain C16-ceramides increasing and protective very long-chain C26-ceramides decreasing. C16-ceramides generate pro-inflammatory/pro-apoptotic ceramide-rich platforms on endothelial surfaces. To geo-localize ceramide-rich platforms, we invented a three-dimensional confocal assay and showed that retinopathy-producing cytokines TNFα and IL-1β induce ceramide-rich platform formation on retinal endothelial cells within seconds, with volumes increasing 2-logs, yielding apoptotic death. Anti-ceramide antibodies abolish these events. Furthermore, intravitreal and systemic anti-ceramide antibodies protect from diabetic retinopathy in standardized rodent ischemia reperfusion and streptozotocin models. These data support (1) retinal endothelial ceramide as a diabetic retinopathy treatment target, (2) early-stage therapy of non-proliferative diabetic retinopathy to prevent progression, and (3) systemic diabetic retinopathy treatment; and they characterize diabetic retinopathy as a "ceramidopathy" reversible by anti-ceramide immunotherapy.
Collapse
Affiliation(s)
- Tim F Dorweiler
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, MA 02113, USA
| | - Arjun Singh
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Aditya Ganju
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Louis C Glazer
- Vitreo-Retinal Associates, Grand Rapids, MI 49546, USA; Ophthalmology, Michigan State University, East Lansing, MI 48824, USA
| | - Richard N Kolesnick
- Memorial Sloan Kettering Cancer Center, Molecular Pharmacology Program, Sloan Kettering Institute New York, New York, NY 10065, USA.
| | - Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA; Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
4
|
Winters TA, Marzella L, Molinar-Inglis O, Price PW, Han NC, Cohen JE, Wang SJ, Fotenos AF, Sullivan JM, Esker JI, Lapinskas PJ, DiCarlo AL. Gastrointestinal Acute Radiation Syndrome: Mechanisms, Models, Markers, and Medical Countermeasures. Radiat Res 2024; 201:628-646. [PMID: 38616048 DOI: 10.1667/rade-23-00196.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024]
Abstract
There have been a number of reported human exposures to high dose radiation, resulting from accidents at nuclear power plants (e.g., Chernobyl), atomic bombings (Hiroshima and Nagasaki), and mishaps in industrial and medical settings. If absorbed radiation doses are high enough, evolution of acute radiation syndromes (ARS) will likely impact both the bone marrow as well as the gastrointestinal (GI) tract. Damage incurred in the latter can lead to nutrient malabsorption, dehydration, electrolyte imbalance, altered microbiome and metabolites, and impaired barrier function, which can lead to septicemia and death. To prepare for a medical response should such an incident arise, the National Institute of Allergy and Infectious Diseases (NIAID) funds basic and translational research to address radiation-induced GI-ARS, which remains a critical and prioritized unmet need. Areas of interest include identification of targets for damage and mitigation, animal model development, and testing of medical countermeasures (MCMs) to address GI complications resulting from radiation exposure. To appropriately model expected human responses, it is helpful to study analogous disease states in the clinic that resemble GI-ARS, to inform on best practices for diagnosis and treatment, and translate them back to inform nonclinical drug efficacy models. For these reasons, the NIAID partnered with two other U.S. government agencies (the Biomedical Advanced Research and Development Authority, and the Food and Drug Administration), to explore models, biomarkers, and diagnostics to improve understanding of the complexities of GI-ARS and investigate promising treatment approaches. A two-day workshop was convened in August 2022 that comprised presentations from academia, industry, healthcare, and government, and highlighted talks from 26 subject matter experts across five scientific sessions. This report provides an overview of information that was presented during the conference, and important discussions surrounding a broad range of topics that are critical for the research, development, licensure, and use of MCMs for GI-ARS.
Collapse
Affiliation(s)
- Thomas A Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Libero Marzella
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Olivia Molinar-Inglis
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Paul W Price
- Office of Regulatory Affairs, DAIT, NIAID, NIH, Rockville, Maryland
| | - Nyun Calvin Han
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Jonathan E Cohen
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Sue-Jane Wang
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Anthony F Fotenos
- Center for Drug Evaluation and Research (CDER), U.S. Food and Drug Administration (FDA), Silver Spring, Maryland
| | - Julie M Sullivan
- Center for Devices for Radiological Health (CDRH), FDA, Silver Spring, Maryland
| | - John I Esker
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Paula J Lapinskas
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Andrea L DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
5
|
Kameni LE, Januszyk M, Berry CE, Downer MA, Parker JB, Morgan AG, Valencia C, Griffin M, Li DJ, Liang NE, Momeni A, Longaker MT, Wan DC. A Review of Radiation-Induced Vascular Injury and Clinical Impact. Ann Plast Surg 2024; 92:181-185. [PMID: 37962260 DOI: 10.1097/sap.0000000000003723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ABSTRACT The number of cancer survivors continues to increase because of advances in therapeutic modalities. Along with surgery and chemotherapy, radiotherapy is a commonly used treatment modality in roughly half of all cancer patients. It is particularly helpful in the oncologic treatment of patients with breast, head and neck, and prostate malignancies. Unfortunately, among patients receiving radiation therapy, long-term sequalae are often unavoidable, and there is accumulating clinical evidence suggesting significant radiation-related damage to the vascular endothelium. Ionizing radiation has been known to cause obliterative fibrosis and increased wall thickness in irradiated blood vessels. Clinically, these vascular changes induced by ionizing radiation can pose unique surgical challenges when operating in radiated fields. Here, we review the relevant literature on radiation-induced vascular damage focusing on mechanisms and signaling pathways involved and highlight microsurgical anastomotic outcomes after radiotherapy. In addition, we briefly comment on potential therapeutic strategies, which may have the ability to mitigate radiation injury to the vascular endothelium.
Collapse
Affiliation(s)
- Lionel E Kameni
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Michael Januszyk
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Mauricio A Downer
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Jennifer B Parker
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Annah G Morgan
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Caleb Valencia
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Michelle Griffin
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Dayan J Li
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Norah E Liang
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | - Arash Momeni
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Derrick C Wan
- From the Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
6
|
Canals D, Hannun YA. Biological function, topology, and quantification of plasma membrane Ceramide. Adv Biol Regul 2024; 91:101009. [PMID: 38128364 DOI: 10.1016/j.jbior.2023.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Over the past 30 years, a growing body of evidence has revealed the regulatory role of the lipid ceramide in various cellular functions. The structural diversity of ceramide, resulting in numerous species, and its distinct distribution within subcellular compartments may account for its wide range of functions. However, our ability to study the potential role of ceramide in specific subcellular membranes has been limited. Several works have shown mitochondrial, Golgi, and plasma membrane ceramide to mediate signaling pathways independently. These results have started to shift the focus on ceramide signaling research toward specific membrane pools. Nonetheless, the challenge arises from the substantial intracellular ceramide content, hindering efforts to quantify its presence in particular membranes. Recently, we have developed the first method capable of detecting and quantifying ceramide in the plasma membrane, leading to unexpected results such as detecting different pools of ceramide responding to drug concentration or time. This review summarizes the historical context that defined the idea of pools of ceramide, the studies on plasma membrane ceramide as a bioactive entity, and the tools available for its study, especially the new method to detect and, for the first time, quantify plasma membrane ceramide. We believe this method will open new avenues for researching sphingolipid signaling and metabolism.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
7
|
Coreas R, Li Z, Chen J, Zhong W. Low-Dose Exposure of WS 2 Nanosheets Induces Differential Apoptosis in Lung Epithelial Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14493-14501. [PMID: 37726893 DOI: 10.1021/acs.est.3c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Escalating the production and application of tungsten disulfide (WS2) nanosheets inevitably increases environmental human exposure and warrants the necessity of studies to elucidate their biological impacts. Herein, we assessed the toxicity of WS2 nanosheets and focused on the impacts of low doses (≤10 μg/mL) on normal (BEAS-2B) and tumorigenic (A549) lung epithelial cells. The low doses, which approximate real-world exposures, were found to induce cell apoptosis, while doses ≥ 50 μg/mL cause necrosis. Focused studies on low-dose exposure to WS2 nanosheets revealed more details of the impacts on both cell lines, including reduction of cell metabolic activity, induction of lipid peroxidation in cell membranes, and uncoupling of mitochondrial oxidative phosphorylation that led to the loss of ATP production. These phenomena, along with the expression situations of a few key proteins involved in apoptosis, point toward the occurrence of mitochondria-dependent apoptotic signaling in exposed cells. Substantial differences in responses to WS2 exposure between normal and tumorigenic lung epithelial cells were noticed as well. Specifically, BEAS-2B cells experienced more adverse effects and took up more nanosheets than A549 cells. Our results highlight the importance of dose and cell model selection in the assessment of nanotoxicity. By using doses consistent with real-world exposures and comparing normal and diseased cells, we can gain knowledge to guide the development of safety precautions for mitigating the adverse impacts of nanomaterial exposure on human health.
Collapse
Affiliation(s)
- Roxana Coreas
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| | - Zongbo Li
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| | - Junyi Chen
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Environmental Toxicology Graduate Program, University of California-Riverside, Riverside, California 92521, United States
- Department of Chemistry, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
8
|
Pokrovsky VS, Ivanova-Radkevich VI, Kuznetsova OM. Sphingolipid Metabolism in Tumor Cells. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:847-866. [PMID: 37751859 DOI: 10.1134/s0006297923070015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 09/28/2023]
Abstract
Sphingolipids are a diverse family of complex lipids typically composed of a sphingoid base bound to a fatty acid via amide bond. The metabolism of sphingolipids has long remained out of focus of biochemical studies. Recently, it has been attracting an increasing interest of researchers because of different and often multidirectional effects demonstrated by sphingolipids with a similar chemical structure. Sphingosine, ceramides (N-acylsphingosines), and their phosphorylated derivatives (sphingosine-1-phosphate and ceramide-1-phosphates) act as signaling molecules. Ceramides induce apoptosis and regulate stability of cell membranes and cell response to stress. Ceramides and sphingoid bases slow down anabolic and accelerate catabolic reactions, thus suppressing cell proliferation. On the contrary, their phosphorylated derivatives (ceramide-1-phosphate and sphingosine-1-phosphate) stimulate cell proliferation. Involvement of sphingolipids in the regulation of apoptosis and cell proliferation makes them critically important in tumor progression. Sphingolipid metabolism enzymes and sphingolipid receptors can be potential targets for antitumor therapy. This review describes the main pathways of sphingolipid metabolism in human cells, with special emphasis on the properties of this metabolism in tumor cells.
Collapse
Affiliation(s)
- Vadim S Pokrovsky
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | | | - Olga M Kuznetsova
- People's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| |
Collapse
|
9
|
Duan J, Huang Z, Nice EC, Xie N, Chen M, Huang C. Current advancements and future perspectives of long noncoding RNAs in lipid metabolism and signaling. J Adv Res 2023; 48:105-123. [PMID: 35973552 PMCID: PMC10248733 DOI: 10.1016/j.jare.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The investigation of lncRNAs has provided a novel perspective for elucidating mechanisms underlying diverse physiological and pathological processes. Compelling evidence has revealed an intrinsic link between lncRNAs and lipid metabolism, demonstrating that lncRNAs-induced disruption of lipid metabolism and signaling contribute to the development of multiple cancers and some other diseases, including obesity, fatty liver disease, and cardiovascular disease. AIMOF REVIEW The current review summarizes the recent advances in basic research about lipid metabolism and lipid signaling-related lncRNAs. Meanwhile, the potential and challenges of targeting lncRNA for the therapy of cancers and other lipid metabolism-related diseases are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Compared with the substantial number of lncRNA loci, we still know little about the role of lncRNAs in metabolism. A more comprehensive understanding of the function and mechanism of lncRNAs may provide a new standpoint for the study of lipid metabolism and signaling. Developing lncRNA-based therapeutic approaches is an effective strategy for lipid metabolism-related diseases.
Collapse
Affiliation(s)
- Jiufei Duan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Na Xie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 430079 Wuhan, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, 610041 Chengdu, China.
| |
Collapse
|
10
|
Almasri F, Sakarya EH, Karshafian R. Radioenhancement with the Combination of Docetaxel and Ultrasound Microbubbles: In Vivo Prostate Cancer. Pharmaceutics 2023; 15:pharmaceutics15051468. [PMID: 37242710 DOI: 10.3390/pharmaceutics15051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Using an in vitro prostate cancer model, we previously demonstrated the significant enhancement of radiotherapy (XRT) with the combined treatment of docetaxel (Taxotere; TXT) and ultrasound-microbubbles (USMB). Here, we extend these findings to an in vivo cancer model. Severe combined immune-deficient male mice were xenografted with the PC-3 prostate cancer cell line in the hind leg and treated with USMB, TXT, radiotherapy (XRT), and their combinations. The tumors were imaged with ultrasound pre-treatment and 24 h post-treatment, following which they were extracted for the histological analysis of the tumor-cell death (DN; H&E) and apoptosis (DA; TUNEL). The tumors' growths were assessed for up to ~6 weeks and analysed using the exponential Malthusian tumor-growth model. The tumors' doubling time (VT) was characterized as growth (positive) or shrinkage (negative). The cellular death and apoptosis increased ~5-fold with the TXT + USMB + XRT (Dn = 83% and Da = 71%) compared to the XRT alone (Dn = 16% and Da = 14%), and by ~2-3-fold with the TXT + XRT (Dn = 50% and Da = 38%) and USMB + XRT (Dn = 45% and Da = 27%) compared to the XRT. The USMB enhanced the cellular bioeffects of the TXT by ~2-5-fold with the TXT + USMB (Dn = 42% and Da = 50%), compared with the TXT alone (Dn = 19% and Da = 9%). The USMB alone caused cell death (Dn = 17% and Da = 10%) compared to the untreated control (Dn = 0.4% and Da = 0%). The histological cellular bioeffects were correlated with the changes in the ultrasound RF mid-band-fit data, which were associated with the cellular morphology. The linear regression analysis displayed a positive linear correlation between the mid-band fit and the overall cell death (R2 = 0.9164), as well as a positive linear correlation between the mid-band fit and the apoptosis (R2 = 0.8530). These results demonstrate a correlation between the histological and spectral measurements of the tissue microstructure and that cellular morphological changes can be detected by ultrasound scattering analysis. In addition, the tumor volumes from the triple-combination treatment were significantly smaller than those from the control, XRT, USMB + XRT, and TXT + XRT, from day 2 onward. The TXT + USMB + XRT-treated tumors shrank from day 2 and at each subsequent time-point measured (VT ~-6 days). The growth of the XRT-treated tumors was inhibited during the first 16 days, following which the tumors grew (VT ~9 days). The TXT + XRT and USMB + XRT groups displayed an initial decrease in tumor size (day 1-14; TXT + XRT VT ~-12 days; USMB + XRT VT ~-33 days), followed by a growth phase (day 15-37; TXT + XRT VT ~11 days; USMB + XRT VT ~22 days). The triple-combination therapy induced tumor shrinkage to a greater extent than any of the other treatments. This study demonstrates the in vivo radioenhancement potential of chemotherapy combined with therapeutic ultrasound-microbubble treatment in inducing cell death and apoptosis, as well as long-term tumor shrinkage.
Collapse
Affiliation(s)
- Firas Almasri
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Biomedical Engineering Department, International University of Science and Technology in Kuwait, Ardiya 92400, Kuwait
| | - Emmanuel H Sakarya
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5G 0A3, Canada
| | - Raffi Karshafian
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5G 0A3, Canada
| |
Collapse
|
11
|
Greene M, Hernandez-Corbacho MJ, Ostermeyer-Fay AG, Hannun YA, Canals D. A simple, highly sensitive, and facile method to quantify ceramide at the plasma membrane. J Lipid Res 2023; 64:100322. [PMID: 36549592 PMCID: PMC9853358 DOI: 10.1016/j.jlr.2022.100322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The role of ceramide in biological functions is typically based on the elevation of cellular ceramide, measured by LC-MS in the total cell lysate. However, it has become increasingly appreciated that ceramide in different subcellular organelles regulates specific functions. In the plasma membrane, changes in ceramide levels might represent a small percentage of the total cellular ceramide, evading MS detection but playing a critical role in cell signaling. Importantly, there are currently no efficient techniques to quantify ceramide in the plasma membrane. Here, we developed a method to measure the mass of ceramide in the plasma membrane using a short protocol that is based on the hydrolysis of plasma membrane ceramide into sphingosine by the action of exogenously applied bacterial recombinant neutral ceramidase. Plasma membrane ceramide content can then be determined by measuring the newly generated sphingosine at a stoichiometry of 1:1. A key step of this protocol is the chemical fixation of cells to block cellular sphingolipid metabolism, especially of sphingosine to sphingosine 1-phosphate. We confirmed that chemical fixation does not disrupt the lipid composition at the plasma membrane, which remains intact during the time of the assay. We illustrate the power of the approach by applying this protocol to interrogate the effects of the chemotherapeutic compound doxorubicin. Here we distinguished two pools of ceramide, depending on the doxorubicin concentration, consolidating different reports. In summary, we have developed the first approach to quantify ceramide in the plasma membrane, allowing the study of new avenues in sphingolipid compartmentalization and function.
Collapse
Affiliation(s)
- Meaghan Greene
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA
| | | | | | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA
| | - Daniel Canals
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
12
|
Leong KX, Sharma D, Czarnota GJ. Focused Ultrasound and Ultrasound Stimulated Microbubbles in Radiotherapy Enhancement for Cancer Treatment. Technol Cancer Res Treat 2023; 22:15330338231176376. [PMID: 37192751 DOI: 10.1177/15330338231176376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Radiation therapy (RT) has been the standard of care for treating a multitude of cancer types. However, ionizing radiation has adverse short and long-term side effects which have resulted in treatment complications for decades. Thus, advances in enhancing the effects of RT have been the primary focus of research in radiation oncology. To avoid the usage of high radiation doses, treatment modalities such as high-intensity focused ultrasound can be implemented to reduce the radiation doses required to destroy cancer cells. In the past few years, the use of focused ultrasound (FUS) has demonstrated immense success in a number of applications as it capitalizes on spatial specificity. It allows ultrasound energy to be delivered to a targeted focal area without harming the surrounding tissue. FUS combined with RT has specifically demonstrated experimental evidence in its application resulting in enhanced cell death and tumor cure. Ultrasound-stimulated microbubbles have recently proved to be a novel way of enhancing RT as a radioenhancing agent on its own, or as a delivery vector for radiosensitizing agents such as oxygen. In this mini-review article, we discuss the bio-effects of FUS and RT in various preclinical models and highlight the applicability of this combined therapy in clinical settings.
Collapse
Affiliation(s)
- Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Gulbins A, Görtz GE, Gulbins E, Eckstein A. Sphingolipids in thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1170884. [PMID: 37082124 PMCID: PMC10112667 DOI: 10.3389/fendo.2023.1170884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 04/22/2023] Open
Abstract
Graves' disease (GD) is caused by an autoimmune formation of autoantibodies and autoreactive T-cells against the thyroid stimulating hormone receptor (TSHR). The autoimmune reaction does not only lead to overstimulation of the thyroid gland, but very often also to an immune reaction against antigens within the orbital tissue leading to thyroid eye disease, which is characterized by activation of orbital fibroblasts, orbital generation of adipocytes and myofibroblasts and increased hyaluronan production in the orbit. Thyroid eye disease is the most common extra-thyroidal manifestation of the autoimmune Graves' disease. Several studies indicate an important role of sphingolipids, in particular the acid sphingomyelinase/ceramide system and sphingosine 1-phosphate in thyroid eye disease. Here, we discuss how the biophysical properties of sphingolipids contribute to cell signaling, in particular in the context of thyroid eye disease. We further review the role of the acid sphingomyelinase/ceramide system in autoimmune diseases and its function in T lymphocytes to provide some novel hypotheses for the pathogenesis of thyroid eye disease and potentially allowing the development of novel treatments.
Collapse
Affiliation(s)
- Anne Gulbins
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Erich Gulbins
- Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| | - Anja Eckstein
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Anja Eckstein, ; Erich Gulbins,
| |
Collapse
|
14
|
Weigelin B, Friedl P. T cell-mediated additive cytotoxicity - death by multiple bullets. Trends Cancer 2022; 8:980-987. [PMID: 35965200 DOI: 10.1016/j.trecan.2022.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
Immune effector cells, including cytotoxic T cells (CTLs), induce apoptosis and eliminate target cells by direct cell-cell contacts. In vivo, CTLs fail to efficiently kill solid tumor cells by individual contacts but rely upon multihit interactions by many CTLs (swarming). Recent evidence has indicated that multihit interactions by CTLs induce a series of sublethal damage events in target cells, including perforin-mediated membrane damage, induction of reactive oxygen species (ROS), nuclear envelope rupture, and DNA damage. Individual damage can be repaired, but when induced in rapid sequence, sublethal damage can accumulate and induce target cell death. Here, we summarize the sublethal damage and additive cytotoxicity concepts for CTL-induced and other cell stresses and discuss the implications for improving immunotherapy and multitargeted anticancer therapies.
Collapse
Affiliation(s)
- Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Peter Friedl
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Cancer Genomics Centre Netherlands (CGC.nl), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Pszczółkowska B, Olejarz W, Filipek M, Tartas A, Kubiak-Tomaszewska G, Żołnierzak A, Życieńska K, Ginter J, Lorenc T, Brzozowska B. Exosome secretion and cellular response of DU145 and PC3 after exposure to alpha radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:639-650. [PMID: 36098819 PMCID: PMC9630248 DOI: 10.1007/s00411-022-00991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Exosomes are spherical membrane nanovesicles secreted from cells, and they play an important role in tumor immune response, metastasis, angiogenesis, and survival. Studies investigating exosomes isolated from cells exposed to photon radiation commonly used in conventional radiotherapy demonstrate the influence of this type of radiation on exosome characteristics and secretion. There is currently no research investigating the effects of densely ionizing particles such as protons and alpha radiation on exosomes. Thus we have evaluated the cellular response of human prostate cancer cells exposed to 0, 2, and 6 Gy of alpha radiation emitted from the Am-241 source. Irradiated PC3 and DU145 cell lines, characterized by differences in radiosensitivity, were studied using apoptosis, LDH, and IL-6 assays. Additionally, the corresponding concentration and size of isolated exosomes were measured using NTA. We found that exposure to ionizing radiation resulted in gross changes in viability and cell damage. There were increased amounts of apoptotic or necrotic cells as a function of radiation dose. We demonstrated that irradiated PC3 cells secrete higher quantities of exosomes compared to DU145 cells. Additionally, we also found no statistical difference in exosome size for control and irradiated cells.
Collapse
Affiliation(s)
- Beata Pszczółkowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Mateusz Filipek
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Aleksandra Żołnierzak
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Katarzyna Życieńska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Józef Ginter
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Tomasz Lorenc
- 1st Department of Clinical Radiology, Medical University of Warsaw, 5 Chałubińskiego Street, Warsaw, 02-004 Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| |
Collapse
|
16
|
Zhuo C, Zhao F, Tian H, Chen J, Li Q, Yang L, Ping J, Li R, Wang L, Xu Y, Cai Z, Song X. Acid sphingomyelinase/ceramide system in schizophrenia: implications for therapeutic intervention as a potential novel target. Transl Psychiatry 2022; 12:260. [PMID: 35739089 PMCID: PMC9226132 DOI: 10.1038/s41398-022-01999-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a severe mental illness, as the efficacies of current antipsychotic medications are far from satisfactory. An improved understanding of the signaling molecules involved in schizophrenia may provide novel therapeutic targets. Acid sphingomyelinase (ASM) catalyzes cellular membrane sphingomyelin into ceramide, which is further metabolized into sphingosine-1-phophate (S1P). ASM, ceramide, and S1P at the cell surface exert critical roles in the regulation of biophysical processes that include proliferation, apoptosis, and inflammation, and are thereby considered important signaling molecules. Although research on the ASM/ceramide system is still in its infancy, structural and metabolic abnormalities have been demonstrated in schizophrenia. ASM/ceramide system dysfunction is linked to the two important models of schizophrenia, the dopamine (DA) hypothesis through affecting presynaptic DA signaling, and the vulnerability-stress-inflammation model that includes the contribution of stress on the basis of genetic predisposition. In this review, we highlight the current knowledge of ASM/ceramide system dysfunction in schizophrenia gained from human and animal studies, and formulate future directions from the biological landscape for the development of new treatments. Collectively, these discoveries suggest that aberrations in the ASM/ceramide system, especially in ASM activity and levels of ceramide and S1P, may alter cerebral microdomain structure and neuronal metabolism, leading to neurotransmitter (e.g., DA) dysfunction and neuroinflammation. As such, the ASM/ceramide system may offer therapeutic targets for novel medical interventions. Normalization of the aberrant ASM/ceramide system or ceramide reduction by using approved functional inhibitors of ASM, such as fluvoxamine and rosuvastatin, may improve clinical outcomes of patients with schizophrenia. These transformative findings of the ASM/ceramide system in schizophrenia, although intriguing and exciting, may pose scientific questions and challenges that will require further studies for their resolution.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Tracing Brain Circuit, Tianjin Medical Affiliated Tianjin Fourth Center Hospital, Nankai University Affiliated Tianjin Fourth Center Hospital, Tianjin Fourth Hospital, 300140, Tianjin, China. .,The key Laboratory of Psychiatric-Neuroimaging-Genetics and Comorbidity (PNGC_Lab) of Tianjin Anding Hospital, Tianjin Mental Health Center of Tianjin Medical University, 300222, Tianjin, China. .,Brain Micro-imaging Center of Psychiatric Animal Model, Wenzhou Seventh Peoples Hospital, 325000, Wenzhou, China. .,Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222, Tianjin, China. .,Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000, Wenzhou, China. .,Department of Psychiatry, The First Hospital of Shanxi Medical University, 03000, Taiyuan, China. .,Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| | - Feifei Zhao
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Hongjun Tian
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Jiayue Chen
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Qianchen Li
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Lei Yang
- grid.265021.20000 0000 9792 1228Department of Psychiatry, The Fourth Center Hospital of Tianjin Medical University, 300222 Tianjin, China
| | - Jing Ping
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Ranli Li
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Lina Wang
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Yong Xu
- grid.452461.00000 0004 1762 8478Department of Psychiatry, The First Hospital of Shanxi Medical University, 03000 Taiyuan, China
| | - Ziyao Cai
- Key Laboratory of the Macro-Brain Neuroimaging Center of Animal Model, Wenzhou Seventh Peoples Hospital, 325000 Wenzhou, China
| | - Xueqin Song
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
17
|
Mohammed RN, Khosravi M, Rahman HS, Adili A, Kamali N, Soloshenkov PP, Thangavelu L, Saeedi H, Shomali N, Tamjidifar R, Isazadeh A, Aslaminabad R, Akbari M. Anastasis: cell recovery mechanisms and potential role in cancer. Cell Commun Signal 2022; 20:81. [PMID: 35659306 PMCID: PMC9166643 DOI: 10.1186/s12964-022-00880-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
Balanced cell death and survival are among the most important cell development and homeostasis pathways that can play a critical role in the onset or progress of malignancy steps. Anastasis is a natural cell recovery pathway that rescues cells after removing the apoptosis-inducing agent or brink of death. The cells recuperate and recover to an active and stable state. So far, minimal knowledge is available about the molecular mechanisms of anastasis. Still, several involved pathways have been explained: recovery through mitochondrial outer membrane permeabilization, caspase cascade arrest, repairing DNA damage, apoptotic bodies formation, and phosphatidylserine. Anastasis can facilitate the survival of damaged or tumor cells, promote malignancy, and increase drug resistance and metastasis. Here, we noted recently known mechanisms of the anastasis process and underlying molecular mechanisms. Additionally, we summarize the consequences of anastatic mechanisms in the initiation and progress of malignancy, cancer cell metastasis, and drug resistance. Video Abstract
Collapse
|
18
|
Sautchuk R, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep 2022; 16:101594. [PMID: 35669927 PMCID: PMC9162940 DOI: 10.1016/j.bonr.2022.101594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| |
Collapse
|
19
|
White-Gilbertson S, Lu P, Esobi I, Echesabal-Chen J, Mulholland PJ, Gooz M, Ogretmen B, Stamatikos A, Voelkel-Johnson C. Polyploid giant cancer cells are dependent on cholesterol for progeny formation through amitotic division. Sci Rep 2022; 12:8971. [PMID: 35624221 PMCID: PMC9142539 DOI: 10.1038/s41598-022-12705-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Polyploid Giant Cancer Cells (PGCC) are increasingly being recognized as drivers of cancer recurrence. Therapy stress promotes the formation of these cells, which upon stress cessation often successfully generate more aggressive progeny that repopulate the tumor. Therefore, identification of potential PGCC vulnerabilities is key to preventing therapy failure. We have previously demonstrated that PGCC progeny formation depends on the lysosomal enzyme acid ceramidase (ASAH1). In this study, we compared transcriptomes of parental cancer cells and PGCC in the absence or presence of the ASAH1 inhibitor LCL521. Results show that PGCC express less INSIG1, which downregulates cholesterol metabolism and that inhibition of ASAH1 increased HMGCR which is the rate limiting enzyme in cholesterol synthesis. Confocal microscopy revealed that ceramide and cholesterol do not colocalize. Treatment with LCL521 or simvastatin to inhibit ASAH1 or HMGCR, respectively, resulted in accumulation of ceramide at the cell surface of PGCC and prevented PGCC progeny formation. Our results suggest that similarly to inhibition of ASAH1, disruption of cholesterol signaling is a potential strategy to interfere with PGCC progeny formation.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA
| | - Ping Lu
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA
| | - Ikechukwu Esobi
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Patrick J Mulholland
- Department of Neuroscience, Medical University of South Carolina, Charleston Alcohol Research Center, Charleston, USA
| | - Monika Gooz
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Basic Science Building, MSC250504, 173 Ashley Ave., Charleston, SC, USA.
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, USA.
| |
Collapse
|
20
|
Abstract
Removing membrane pores may help cancer cells survive T cell assault.
Collapse
Affiliation(s)
- Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
21
|
Application of Ultrasound Combined with Microbubbles for Cancer Therapy. Int J Mol Sci 2022; 23:ijms23084393. [PMID: 35457210 PMCID: PMC9026557 DOI: 10.3390/ijms23084393] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
At present, cancer is one of the leading causes of death worldwide. Treatment failure remains one of the prime hurdles in cancer treatment due to the metastatic nature of cancer. Techniques have been developed to hinder the growth of tumours or at least to stop the metastasis process. In recent years, ultrasound therapy combined with microbubbles has gained immense success in cancer treatment. Ultrasound-stimulated microbubbles (USMB) combined with other cancer treatments including radiation therapy, chemotherapy or immunotherapy has demonstrated potential improved outcomes in various in vitro and in vivo studies. Studies have shown that low dose radiation administered with USMB can have similar effects as high dose radiation therapy. In addition, the use of USMB in conjunction with radiotherapy or chemotherapy can minimize the toxicity of high dose radiation or chemotherapeutic drugs, respectively. In this review, we discuss the biophysical properties of USMB treatment and its applicability in cancer therapy. In particular, we highlight important preclinical and early clinical findings that demonstrate the antitumour effect combining USMB and other cancer treatment modalities (radiotherapy and chemotherapy). Our review mainly focuses on the tumour vascular effects mediated by USMB and these cancer therapies. We also discuss several current limitations, in addition to ongoing and future efforts for applying USMB in cancer treatment.
Collapse
|
22
|
Lee RX, Tang FR. Radiation-induced neuropathological changes in the oligodendrocyte lineage with relevant clinical manifestations and therapeutic strategies. Int J Radiat Biol 2022; 98:1519-1531. [PMID: 35311621 DOI: 10.1080/09553002.2022.2055804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE With technological advancements in radiation therapy for tumors of the central nervous system (CNS), high doses of ionizing radiation can be delivered to the tumors with improved accuracy. Despite the reduction of ionizing radiation-induced toxicity to surrounding tissues of the CNS, a wide array of side effects still occurs, particularly late-delayed changes. These alterations, such as white matter damages and neurocognitive impairments, are often debilitative and untreatable, significantly affecting the quality of life of these patients, especially children. Oligodendrocytes, a major class of glial cells, have been identified to be one of the targets of radiation toxicity and are recognized be involved in late-delayed radiation-induced neuropathological changes. These cells are responsible for forming the myelin sheaths that surround and insulate axons within the CNS. Here, the effects of ionizing radiation on the oligodendrocyte lineage as well as the common clinical manifestations resulting from radiation-induced damage to oligodendrocytes will be discussed. Potential prophylactic and therapeutic strategies against radiation-induced oligodendrocyte damage will also be considered. CONCLUSION Oligodendrocytes and oligodendrocyte progenitor cells (OPCs) are radiosensitive cells of the CNS. Here, general responses of these cells to radiation exposure have been outlined. However, several findings have not been consistent across various studies. For instance, cognitive decline in irradiated animals was observed to be accompanied by obvious demyelination or white matter changes in several studies but not in others. Hence, further studies have to be conducted to elucidate the level of contribution of the oligodendrocyte lineage to the development of late-delayed effects of radiation exposure, as well as to classify the dose and brain region-specific responses of the oligodendrocyte lineage to radiation. Several potential therapeutic approaches against late-delayed changes have been discussed, such as the transplantation of OPCs into irradiated regions and implementation of exercise. Many of these approaches show promising results. Further elucidation of the mechanisms involved in radiation-induced death of oligodendrocytes and OPCs would certainly aid in the development of novel protective and therapeutic strategies against the late-delayed effects of radiation.
Collapse
Affiliation(s)
- Rui Xue Lee
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Yu S, Wu S, Zhang J, Zhao X, Liu X, Yi X, Li X. A single dual-targeting fluorescent probe enables exploration of the correlation between the plasma membrane and lysosomes. J Mater Chem B 2022; 10:582-588. [PMID: 34985475 DOI: 10.1039/d1tb02200h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions between organelles can maintain normal cell activity. Lysosomes, as waste disposal systems of cells, have many important interactions with the plasma membrane, especially in the repair of cracked plasma membrane. Unfortunately, a way to study the relationship between them synchronously is still lacking. Therefore, in this work, we constructed a dual-targeting probe (Mem-Lyso) to simultaneously visualize the plasma membrane and lysosomes for the first time. Taking advantage of dual-targeting, the probe Mem-Lyso could successfully track and analyze the dynamic changes of the plasma membrane and lysosomes in different bioprocesses. The experimental results demonstrated that, compared to the normal status, there was obvious fusion between the plasma membrane and lysosomes in the apoptosis process. Furthermore, because of the sensitivity to polarity, Mem-Lyso could label the plasma membrane and lysosomes with red and yellow colors in cells, respectively. Moreover, the skeleton and gastrointestinal wall of zebrafish were visualized by dual-color imaging, respectively. More importantly, the dual-targeting property endowed Mem-Lyso with the ability to spatially distinguish the cholesterol (CL) content in the plasma membrane, which provided a potential detection tool for biological research and diagnosis of related diseases.
Collapse
Affiliation(s)
- Shimo Yu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Shining Wu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xinfu Zhao
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xiaochan Liu
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China
| | - Xuechen Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Daxue Road 3501, Changqing District, Jinan 250353, P. R. China.
| |
Collapse
|
24
|
The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry 2022; 27:307-314. [PMID: 34608263 PMCID: PMC8488928 DOI: 10.1038/s41380-021-01309-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Acid sphingomyelinase (ASM) cleaves sphingomyelin into the highly lipophilic ceramide, which forms large gel-like rafts/platforms in the plasma membrane. We showed that SARS-CoV-2 uses these platforms for cell entry. Lowering the amount of ceramide or ceramide blockade due to inhibitors of ASM, genetic downregulation of ASM, anti-ceramide antibodies or degradation by neutral ceramidase protected against infection with SARS-CoV-2. The addition of ceramide restored infection with SARS-CoV-2. Many clinically approved medications functionally inhibit ASM and are called FIASMAs (functional inhibitors of acid sphingomyelinase). The FIASMA fluvoxamine showed beneficial effects on COVID-19 in a randomized prospective study and a prospective open-label real-world study. Retrospective and observational studies showed favorable effects of FIASMA antidepressants including fluoxetine, and the FIASMA hydroxyzine on the course of COVID-19. The ASM/ceramide system provides a framework for a better understanding of the infection of cells by SARS-CoV-2 and the clinical, antiviral, and anti-inflammatory effects of functional inhibitors of ASM. This framework also supports the development of new drugs or the repurposing of "old" drugs against COVID-19.
Collapse
|
25
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
26
|
Taniguchi M, Okazaki T. Role of ceramide/sphingomyelin (SM) balance regulated through "SM cycle" in cancer. Cell Signal 2021; 87:110119. [PMID: 34418535 DOI: 10.1016/j.cellsig.2021.110119] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Sphingomyelin synthase (SMS), which comprises of two isozymes, SMS1 and SMS2, is the only enzyme that generates sphingomyelin (SM) by transferring phosphocholine of phosphatidylcholine to ceramide in mammals. Conversely, ceramide is generated from SM hydrolysis via sphingomyelinases (SMases), ceramide de novo synthesis, and the salvage pathway. The biosynthetic pathway for SM and ceramide content by SMS and SMase, respectively, is called "SM cycle." SM forms a SM-rich microdomain on the cell membrane to regulate signal transduction, such as proliferation/survival, migration, and inflammation. On the other hand, ceramide acts as a lipid mediator by forming a ceramide-rich platform on the membrane, and ceramide exhibits physiological actions such as cell death, cell cycle arrest, and autophagy induction. Therefore, the regulation of ceramide/SM balance by SMS and SMase is responsible for diverse cell functions not only in physiological cells but also in cancer cells. This review outlines the implications of ceramide/SM balance through "SM cycle" in cancer progression and prevention. In addition, the possible involvement of "SM cycle" is introduced in anti-cancer tumor immunity, which has become a hot topic to innovate a more effective and safer way to conquer cancer in recent years.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahoku 920-0293, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-shi, Ishikawa 921-8836, Japan; Faculty of Advanced Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan.
| |
Collapse
|
27
|
Prause K, Naseri G, Schumacher F, Kappe C, Kleuser B, Arenz C. A photocaged inhibitor of acid sphingomyelinase. Chem Commun (Camb) 2021; 56:14885-14888. [PMID: 33179626 DOI: 10.1039/d0cc06661c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acid sphingomyelinase (ASM) is a potential drug target and involved in rapid lipid signalling events. However, there are no tools available to adequately study such processes. Based on a non cell-permeable PtdIns(3,5)P2 inhibitor of ASM, we developed a compound with o-nitrobenzyl photocages and butyryl esters to transiently mask hydroxyl groups. This resulted in a potent light-inducible photocaged ASM inhibitor (PCAI). The first example of a time-resolved inhibition of ASM was shown in intact living cells.
Collapse
Affiliation(s)
- Kevin Prause
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Gita Naseri
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Fabian Schumacher
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany and Department of Molecular Biology, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christian Kappe
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christoph Arenz
- Institute for Chemistry, Humboldt Universität zu Berlin, 12437 Berlin, Germany.
| |
Collapse
|
28
|
Kim JL, Mestre B, Shin SH, Futerman AH. Ceramide synthases: Reflections on the impact of Dr. Lina M. Obeid. Cell Signal 2021; 82:109958. [PMID: 33607256 DOI: 10.1016/j.cellsig.2021.109958] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a family of lipids that are critical to cell function and survival. Much of the recent work done on sphingolipids has been performed by a closely-knit family of sphingolipid researchers, which including our colleague, Dr. Lina Obeid, who recently passed away. We now briefly review where the sphingolipid field stands today, focusing in particular on areas of sphingolipid research to which Dr. Obeid made valued contributions. These include the 'many-worlds' view of ceramides and the role of a key enzyme in the sphingolipid biosynthetic pathway, namely the ceramide synthases (CerS). The CerS contain a number of functional domains and also interact with a number of other proteins in lipid metabolic pathways, fulfilling Dr. Obeid's prophecy that ceramides, and the enzymes that generate ceramides, form the critical hub of the sphingolipid metabolic pathway.
Collapse
Affiliation(s)
- Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beatriz Mestre
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sun-Hye Shin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
29
|
Conformal Avoidance of Normal Organs at Risk by Perfusion-Modulated Dose Sculpting in Tumor Single-Dose Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 109:288-297. [PMID: 32777335 DOI: 10.1016/j.ijrobp.2020.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE Although 24 Gy single-dose radiation therapy (SDRT) renders >90% 5-year local relapse-free survival in human solid tumor lesions, SDRT delivery is not feasible in ∼50% of oligometastatic lesions owing to interference by dose/volume constraints of a serial organ at risk (OAR). Conformal OAR avoidance is based on a hypothetical model positing that the recently described SDRT biology specifically permits volumetric subdivision of the SDRT dose, such that high-intensity vascular drivers of SDRT lethality, generated within a major tumor subvolume exposed to a high 24 Gy dose (high-dose planning target volume [PTVHD]), would equilibrate SDRT signaling intensity throughout the tumor interstitial space, rendering bystander radiosensitization of a minor subvolume (perfusion-modulated dose sculpting PTV [PTVPMDS]), dose-sculpted to meet a serial OAR dose/volume constraint. An engineered PTVPMDS may thus yield tumor ablation despite PMDS dose reduction and conformally avoiding OAR exposure to a toxic dose. METHODS AND MATERIALS Dose fall-off within the PTVPMDS penumbra of oligometastatic lesions was planned and delivered by intensity modulated inverse dose painting. SDRT- and SDRT-PMDS-treated lesions were followed with periodic positron emission tomography/computed tomography imaging to assess local tumor control. RESULTS Cumulative baseline 5-year local relapse rates of oligometastases treated with 24 Gy SDRT alone (8% relapses, n = 292) were similar in moderate PTVPMDS dose-sculpted (23-18 Gy, n = 76, 11% relapses, P = .36) and extreme dose-sculpted (<18 Gy, n = 61, 14% relapses, P = .29) lesions, provided the major 24 Gy PTVHD constituted ≥60% of the total PTV. In contrast, 28% of local relapses occurred in 26 extreme dose-sculpted PTVPMDS lesions when PTVHD constituted <60% of the total PTV (P = .004), suggesting a threshold for the PTVPMDS bystander effect. CONCLUSION The study provides compelling clinical support for the bystander radiosensitization hypothesis, rendering local cure of tumor lesions despite a ≥25% PTVPMDS dose reduction of the 24 Gy PTVHD dose, adapted to conformally meet OAR dose/volume constraints. The SDRT-PMDS approach thus provides a therapeutic resolution to otherwise radioablation-intractable oligometastatic disease.
Collapse
|
30
|
Jacobs KA, Maghe C, Gavard J. Lysosomes in glioblastoma: pump up the volume. Cell Cycle 2020; 19:2094-2104. [PMID: 32723137 DOI: 10.1080/15384101.2020.1796016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Lysosomes are acidic, dynamic organelles that supervise catabolism, integrate signaling cascades, and tune cellular trafficking. Moreover, the loss of their integrity may jeopardize cell viability. In cancer cells, lysosomes are qualitatively and quantitatively modified for the tumor's own benefit. For all these reasons, these organelles emerge as appealing intracellular targets to manipulate non-oncogene addiction. This is of particular interest for brain diseases, including neurodegenerative disorders and cancer, in which stem cells are exhausted and transformed, respectively. Recent publications had demonstrated that stem cells displayed disarmed lysosomes in terms of number and functions during aging and oncogenic progression. Likewise, our laboratory identified that the arginine protease MALT1, normally dedicated to the assembly of proper NF-kB activation and processing a number of substrates, arbitrates lysosome biogenesis and mTOR signaling in glioblastoma stem-like cells. Indeed, blocking either the expression or the activity of this enzyme leads to an aberrant increase of lysosomes, alongside of the down-regulation of the mTOR signaling. This surge of lysosomes eradicates glioblastoma stem-like cells. Targeting lysosomes might thus inspire the design of new strategies to face this devastating human cancer. Here, we provide an overview of the functions of the lysosome as well as its role as a cell death initiator, to highlight the potential of lysosomal drugs for glioblastoma therapy.
Collapse
Affiliation(s)
- Kathryn A Jacobs
- Team SOAP, CRCINA, Inserm, CNRS, Université De Nantes, Université d'Angers , Nantes, France
| | - Clément Maghe
- Team SOAP, CRCINA, Inserm, CNRS, Université De Nantes, Université d'Angers , Nantes, France
| | - Julie Gavard
- Team SOAP, CRCINA, Inserm, CNRS, Université De Nantes, Université d'Angers , Nantes, France.,Integrated Center for Oncology, ICO , St. Herblain, France
| |
Collapse
|